The Robustness of Equilibria to Incomplete Information

Daisuke Oyama

Topics in Economic Theory

September 29, 2015

Papers

- Kajii, A. and S. Morris (1997a). "The Robustness of Equilibria to Incomplete Information," Econometrica 65, 1283-1309.
- Kajii, A. and S. Morris (1997b). "Refinements and Higher Order Beliefs: A Unified Survey."

Robustness of Equilibria

- ► An analyst analyzes some strategic situation with a complete information game g and a Nash equilibrium *a*^{*} thereof.
- He knows that it is a good approximation, but he also thinks that there may be "small" payoff uncertainty among players in the real world and does not know about the uncertainty structure.
- Is the Nash equilibrium a* robust to a small amount of payoff uncertainty?

I.e., Is it "close" to some Bayesian Nash equilibrium of any incomplete information game "close" to \mathbf{g} ?

Not all equilibria are robust.

Cf. Email game.

Sufficient conditions?

Complete Information Games

- Set of players $I = \{1, \dots, |I|\}$
- ▶ Action set A_i (finite)
- Payoff function $g_i \colon A \to \mathbb{R}$

Fix players and actions, and identify the complete information game with $\mathbf{g}=(g_i)_{i\in I}.$

•
$$g_i$$
 is extended to $\Delta(A_{-i})$ by

$$g_i(a_i, \pi_i) = \sum_{a_{-i} \in A_{-i}} \pi_i(a_{-i}) g_i(a_i, a_{-i}) \qquad (\pi_i \in \Delta(A_{-i})).$$

• The set of *i*'s best responses to $\pi_i \in \Delta(A_{-i})$:

$$br_i(\pi_i) = \{ a_i \in A_i \mid g_i(a_i, \pi_i) \ge g_i(a'_i, \pi_i) \ \forall \ a'_i \in A_i \}.$$

Correlated Equilibrium and Nash Equilibrium

 Action distribution μ ∈ Δ(A) is an η-correlated equilibrium of g if for all i ∈ I and all f_i: A_i → A_i,

$$\sum_{a \in A} \left(g_i(a) - g_i(f_i(a_i), a_{-i}) \right) \mu(a) \ge -\eta.$$

- ► Action distribution $\mu \in \Delta(A)$ is a *correlated equilibrium* of g if it is a 0-correlated equilibrium of g.
- Action distribution μ ∈ Δ(A) is a Nash equilibrium of g if it is a correlated equilibrium of g such that for some μ_i ∈ Δ(A_i), i ∈ I, μ(a) = ∏_{i∈I} μ_i(a_i) for all a ∈ A.

p-Dominant Equilibrium

• Action profile $a^* \in A$ is a **p**-dominant equilibrium of **g** if

 $a_i^* \in br_i(\lambda_i)$

for any $\lambda_i \in \Delta(A_{-i})$ such that $\lambda_i(a_{-i}^*) \ge p_i$.

• Action profile $a^* \in A$ is a *strict* **p**-dominant equilibrium of **g** if

 $\{a_i^*\} = br_i(\lambda_i)$

for any $\lambda_i \in \Delta(A_{-i})$ such that $\lambda_i(a_{-i}^*) > p_i$.

Type Spaces

• Type space
$$\mathcal{T} = ((T_i)_{i \in I}, P)$$
:

•
$$T_i = \{0, 1, 2, ...\}$$
: set of *i*'s types

• $P \in \Delta(T)$: common prior Assume $P(t_i) = P(\{t_i\} \times T_{-i}) > 0$ for all i and t_i .

$$P(E_{-i}|t_i) = \frac{P(\{t_i\} \times E_{-i})}{P(t_i)}$$

for $t_i \in T_i$ and $E_{-i} \subset T_{-i}$.

