Approximating Common Knowledge with Common Beliefs

Daisuke Oyama

Topics in Economic Theory

September 25, 2015
Papers

Type Spaces

- Type space \(\mathcal{T} = (T_i, \pi_i)_{i=1}^I \):
 - \(T_i \): set of \(i \)'s types (countable)
 - \(\pi_i : T_i \to \Delta(T_{-i}) \): \(i \)'s belief

- \(T = \prod_{i=1}^I T_i \), \(T_{-i} = \prod_{j \neq i} T_j \)

- If there is a common prior \(P \in \Delta(T) \) with \(P(t_i) = P(\{t_i\} \times T_{-i}) > 0 \) for all \(i \) and \(t_i \),

\[
\pi_i(t_i)(E_{-i}) = \frac{P(\{t_i\} \times E_{-i})}{P(t_i)}
\]

for \(E_{-i} \subset T_{-i} \).

- An event \(E \subset T \) is simple if \(E = \prod_{i=1}^I E_i \) for some \(E_i \subset T_i \), \(i = 1, \ldots, I \).

Let \(S \subset 2^T \) denote the set of simple events.
\(p \)-Belief Operator

\(B^p_i : S \rightarrow 2^{T_i} : \)

\[
B^p_i (E) = \{ t_i \in T_i \mid t_i \in E_i \text{ and } \pi_i(t_i)(E_{-i}) \geq p \}.
\]

Proposition 1

1. \(B^p_i (E) \subset E_i \).

2. If \(E \subset F \), then \(B^p_i (E) \subset B^p_i (F) \).

3. If \(E^0 \supset E^1 \supset \cdots \), then \(B^p_i (\bigcap_{k=0}^{\infty} E^k) = \bigcap_{k=0}^{\infty} B^p_i (E^k) \).

(3. If \(E^0 \supset E^1 \supset \cdots \), then \(\pi_i(t_i)\left(\bigcap_{k=0}^{\infty} E^k_{-i}\right) = \lim_{k \to \infty} \pi_i(t_i)(E^k_{-i}) \).)
Common \(p \)-Belief (Iteration)

- For \(p \in [0, 1]^I \),

\[
B^p_\ast(E) = \prod_{i=1}^{I} B^p_{i} (E),
\]

\[
C^p(E) = \bigcap_{k=1}^{\infty} (B^p_\ast)^k (E).
\]

Definition 1

\(E \in S \) is common \(p \)-belief at \(t \in T \) if \(t \in C^p(E) \).
Common p-Belief (Fixed Point)

Definition 2

$E \in S$ is p-evident if

$$E \subset B^p_*(E).$$

(Equivalent to the condition with “$E = B^p_*(E)$”.)

Definition 3

$E \in S$ is common p-belief at $t \in T$ if there exists a p-evident event F such that

$$t \in F \subset B^p_*(E).$$

(Equivalent to the condition with “$t \in F \subset E$”.)
Equivalence

Proposition 2

$C_P(E)$ is p-evident, i.e., $C_P(E) \subset B^*_P(C_P(E))$.

Proof.

$C_P(E) = \bigcap_{k=1}^{\infty} B^*_P((B^*_P)^{k-1}(E)) = B^*_P(\bigcap_{k=1}^{\infty} (B^*_P)^{k-1}(E))$. \hfill \Box$

Proposition 3

$C_P(E)$ is the largest p-evident event in E, i.e., if $F \subset E$ and $F \subset B^*_P(F)$, then $F \subset C_P(E)$.

Proof.

First, $F \subset B^*_P(F) \subset B^*_P(E)$.

Suppose $F \subset (B^*_P)^n(E)$. Then $F \subset B^*_P(F) \subset B^*_P((B^*_P)^n(E)) = (B^*_P)^{n+1}(E)$. \hfill \Box
Equivalence

Proposition 4

The two definitions are equivalent, i.e.,

\[t \in C^p(E) \iff \exists F : F \subset B^p_*(F) \text{ and } t \in F \subset B^p_*(E). \]

Proof.

- **“Only if”:**

 \(C^p(E) \) is \(p \)-evident by Proposition 2, and
 \(C^p(E) \subset B^p_*(C^p(E)) \).

