Hierarchies of Beliefs and Common Knowledge

Daisuke Oyama

Topics in Economic Theory

September 15, 2015

Paper

- Brandenburger, A. and E. Dekel (1993). "Hierarchies of Beliefs and Common Knowledge," Journal of Economic Theory 59, 189-198.

Setup

- Two agents (for simplicity)
- States of uncertainty Θ (fixed):

Polish space, i.e., metric space that is

- complete
- separable (having a countable dense subset)
(Needed to apply Kolmogorov's Extension Theorem)

Preliminaries

- For any metric space Z, let $\Delta(Z)$ be the space of probability measures on the Borel field (σ-algebra) of Z.
Endow $\Delta(Z)$ with the weak topology: $\mu^{n} \rightarrow \mu$ iff $\int f d \mu^{n} \rightarrow \int f d \mu$ for any bounded continuous function f on Z.
(This topology is metrizable.)
- If Z is Polish, then so is $\Delta(Z)$.
- A countable product of Polish spaces is Polish in the product topology.

Hierarchies of Beliefs

- Define iteratively

$$
\begin{aligned}
X^{0} & =\Theta \\
X^{1} & =X^{0} \times \Delta\left(X^{0}\right)=\Theta \times \Delta(\Theta) \\
X^{2} & =X^{1} \times \Delta\left(X^{1}\right)=\Theta \times \Delta(\Theta) \times \Delta(\Theta \times \Delta(\Theta)) \\
& \vdots \\
X^{k} & =X^{k-1} \times \Delta\left(X^{k-1}\right)
\end{aligned}
$$

- Let $T^{0}=\prod_{k=0}^{\infty} \Delta\left(X^{k}\right)$.
- A type of agent i : $t_{i}=\left(\delta_{i}^{1}, \delta_{i}^{2}, \delta_{i}^{3}, \ldots\right) \in T^{0}=\prod_{k=0}^{\infty} \Delta\left(X^{k}\right)$:
- $\delta_{i}^{1} \in \Delta\left(X^{0}\right)=\Delta(\Theta): i$'s first order belief
- $\delta_{i}^{2} \in \Delta\left(X^{1}\right)=\Delta(\Theta \times \Delta(\Theta))$: i 's second order belief, i.e., joint belief over Θ and the space of j 's first order beliefs

Coherency (Consistency)

- For example, if $\left(\delta_{i}^{1}, \delta_{i}^{2}, \ldots\right)$ is a type of i, where $\delta_{i}^{1} \in \Delta(\Theta)$ and $\delta_{i}^{2} \in \Delta(\Theta \times \Delta(\Theta))$, then it should hold that

$$
\delta_{i}^{2}(E \times \Delta(\Theta))=\delta_{i}^{1}(E) \text { for all } E \in \mathcal{B}(\Theta)
$$

or $\operatorname{marg}_{X^{0}} \delta_{i}^{2}=\delta_{i}^{1}$.

Definition 1

A type $\left(\delta^{1}, \delta^{2}, \ldots\right) \in T^{0}$ is coherent if for all $k \geq 2$, $\operatorname{marg}_{X^{k-2}} \delta_{k}=\delta_{k-1}$.

Let $T^{1} \subset T^{0}$ denote the set of all coherent types.

Homeomorphism between T^{1} and $\Delta\left(\Theta \times T^{0}\right)$

- For a sequence of probability measures $\left(\delta^{1}, \delta^{2}, \delta^{3}, \ldots\right)$, where $\delta^{1} \in \Delta\left(Z^{0}\right), \delta^{2} \in \Delta\left(Z^{0} \times Z^{1}\right), \delta^{3} \in \Delta\left(Z^{0} \times Z^{1} \times Z^{2}\right), \ldots$, that is coherent (consistent), there is a unique measure $\delta \in \Delta\left(Z^{0} \times Z^{1} \times Z^{2} \times \cdots\right)$ such that $\operatorname{marg}_{Z^{0} \times \cdots \times Z^{k-1}} \delta=\delta^{k}$, where $Z^{0}=X^{0}, Z^{1}=\Delta\left(X^{0}\right), Z^{2}=\Delta\left(X^{1}\right), \ldots$