Incomplete Information Games

- Fix I, $(A_i)_{i \in I}$, and $(T_i)_{i \in I}$.
- Incomplete information game (\mathbf{u}, P) : $u_i : A \times T \to \mathbb{R}$
- ▶ *i*'s strategy: σ_i : $T_i \to \Delta(A_i)$; set of all strategies Σ_i

►
$$U_i(a_i, \sigma_{-i}|t_i) = \sum_{t_{-i} \in T_{-i}} P(t_{-i}|t_i) u_i((a_i, \sigma_{-i}(t_{-i})), (t_i, t_{-i}))$$

• The set of *i*'s best responses to σ_{-i} :

 $BR_{i}(\sigma_{-i}|t_{i}) = \{a_{i} \in A_{i} \mid U_{i}(a_{i}, \sigma_{-i}|t_{i}) \geq U_{i}(a_{i}', \sigma_{-i}|t_{i}) \,\forall \, a_{i}' \in A_{i}\}.$

- ▶ $\sigma \in \Sigma$ is a Bayesian Nash equilibrium of (\mathbf{u}, P) if for all $i \in I$, all $a_i \in A_i$, and all $t_i \in T_i$, $\sigma_i(a_i|t_i) > 0 \Rightarrow a_i \in BR_i(\sigma_{-i}|t_i)$.
- Any (u, P) has at least one BNE.
- $\mu \in \Delta(A)$ is an equilibrium action distribution of (\mathbf{u}, P) if there exists a BNE σ of (\mathbf{u}, P) such that $\mu(a) = \sum_{t \in T} P(t)\sigma(a|t).$

Robust Equilibria

• Given \mathbf{g} and (\mathbf{u}, P) , let

$$\begin{split} T_i^{g_i} = \{ t_i \in T_i \mid u_i(a, t_i, t_{-i}) = g_i(a) \text{ for all } a \in A \text{ and} \\ \text{ for all } t_{-i} \in T_{-i} \text{ with } P(t_{-i}|t_i) > 0 \}, \end{split}$$

and $T^{\mathbf{g}} = \prod_{i=1}^{I} T_i^{g_i}$.

• (\mathbf{u}, P) is an ε -elaboration of \mathbf{g} if $P(T^{\mathbf{g}}) = 1 - \varepsilon$.

$$||\mu - \nu|| = \max_{a \in A} |\mu(a) - \nu(a)|$$

Definition 1

$$\begin{split} \mu \in \Delta(A) \text{ is robust to incomplete information in g if} \\ \text{for any } \delta > 0 \text{, there exists } \bar{\varepsilon} > 0 \text{ such that for any } \varepsilon \leq \bar{\varepsilon} \text{,} \\ \text{any } \varepsilon \text{-elaboration of g has an equilibrium action distribution} \\ \nu \in \Delta(A) \text{ such that } \|\mu - \nu\| \leq \delta. \end{split}$$

Email Game

• A risk-dominated equilibrium is not robust.

 \therefore For any $\varepsilon > 0$, there exists an ε -elaboration whose Bayesian Nash equilibrium is unique and plays the risk-dominant equilibrium with probability 1. Non-Existence: Example 3.1

•
$$\tilde{\varepsilon} = 1 - \sqrt{1 - \varepsilon}$$

• (\mathbf{u}, P) :

$$P(t) = \begin{cases} \tilde{\varepsilon}(1-\tilde{\varepsilon})^{3k} & \text{if } t = (k,k,k) \\ \tilde{\varepsilon}(1-\tilde{\varepsilon})^{3k+1} & \text{if } t = (k,k+1,k) \\ \tilde{\varepsilon}(1-\tilde{\varepsilon})^{3k+2} & \text{if } t = (k,k+1,k+1) \\ 0 & \text{otherwise} \end{cases}$$

•
$$T_1^{g_1} = T_1$$

$$\blacktriangleright T_2^{g_2} = T_2 \setminus \{0\}$$

$$\blacktriangleright T_3^{g_3} = T_3 \setminus \{0\}$$

► $P(T^{\mathbf{g}}) = 1 - P(\{(0,0,0), (0,1,0)\}) = 1 - \tilde{\varepsilon} - \tilde{\varepsilon}(1 - \tilde{\varepsilon}) = (1 - \tilde{\varepsilon})^2$

Correlated Equilibrium and ε -Elaborations

Lemma 1

For any $\eta > 0$, there exists $\bar{\varepsilon} > 0$ such that any equilibrium action distribution of any ε -elaboration of g with $\varepsilon \leq \bar{\varepsilon}$ is an η -correlated equilibrium of g.

