Hierarchies of Beliefs and Common Knowledge

Daisuke Oyama

Topics in Economic Theory

September 15, 2015

Paper

 Brandenburger, A. and E. Dekel (1993). "Hierarchies of Beliefs and Common Knowledge," Journal of Economic Theory 59, 189-198.

- Two agents (for simplicity)
- States of uncertainty Θ (fixed):
 Polish space, i.e., metric space that is
 - complete
 - separable (having a countable dense subset)

(Needed to apply Kolmogorov's Extension Theorem)

Preliminaries

For any metric space Z, let Δ(Z) be the space of probability measures on the Borel field (σ-algebra) of Z.

Endow $\Delta(Z)$ with the weak topology: $\mu^n \to \mu$ iff $\int f \, d\mu^n \to \int f \, d\mu$ for any bounded continuous function f on Z.

(This topology is metrizable.)

- If Z is Polish, then so is $\Delta(Z)$.
- A countable product of Polish spaces is Polish in the product topology.

Hierarchies of Beliefs

Define iteratively

$$\begin{split} X^{0} &= \Theta, \\ X^{1} &= X^{0} \times \Delta(X^{0}) = \Theta \times \Delta(\Theta), \\ X^{2} &= X^{1} \times \Delta(X^{1}) = \Theta \times \Delta(\Theta) \times \Delta(\Theta \times \Delta(\Theta)), \\ &\vdots \\ X^{k} &= X^{k-1} \times \Delta(X^{k-1}), \\ &\vdots \end{split}$$

• Let $T^0 = \prod_{k=0}^{\infty} \Delta(X^k)$.

• A type of agent $i: t_i = (\delta_i^1, \delta_i^2, \delta_i^3, \ldots) \in T^0 = \prod_{k=0}^{\infty} \Delta(X^k):$

 $\blacktriangleright \ \delta^1_i \in \Delta(X^0) = \Delta(\Theta) \text{: } i \text{'s first order belief}$

► $\delta_i^2 \in \Delta(X^1) = \Delta(\Theta \times \Delta(\Theta))$: *i*'s second order belief, i.e., joint belief over Θ and the space of *j*'s first order beliefs

Coherency (Consistency)

► For example, if $(\delta_i^1, \delta_i^2, ...)$ is a type of i, where $\delta_i^1 \in \Delta(\Theta)$ and $\delta_i^2 \in \Delta(\Theta \times \Delta(\Theta))$, then it should hold that

$$\delta_i^2(E \times \Delta(\Theta)) = \delta_i^1(E) \text{ for all } E \in \mathcal{B}(\Theta),$$

or $\operatorname{marg}_{X^0} \delta_i^2 = \delta_i^1$.

Definition 1

A type $(\delta^1, \delta^2, ...) \in T^0$ is *coherent* if for all $k \ge 2$, marg_{X^{k-2}} $\delta_k = \delta_{k-1}$.

Let $T^1 \subset T^0$ denote the set of all coherent types.

Homeomorphism between T^1 and $\Delta(\Theta \times T^0)$

► For a sequence of probability measures $(\delta^1, \delta^2, \delta^3, \ldots)$, where $\delta^1 \in \Delta(Z^0), \delta^2 \in \Delta(Z^0 \times Z^1), \delta^3 \in \Delta(Z^0 \times Z^1 \times Z^2), \ldots$, that is coherent (consistent), there is a unique measure $\delta \in \Delta(Z^0 \times Z^1 \times Z^2 \times \cdots)$ such that $\operatorname{marg}_{Z^0 \times \cdots \times Z^{k-1}} \delta = \delta^k$, where $Z^0 = X^0, Z^1 = \Delta(X^0), Z^2 = \Delta(X^1), \ldots$

 \cdots Kolmogorov's Extension Theorem

• Let $f: T^1 \to \Delta(\Theta \times T^0)$ denote this mapping from t to δ .

► f is a homeomorphism, i.e., it is one-to-one and onto, and f and f⁻¹ are continuous.

For
$$\delta \in \Delta(X^0 \times \Delta(X^0) \times \Delta(X^1) \times \cdots)$$
,
 $f^{-1}(\delta)^k = \operatorname{marg}_{X^k} \delta.$

► For
$$t = (\delta^1, \delta^2, \delta^3, \ldots) \in T^1 \subset \Delta(X^0) \times \Delta(X^1) \times \cdots$$
,
marg_{X^k} $f(t) = \delta^k$.

Proposition 1

$$T^1$$
 is homeomorphic to $\Delta(\Theta imes T^0)$ by f .