... Kolmogorov's Extension Theorem

- Let $f: T^{1} \rightarrow \Delta\left(\Theta \times T^{0}\right)$ denote this mapping from t to δ.
- f is a homeomorphism,
i.e., it is one-to-one and onto, and f and f^{-1} are continuous.
- For $\delta \in \Delta\left(X^{0} \times \Delta\left(X^{0}\right) \times \Delta\left(X^{1}\right) \times \cdots\right)$,

$$
f^{-1}(\delta)^{k}=\operatorname{marg}_{X^{k}} \delta
$$

- For $t=\left(\delta^{1}, \delta^{2}, \delta^{3}, \ldots\right) \in T^{1} \subset \Delta\left(X^{0}\right) \times \Delta\left(X^{1}\right) \times \cdots$, $\operatorname{marg}_{X^{k}} f(t)=\delta^{k}$.

Proposition 1

T^{1} is homeomorphic to $\Delta\left(\Theta \times T^{0}\right)$ by f.

Common Certainty of Coherency

- $T^{2}=\left\{t \in T^{1} \mid f(t)\left(\Theta \times T^{1}\right)=1\right\}$ $\left(=\left\{t \in T^{1} \mid \delta^{k}\left(\Theta \times \operatorname{proj}_{\Delta\left(X^{0}\right) \times \cdots \times \Delta\left(X^{k-1}\right)} T^{1}\right)=1 \forall k \geq 2\right\}\right)$
- $T^{3}=\left\{t \in T^{1} \mid f(t)\left(\Theta \times T^{2}\right)=1\right\}$
- ...
- $T^{*}=\bigcap_{k=1}^{\infty} T^{k}$
... set of types that satisfy common certainty of coherency

Homeomorphism between T^{*} and $\Delta\left(\Theta \times T^{*}\right)$

- It holds that $T^{*}=\left\{t \in T^{1} \mid f(t)\left(\Theta \times T^{*}\right)=1\right\}$.
- Thus $f\left(T^{*}\right)=\left\{\delta \in \Delta\left(\Theta \times T^{0}\right) \mid \delta\left(\Theta \times T^{*}\right)=1\right\}$ (since f is one-to-one).
- Identify (by the obvious homeomorphism) $\left\{\delta \in \Delta\left(\Theta \times T^{0}\right) \mid \delta\left(\Theta \times T^{*}\right)=1\right\}$ with $\Delta\left(\Theta \times T^{*}\right)$.
- Then the restriction $g: T^{*} \rightarrow \Delta\left(\Theta \times T^{*}\right)$ of f to T^{*}, defined by $g(t)(E)=f(t)(E)$ for all measurable $E \subset \Theta \times T^{*}$, is a homeomorphism.

Proposition 2
T^{*} is homeomorphic to $\Delta\left(\Theta \times T^{*}\right)$ by g.

General Type Spaces

- A type space is $\left(\left(T_{1}, \pi_{1}\right),\left(T_{2}, \pi_{2}\right)\right)$ where
- T_{i} is a polish space, and
- $\pi_{i}: T_{i} \rightarrow \Delta\left(\Theta \times T_{-i}\right)$ is continuous.
- $\left(\left(T^{*}, g\right),\left(T^{*}, g\right)\right)$ is a particular type space.
- Explicit type: Given $t_{i} \in T_{i}$:
- $\hat{\pi}_{i}^{1}\left(t_{i}\right) \in \Delta\left(X^{0}\right)$ defined by $\hat{\pi}_{i}^{1}\left(t_{i}\right)\left(E^{0}\right)=\pi\left(t_{i}\right)\left(E^{0} \times T_{-i}\right)$ for measurable $E^{0} \subset \Delta\left(X^{0}\right)$ (where $X^{0}=\Theta$);
- $\hat{\pi}_{i}^{2}\left(t_{i}\right) \in \Delta\left(X^{1}\right)$ defined by $\hat{\pi}_{i}^{2}\left(t_{i}\right)\left(E^{1}\right)=\pi_{i}\left(t_{i}\right)\left(\left\{\left(\theta, t_{-i}\right) \mid\left(\theta, \hat{\pi}_{-i}^{1}\left(t_{-i}\right)\right) \in E^{1}\right\}\right)$ for measurable $E^{1} \subset \Delta\left(X^{1}\right)$ (where $X^{1}=\Theta \times \Delta(\Theta)$);
-

