Rationalizability and Correlated Equilibria

Daisuke Oyama

Topics in Economic Theory

September 11, 2015

Paper

Brandenburger, A. and E. Dekel (1987). "Rationalizability and Correlated Equilibria," Econometrica 55, 1391-1402.

Normal Form Games

- Players $1, \ldots, I$
- ► A_i: finite set of actions for i
- $g_i \colon A \to \mathbb{R}$: payoff function for i

We identify the normal form game with $\mathbf{g} = (g_i)$.

Notation

- $\blacktriangleright \ \Delta(S):$ the set of probability distributions over S
- g_i is extended to $\Delta(A_{-i})$ by

$$g_i(a_i, \pi_i) = \sum_{a_{-i} \in A_{-i}} \pi_i(a_{-i}) g_i(a_i, a_{-i}) \qquad (\pi_i \in \Delta(A_{-i})).$$

• The set of *i*'s best responses to $\pi_i \in \Delta(A_{-i})$:

$$br_i(\pi_i) = \{ a_i \in A_i \mid g_i(a_i, \pi_i) \ge g_i(a'_i, \pi_i) \,\,\forall \, a'_i \in A_i \}.$$

(Correlated) Rationalizability

Definition 1

Action $a_i \in A_i$ is a (correlated) rationalizable action if $a_i \in R_i^{\infty}$.

Independent Rationalizability

$$IR_i^0 = A_i$$

$$IR_i^k = \{a_i \in A_i \mid a_i \in br_i(x_{-i}) \exists x_{-i} \in \prod_{j \neq i} \Delta(IR_j^{k-1})\}$$

$$IR_i^\infty = \bigcap_{k=0}^\infty IR_i^k$$

Definition 2

Action $a_i \in A_i$ is an independent rationalizable action if $a_i \in IR_i^{\infty}$.

▶ Trivially, for I = 2, $IR_i^{\infty} = R_i^{\infty}$, and in general, $IR_i^{\infty} \subset R_i^{\infty}$.

For
$$I \ge 3$$
, in some cases, $IR_i^{\infty} \ne R_i^{\infty}$.

Iterative Elimination of Strictly Dominated Actions

▶ Action $a_i \in A_i$ is strictly dominated against $A'_{-i} \subset A_{-i}$ if there exists $x_i \in \Delta(A_i)$ such that $g_i(x_i, a_{-i}) > g_i(a_i, a_{-i})$ for all $a_{-i} \in A'_{-i}$.

$$\blacktriangleright \ U_i^0 = A_i$$

U^k_i = {a_i ∈ A_i | a_i is not strictly dominated against U^{k-1}_{-i}}
 U[∞]_i = ∩[∞]_{k=0} U^k_i

Definition 3

Action $a_i \in A_i$ is an iteratively undominated action if $a_i \in U_i^{\infty}$.

Equivalence

Proposition 1

 $R^{\infty} = U^{\infty}.$

Use the following.

Theorem 1 Let $Z \in \mathbb{R}^{M \times N}$. The following conditions are equivalent: 1. For any $y \in \mathbb{R}^N_+$, if $Zy \leq 0$, then y = 0. 2. There exists $x \in \mathbb{R}^M_+$ such that $x'Z \gg 0$.

(Fix i and a_i , and let $Z_{mn} = g_i(m, n) - g_i(a_i, n)$.)

Alternatively, use the following.

Theorem 2

Let $K \subset \mathbb{R}^N$ be a convex set. If $K \cap \mathbb{R}^N_{++} = \emptyset$, then there exists $p \in \mathbb{R}^N_+$, $p \neq 0$, such that $p \cdot z \leq 0$ for all $z \in K$.

(Fix i and a_i , and let $K = \{g_i(x_i, \cdot) - g_i(a_i, \cdot) \in \mathbb{R}^{|A_{-i}|} \mid x_i \in \Delta(A_i)\}$).

Best Response Sets

For $D \subset \Delta(A_{-i})$, we write $br_i(D) = \{a_i \in A_i \mid a_i \in br_i(\pi_i) \exists \pi_i \in D\}.$

Proposition 2

1. $br_i(\Delta(R_{-i}^{\infty})) \subset R_i^{\infty}$ for all i.

2.
$$R_i^{\infty} \subset br_i(\Delta(R_{-i}^{\infty}))$$
 for all i .

3. If $A'_i \subset br_i(\Delta(A'_{-i}))$ for all i, then $A'_i \subset R^{\infty}_i$ for all i.

Information Structure

- Ω: (finite) set of states
- $P_i \in \Delta(\Omega)$: *i*'s prior belief
- Q_i : *i*'s information partition of Ω $Q_i(\omega) \in Q_i$: the partition cell that contains ω

A strategy of *i* is a Q_i -measurable function $f_i \colon \Omega \to A_i$.

Correlated Equilibrium I

Definition 4

 $(\Omega, (P_i), (Q_i), (f_i))$ is a correlated equilibrium of g if for all $i, j, P_i = P_j$ (denoted P), and for all i,

$$\sum_{\omega \in \Omega} P(\omega) \left(g_i(f(\omega)) - g_i(f'_i(\omega), f_{-i}(\omega)) \right) \ge 0$$

for all strategy f'_i .