- **“If”:**

 \(F \subset C^p(E) \) by Proposition 3.
Example: Email Game

- $T_1 = T_2 = \{0, 1, 2, \ldots\}$
- $\pi_1 : T_1 \to \Delta(T_2)$:
 \[
 \pi_1(t_2 | t_1) = \begin{cases}
 1 & \text{if } t_1 = 0, t_2 = 0 \\
 \frac{1}{2-\varepsilon} & \text{if } t_1 \geq 1, t_2 = t_1 - 1 \\
 \frac{1-\varepsilon}{2-\varepsilon} & \text{if } t_1 \geq 1, t_2 = t_1 \\
 0 & \text{otherwise}
 \end{cases}
 \]

- $\pi_2 : T_2 \to \Delta(T_1)$:
 \[
 \pi_2(t_1 | t_2) = \begin{cases}
 \frac{1}{2-\varepsilon} & \text{if } t_2 = 0, t_1 = 0 \\
 \frac{1}{2-\varepsilon} & \text{if } t_2 \geq 1, t_1 = t_2 \\
 \frac{1-\varepsilon}{2-\varepsilon} & \text{if } t_2 \geq 0, t_1 = t_2 + 1 \\
 0 & \text{otherwise}
 \end{cases}
 \]

- Let $E_1 = T_1 \setminus \{0\}$ and $E_2 = T_2$, and $p_i \geq \frac{1}{2}$.
Connection to Games 1

- Type space $\mathcal{T} = (T_i, \pi_i)_{i=1}^I$
- Players $1, \ldots, I$
- Binary actions $A_i = \{0, 1\}$
- $F \in S$ is identified with the (pure) strategy profile σ such that $\sigma_i(t_i) = 1$ if and only if $t_i \in F_i$.
- Fix $E \in S$.
- Incomplete information game u^p:

 If $t_i \in E_i$: for all t_{-i} with $\pi_i(t_i)(t_{-i}) > 0$,

 $$u^p_i(1, a_{-i}, t_i, t_{-i}) = \begin{cases} 1 - p_i & \text{if } a_{-i} = 1_{-i}, \\ -p_i & \text{otherwise}, \end{cases}$$
 $$u^p_i(0, a_{-i}, t_i, t_{-i}) = 0.$$

 If $t_i \notin E_i$: 0 is a dominant action.
- $B^p_i(E_i \times F_{-i})$ is the (largest) best response to F_{-i} (play 1 if indifferent).
- $1 \in R_i(t_i)$ if and only if $t_i \in C^p_i(E)$.
- F is an equilibrium if and only if $F \subset E$ and F is p-evident.
- $C^p(E)$ is the largest equilibrium.
Connection to Games 2

- Players 1, \ldots, I
- Actions A_i (finite)
- Complete information game g, $g_i : A \rightarrow \mathbb{R}$
- $a^* \in A$ is a p-dominant equilibrium of g if
 $$a^*_i \in br_i(\lambda_i)$$
 for any $\lambda_i \in \Delta(A_{-i})$ such that $\lambda_i(a^*_i) \geq p_i$.
- Incomplete information game u, $u_i : A \times T \rightarrow \mathbb{R}$
- Let
 $$T^{g_i}_i = \{t_i \in T_i \mid u_i(a, t_i, t_{-i}) = g_i(a) \text{ for all } a \in A \text{ and for all } t_{-i} \in T_{-i} \text{ with } \pi_i(t_i)(t_{-i}) > 0\},$$
 and $T^g = \prod_{i=1}^I T^{g_i}_i$.

Lemma 5

Suppose that a^* is a p-dominant equilibrium of g. Then u has an equilibrium σ such that $\sigma(t)(a^*) = 1$ for all $t \in C^p(T^g)$.
Proof

- For each i, let $F_i = B_i^{p_i}(C^p(T^g)) \subset T_i^{g_i}$.
 Then $C^p(T^g) \subset F$ (in fact $C^p(T^g) = F$).

- Consider the modified game u' where each player i must play a_i^* if $t_i \in F_i$.
 Let σ^* be any equilibrium of u'.
 We want to show that σ^* is also an equilibrium of u.

- For $t_i \in T_i \setminus F_i$, $\sigma_i^*(t_i)$ is a best response to σ_{-i}^* by construction.

- Suppose $t_i \in F_i$.
 Then by definition, $\pi_i(t_i)(C^p(T^g)) \geq p_i$, and hence i assigns probability at least p_i to the others playing a_{-i}^*.
 Therefore, $\sigma_i^*(t_i) = a_i^*$ is a best response to σ_{-i}^*.
Proposition 6

Suppose that a^* is a strict equilibrium of g.

For any $\delta > 0$, there exists $\varepsilon > 0$ such that for any $P \in \Delta(T)$ such that $P(C^p(Tg)) \geq 1 - \varepsilon$ for all $p \ll 1$, there exists an equilibrium σ of (T, P, u) such that $P(\{t \in T \mid \sigma(t)(a^*) = 1\}) \geq 1 - \delta$.

- A strict equilibrium is p-dominant for some $p \ll 1$.
- The proposition holds even with non common priors P_i.