Proof

- ► Take any $\eta > 0$, and let $\bar{\varepsilon} > 0$ be such that $2M\bar{\varepsilon} \leq \eta$, where $M = \max_{i \in I} \max_{a \in A} |g_i(a)|$.
- Let (\mathbf{u}, P) be any ε -elaboration with $\varepsilon \leq \overline{\varepsilon}$, and let ν be any equilibrium action distribution of (\mathbf{u}, P) with the corresponding BNE σ .
- Fix i and $f_i \colon A_i \to A_i$.

For all $t_i \in T_i^{g_i}$,

$$\sum_{a \in A} \sum_{t_{-i} \in T_{-i}} (g_i(a) - g_i(f_i(a_i), a_{-i})) \sigma(a|t) P(t_{-i}|t_i) \ge 0.$$

Hence, $\sum_{t_i \in T_i^{g_i}} P(t_i)(\text{LHS}) \ge 0.$

► Decompose $\nu(a) = \sum_{t \in T_i^{g^i} \times T_{-i}} \sigma(a|t) P(t) + \sum_{t \in T_i \setminus T_i^{g^i} \times T_{-i}} \sigma(a|t) P(t).$

We have

$$\sum_{a \in A} (g_i(a) - g_i(f_i(a_i), a_{-i}))\nu(a)$$

$$\geq -2MP(T_i \setminus T_i^{g^i} \times T_{-i})$$

$$\geq -2M(1 - P(T^{\mathbf{g}})) = -2M\varepsilon \geq -\eta.$$

Correlated Equilibrium and ε -Elaborations

Lemma 2

Suppose

•
$$\varepsilon^k \to 0$$
 as $k \to \infty$,

•
$$(\mathbf{u}^k, P^k)$$
 is an ε^k -elaboration of \mathbf{g} ,

 $\blacktriangleright \ \mu^k$ is an equilibrium action distribution of $(\mathbf{u}^k,P^k),$ and

•
$$\mu^k \to \mu$$
.

Then μ is a correlated equilibrium of g.

Proof

Fix any i and any f_i .

First note
$$\sum_{a \in A} (g_i(a) - g_i(f_i(a_i), a_{-i})) \mu^k(a) \rightarrow \sum_{a \in A} (g_i(a) - g_i(f_i(a_i), a_{-i})) \mu(a).$$

• Take any
$$\eta > 0$$
.

By Lemma 1, there is some n such that μ^k is an $\eta\text{-correlated}$ equilibrium g.

► With this k, we have

$$\sum_{a \in A} (g_i(a) - g_i(f_i(a_i), a_{-i})) \mu(a) \ge \sum_{a \in A} (g_i(a) - g_i(f_i(a_i), a_{-i})) \mu^k(a) \ge -\eta.$$

Correlated Equilibrium and ε -Elaborations

- $\mathcal{E}(\mathbf{g}, \varepsilon)$: set of all ε -elaborations of \mathbf{g}
- $M(\mathbf{u}, P)$: set of all equilibrium action distributions of (\mathbf{u}, P)

$$\begin{split} & \blacktriangleright \ M(\varepsilon) = \bigcup_{\varepsilon' \le \varepsilon} \bigcup_{(\mathbf{u}, P) \in \mathcal{E}(\mathbf{g}, \varepsilon')} M(\mathbf{u}, P) \\ & \blacktriangleright \ M^* = \bigcap_{\varepsilon > 0} \overline{M(\varepsilon)} \end{split}$$

Lemma 3

- 1. $M^* \neq \emptyset$.
- 2. Every $\mu \in M^*$ is a correlated equilibrium of g.
- (1. By the compactness of $\Delta(A)$. 2. By Lemma 2.)

Unique Correlated Equilibrium

Proposition 4

If g has a unique correlated equilibrium μ^* , then μ^* is the unique robust equilibrium of g.

Proof

- Let μ^* be the unique correlated equilibrium of g.
- Then $M^* = \{\mu^*\}$ by Lemma 3.
- For any δ > 0, there exists ε̄ > 0 such that M(ε̄) ⊂ B^δ(μ*) (by the compactness of Δ(A) \ B^δ(μ*)).

p-Belief Operator

An event $E \subset T$ is simple if $E = \prod_{i \in I} E_i$ for some $E_i \subset T_i$, $i \in I$.