Common Certainty of Coherency

$$\blacktriangleright T^* = \bigcap_{k=1}^{\infty} T^k$$

 \cdots set of types that satisfy common certainty of coherency

Homeomorphism between T^* and $\Delta(\Theta \times T^*)$

- It holds that $T^* = \{t \in T^1 \mid f(t)(\Theta \times T^*) = 1\}.$
- ► Thus $f(T^*) = \{\delta \in \Delta(\Theta \times T^0) \mid \delta(\Theta \times T^*) = 1\}$ (since f is one-to-one).
- ► Identify (by the obvious homeomorphism) $\{\delta \in \Delta(\Theta \times T^0) \mid \delta(\Theta \times T^*) = 1\}$ with $\Delta(\Theta \times T^*)$.
- ▶ Then the restriction $g: T^* \to \Delta(\Theta \times T^*)$ of f to T^* , defined by g(t)(E) = f(t)(E) for all measurable $E \subset \Theta \times T^*$, is a homeomorphism.

Proposition 2

 T^* is homeomorphic to $\Delta(\Theta\times T^*)$ by g.

General Type Spaces

• • • • .

- A type space is $((T_1, \pi_1), (T_2, \pi_2))$ where
 - T_i is a polish space, and
 - $\pi_i \colon T_i \to \Delta(\Theta \times T_{-i})$ is continuous.
- $((T^*,g),(T^*,g))$ is a particular type space.
- Explicit type: Given $t_i \in T_i$:
 - $\hat{\pi}_i^1(t_i) \in \Delta(X^0)$ defined by $\hat{\pi}_i^1(t_i)(E^0) = \pi(t_i)(E^0 \times T_{-i})$ for measurable $E^0 \subset \Delta(X^0)$ (where $X^0 = \Theta$);
 - $\begin{array}{l} \widehat{\pi}_i^2(t_i) \in \Delta(X^1) \text{ defined by} \\ \widehat{\pi}_i^2(t_i)(E^1) = \pi_i(t_i)(\{(\theta, t_{-i}) \mid (\theta, \widehat{\pi}_{-i}^1(t_{-i})) \in E^1\}) \\ \text{ for measurable } E^1 \subset \Delta(X^1) \text{ (where } X^1 = \Theta \times \Delta(\Theta)); \end{array}$

$$\Rightarrow \hat{\pi}_i^*(t_i) = (\hat{\pi}_i^1(t_i), \hat{\pi}_i^2(t_i), \ldots) \in T^0$$

• By construction $\hat{\pi}_i^*(t_i) \in T^1$.

For all k,

$$\begin{aligned} \hat{\pi}_i^k(t_i)(\Theta \times \operatorname{proj}_{\Delta(X^0) \times \Delta(X^{k-1})} T^1) \\ &= \pi_i(t_i)(\{(\theta, t_{-i}) \mid (\hat{\pi}_{-i}^1, \dots, \hat{\pi}_{-i}^{k-1}) \in \operatorname{proj}_{\Delta(X^0) \times \dots \times \Delta(X^{k-1})} T^1\}) \\ &= \pi_i(t_i)(\Theta \times T_{-i}) = 1. \end{aligned}$$

• • • •

• Hence
$$\hat{\pi}_i^*(t_i) \in T^*$$
.

► Let
$$\hat{T}_i = \hat{\pi}_i^*(T_i) \subset T^*$$
.
Then $g(\hat{\pi}_i^*(t_i))(\Theta \times \hat{T}_{-i}) = 1$ for all $t_i \in T_i$.

Proposition 3

Any type space $((T_1, \pi_1), (T_2, \pi_2))$ can be embedded in $((T^*, g), (T^*, g))$ as a belief-closed subspace.

Example: Email Game Type Space

$$\Theta = \{\theta^{0}, \theta^{1}\}$$

$$T_{1} = T_{2} = \{0, 1, 2, ...\}$$

$$\pi_{1} \colon T_{1} \to \Delta(\Theta \times T_{2}):$$

$$\pi_{1}((\theta, t_{2})|t_{1}) = \begin{cases} 1 & \text{if } t_{1} = \frac{1}{2-\varepsilon} \\ \frac{1-\varepsilon}{2-\varepsilon} & \text{if } t_{1} \geq 0 \\ 0 & \text{other} \end{cases}$$

if
$$t_1 = 0$$
, $t_2 = 0$, $\theta = \theta^0$
if $t_1 \ge 1$, $t_2 = t_1 - 1$, $\theta = \theta^1$
if $t_1 \ge 1$, $t_2 = t_1$, $\theta = \theta^1$
otherwise

$$\begin{aligned} \pi_2 \colon T_2 \to \Delta(\Theta \times T_1) \colon \\ \pi_2((\theta, t_1)|t_2) &= \begin{cases} \frac{1}{2-\varepsilon} & \text{if } t_2 = 0, \, t_1 = 0, \, \theta = \theta^0 \\ \frac{1}{2-\varepsilon} & \text{if } t_2 \ge 1, \, t_1 = t_2, \, \theta = \theta^1 \\ \frac{1-\varepsilon}{2-\varepsilon} & \text{if } t_2 \ge 0, \, t_1 = t_2 + 1, \, \theta = \theta^1 \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$