Correlated Equilibrium II

Definition 5

An action distribution $\mu \in \Delta(A)$ is a correlated equilibrium of g if for all i and all a_i ,

$$\mu(a_i) > 0 \Rightarrow a_i \in br_i(\mu(\cdot|a_i)).$$

$$\begin{split} & \blacktriangleright \ \mu(a_i) = \sum_{a_{-i} \in A_{-i}} \mu(a_i, a_{-i}). \\ & \blacktriangleright \ \text{If} \ \mu(a_i) > 0, \ \mu(a_{-i} | a_i) = \mu(a_i, a_{-i}) / \mu(a_i). \end{split}$$

Equivalence

The action distribution $\mu \in \Delta(A)$ induced by $(\Omega, P, (Q_i), (f_i))$ is defined by $\mu(a) = P(\{\omega \mid f(\omega) = a\}).$

Proposition 3

The two definitions are equivalent in the following sense:

- If (Ω, P, (Q_i), (f_i)) is a correlated equilibrium (I), then its induced action distribution is a correlated equilibrium (II).
- If μ is a correlated equilibrium (II), then there exists some correlated equilibrium (I) that induces μ.

Proposition 4

A profile of mixed actions $(x_i)_{i=1}^I \in \prod_{i=1}^I \Delta(A_i)$ is a Nash equilibrium if and only if the action distribution $\mu \in \Delta(A)$ given by $\mu(a) = \prod_{i=1}^I x_i(a_i)$ is a correlated equilibrium.

Subjective Correlated Equilibrium I

Definition 6

 $(\Omega,(P_i),(\mathcal{Q}_i),(f_i))$ is a subjective correlated equilibrium of ${\bf g}$ if for all i,

$$\sum_{\omega \in \Omega} P_i(\omega) (g_i(f(\omega)) - g_i(f'_i(\omega), f_{-i}(\omega))) \ge 0$$

for all strategy f'_i .

Subjective Correlated Equilibrium II

Definition 7

A profile of action distributions $(\mu_i)_{i=1}^I \in (\Delta(A))^I$ is a subjective correlated equilibrium of g if for all i and all a_i ,

$$\mu_i(a_i) > 0 \Rightarrow a_i \in br_i(\mu_i(\cdot|a_i)).$$

•
$$\mu_i(a_i) = \sum_{a_{-i} \in A_{-i}} \mu_i(a_i, a_{-i}).$$

• If $\mu(a_i) > 0$, $\mu_i(a_{-i}|a_i) = \mu_i(a_i, a_{-i})/\mu_i(a_i).$

Equivalence

Proposition 5

The two definitions are equivalent in the following sense:

- If (Ω, (P_i), (Q_i), (f_i)) is a subjective correlated equilibrium (I), then its induced profile of action distributions is a subjective correlated equilibrium (II).
- If (µ_i) is a subjective correlated equilibrium (II), then there exists some subjective correlated equilibrium (I) that induces (µ_i).

A Posteriori Equilibrium I

Definition 8

 $(\Omega,(P_i),(\mathcal{Q}_i),(f_i))$ is an a posteriori equilibrium of ${\bf g}$ if for all i and all $\omega,$

$$\sum_{\omega'\in\Omega} P_i(\omega'|Q_i(\omega)) \left(g_i(f_i(\omega), f_{-i}(\omega')) - g_i(a'_i, f_{-i}(\omega')) \right) \ge 0$$

for all a_i' , where $P(\cdot|Q_i(\omega))\in \Delta(Q_i(\omega))$ is defined even when $P(Q_i(\omega))=0.$

Rationalizability and A Posteriori Equilibrium

Proposition 6

- 1. For any a posteriori equilibrium $(\Omega, (P_i), (Q_i), (f_i))$, $f_i(\omega) \in R_i^{\infty}$ for any i and any $\omega \in \Omega$.
- 2. There exist an a posteriori equilibrium $(\Omega, (P_i), (Q_i), (f_i))$ such that if $a \in \mathbb{R}^{\infty}$, then $f(\omega) = a$ for some $\omega \in \Omega$.

Proof

1.

- Fix any a posteriori equilibrium (Ω, (P_i), (Q_i), (f_i)).
 We want to show that for all k, f_i(ω) ∈ R^k_i for all i and all ω.
- Trivially $f_i(\omega) \in R_i^0 = A_i$ for all i and all ω .
- Suppose $f_i(\omega) \in R_i^{k-1}$ for all i and all ω .

Take any i and $\omega \in \Omega$.

 $\begin{array}{l} \text{Define } \pi_i \in \Delta(A_{-i}) \text{ by} \\ \pi_i(a_{-i}) = P_i(\{\omega' \mid f_{-i}(\omega') = a_{-i}\} | Q_i(\omega)). \end{array}$

- By the induction hypothesis, $\pi_i(R_{-i}^{k-1}) = 1$.
- ► By the definition of a posteriori equilibrium, f_i(ω) ∈ br_i(π_i). Therefore, f_i(ω) ∈ R^k_i.

2.

- ▶ Recall that R^{∞} has the best response property, so that for each $a_i \in R_i^{\infty}$, there is some $\pi_i^{a_i} \in \Delta(R_{-i}^{\infty})$ such that $a_i \in br_i(\pi_i^{a_i})$.
- Construct $(\Omega, (P_i), (Q_i), (f_i))$ as follows: $\Omega = R^{\infty}$, $P_i(a) = \pi_i^{a_i}/|R_i^{\infty}|$, $Q_i(a) = \{a' \in A \mid a'_i = a_i\}$, $f_i(a) = a_i$.

A Posteriori Equilibrium II

Definition 9

A profile of action distributions $(\mu_i)_{i=1}^I \in (\Delta(A))^I$ is an a posteriori equilibrium of g if it is a subject correlated equilibrium and $\mu_i(R^{\infty}) = 1$ for all *i*.

(Oyama and Tercieux 2010, Definition 2.2)