Let $\mathcal{S} \subset 2^T$ denote the set of simple events.

▶ For $E \in \mathcal{S}$,

$$B_{i}^{p_{i}}(E) = \{t_{i} \in T_{i} \mid t_{i} \in E_{i} \text{ and } P(E_{-i}|t_{i}) \ge p_{i}\},\$$

$$B_{*}^{\mathbf{p}}(E) = \prod_{i \in I} B_{i}^{p_{i}}(E),\$$

$$C^{\mathbf{p}}(E) = \bigcap_{k=1}^{\infty} (B_{*}^{\mathbf{p}})^{k}(E).$$

•
$$E \in \mathcal{S}$$
 is **p**-evident if $E \subset B^{\mathbf{p}}_{*}(E)$.

Critical Path Theorem

Theorem 1

For
$$\mathbf{p} \in [0,1]^I$$
, suppose that $\sum_{i \in I} p_i < 1$, and let $\xi(\mathbf{p}) = (1 - \min_{i \in I} p_i)/(1 - \sum_{i \in I} p_i)$.

Then for any type space $((T_i)_{i\in I}, P)$ and any $E \in S$,

$$P(C^{\mathbf{p}}(E)) \ge 1 - \xi(\mathbf{p})(1 - P(E)).$$

Lemma 5

Suppose that $a^* \in A$ is a **p**-dominant equilibrium of **g**.

Then (\mathbf{u}, P) has a BNE σ such that $\sigma(t)(a^*) = 1$ for all $t \in C^{\mathbf{p}}(T^{\mathbf{g}})$.

Robustness and \mathbf{p} -Dominance

Proposition 6

Suppose that $a^* \in A$ is a p-dominant equilibrium of g with $\sum_{i \in I} p_i < 1$.

Then a^* is robust to incomplete information in g.

Proof

- Take any $\delta > 0$, and let $\bar{\varepsilon} = \delta / \xi(\mathbf{p})$.
- Consider any ε -elaboration (\mathbf{u}, P) with $\varepsilon \leq \overline{\varepsilon}$.
- ▶ By Proposition 5, we can take a BNE σ such that $\sigma(t)(a^*) = 1$ for all $t \in C^{\mathbf{p}}(T^{\mathbf{g}})$.
- By Theorem 1,

$$P(C^{\mathbf{p}}(T^{\mathbf{g}})) \ge 1 - \xi(p)(1 - P(T^{\mathbf{g}})) = 1 - \xi(\mathbf{p})\varepsilon.$$

Therefore, we have

$$P(\{t \mid \sigma(t)(a^*) = 1\}) \ge P(C^{\mathbf{p}}(T^{\mathbf{g}}))$$
$$\ge 1 - \xi(\mathbf{p})\varepsilon \ge 1 - \delta.$$

Proposition 7

Suppose that $a^* \in A$ is a strict **p**-dominant equilibrium of **g** with $\sum_{i \in I} p_i < 1$.

Then a^* is the unique robust equilibrium of g.

Proof

▶ Let a^* be a strict **p**-dominant equilibrium of **g** with $\sum_{i \in I} p_i \leq 1$.

▶ Let
$$q_i = p_i / \sum_{j \in I} p_j \ge p_i$$
 for each $i \in I$.
Note that $\sum_{i \in I} q_i = 1$.

Fix any $\varepsilon > 0$, and consider the following ε -elaboration (\mathbf{u}, P) :

$$P(t) = \begin{cases} \varepsilon (1-\varepsilon)^k q_i & \text{if } t_i = k+1 \text{ and } t_j = k \text{, } j \neq i, \\ 0 & \text{otherwise,} \end{cases}$$

$$u_i(a,t) = \begin{cases} g(a) & \text{if } t_i \neq 0, \\ 1 & \text{if } t_i = 0 \text{ and } a_i = a_i^*, \\ 0 & \text{if } t_i = 0 \text{ and } a_i \neq a_i^*. \end{cases}$$

▶ Take any BNE σ of (\mathbf{u}, P) , and show that for all $i \in I$, $\sigma_i(a_i^*|t_i) = 1$ for all $t_i \in T_i$.