$$
\Rightarrow \hat{\pi}_{i}^{*}\left(t_{i}\right)=\left(\hat{\pi}_{i}^{1}\left(t_{i}\right), \hat{\pi}_{i}^{2}\left(t_{i}\right), \ldots\right) \in T^{0}
$$

- By construction $\hat{\pi}_{i}^{*}\left(t_{i}\right) \in T^{1}$.
- For all k,

$$
\begin{aligned}
& \hat{\pi}_{i}^{k}\left(t_{i}\right)\left(\Theta \times \operatorname{proj}_{\Delta\left(X^{0}\right) \times \Delta\left(X^{k-1}\right)} T^{1}\right) \\
& =\pi_{i}\left(t_{i}\right)\left(\left\{\left(\theta, t_{-i}\right) \mid\left(\hat{\pi}_{-i}^{1}, \ldots, \hat{\pi}_{-i}^{k-1}\right) \in \operatorname{proj}_{\Delta\left(X^{0}\right) \times \cdots \times \Delta\left(X^{k-1}\right)} T^{1}\right\}\right) \\
& =\pi_{i}\left(t_{i}\right)\left(\Theta \times T_{-i}\right)=1
\end{aligned}
$$

- Hence $\hat{\pi}_{i}^{*}\left(t_{i}\right) \in T^{*}$.
- Let $\hat{T}_{i}=\hat{\pi}_{i}^{*}\left(T_{i}\right) \subset T^{*}$.

Then $g\left(\hat{\pi}_{i}^{*}\left(t_{i}\right)\right)\left(\Theta \times \hat{T}_{-i}\right)=1$ for all $t_{i} \in T_{i}$.

Proposition 3

Any type space $\left(\left(T_{1}, \pi_{1}\right),\left(T_{2}, \pi_{2}\right)\right)$ can be embedded in $\left(\left(T^{*}, g\right),\left(T^{*}, g\right)\right)$ as a belief-closed subspace.

Example: Email Game Type Space

- $\Theta=\left\{\theta^{0}, \theta^{1}\right\}$
- $T_{1}=T_{2}=\{0,1,2, \ldots\}$
- $\pi_{1}: T_{1} \rightarrow \Delta\left(\Theta \times T_{2}\right):$

$$
\pi_{1}\left(\left(\theta, t_{2}\right) \mid t_{1}\right)= \begin{cases}1 & \text { if } t_{1}=0, t_{2}=0, \theta=\theta^{0} \\ \frac{1}{2-\varepsilon} & \text { if } t_{1} \geq 1, t_{2}=t_{1}-1, \theta=\theta^{1} \\ \frac{1-\varepsilon}{2-\varepsilon} & \text { if } t_{1} \geq 1, t_{2}=t_{1}, \theta=\theta^{1} \\ 0 & \text { otherwise }\end{cases}
$$

$\pi_{2}: T_{2} \rightarrow \Delta\left(\Theta \times T_{1}\right):$

$$
\pi_{2}\left(\left(\theta, t_{1}\right) \mid t_{2}\right)= \begin{cases}\frac{1}{2-\varepsilon} & \text { if } t_{2}=0, t_{1}=0, \theta=\theta^{0} \\ \frac{1}{2-\varepsilon} & \text { if } t_{2} \geq 1, t_{1}=t_{2}, \theta=\theta^{1} \\ \frac{1-\varepsilon}{2-\varepsilon} & \text { if } t_{2} \geq 0, t_{1}=t_{2}+1, \theta=\theta^{1} \\ 0 & \text { otherwise }\end{cases}
$$

