Robust Equilibria under Non-Common Priors

Daisuke Oyama

Topics in Economic Theory

October 6, 2015

Paper

 Oyama, D. and O. Tercieux (2010). "Robust Equilibria under Non-Common Priors," Journal of Economic Theory 145, 752-784.

Robustness of Equilibria under Non-Common Priors

- ► An analyst analyzes some strategic situation with a complete information game g and a Nash equilibrium a* thereof.
- He knows that it is a good approximation, but he also thinks that there may be "small" payoff uncertainty among players in the real world and does not know about the uncertainty structure;

in particular, he has no reason to assume that the players share a common prior in the real incomplete information game.

- ▶ Is the Nash equilibrium a* "close" to some Bayesian Nash equilibrium of any incomplete information game "close" to g where players have possibly different priors?
- What kind of equilibrium will be robust under non-common priors?

Results

Point-valued concept:

In generic games, a NE is robust under non-common priors \iff it is a unique rationalizable action profile (unique action profile that survives iterated elimination of dominated actions).

Set-valued concept:

In generic games, a smallest robust set exists and coincides with the set of a posteriori equilibria.

Complete Information Games

- Set of players $I = \{1, \dots, |I|\}$
- ▶ Action set A_i (finite)
- Payoff function $g_i \colon A \to \mathbb{R}$

Fix players and actions, and identify the complete information game with $\mathbf{g}=(g_i)_{i\in I}.$

•
$$g_i$$
 is extended to $\Delta(A_{-i})$ by

$$g_i(a_i, \pi_i) = \sum_{a_{-i} \in A_{-i}} \pi_i(a_{-i}) g_i(a_i, a_{-i}) \qquad (\pi_i \in \Delta(A_{-i})).$$

• The set of *i*'s best responses to $\pi_i \in \Delta(A_{-i})$:

$$br_i(\pi_i) = \{ a_i \in A_i \mid g_i(a_i, \pi_i) \ge g_i(a'_i, \pi_i) \ \forall \ a'_i \in A_i \}.$$

(Correlated) Rationalizability

Never Strict Best Response

Subjective Correlated Equilibrium/A Posteriori Equilibrium

Definition 1

A profile of action distributions $(\mu_i)_{i=1}^I \in (\Delta(A))^I$ is a subjective correlated equilibrium of g if for all i and all a_i ,

$$\mu_i(a_i) > 0 \Rightarrow a_i \in br_i(\mu_i(\cdot|a_i)).$$

Definition 2

- $(\mu_i)_{i=1}^I \in (\Delta(A))^I$ is an *N*-subjective correlated equilibrium of g if it is a subjective correlated equilibrium of g and $\mu_i(S^N) = 1$ for all *i*.
- (µ_i)^I_{i=1} ∈ (Δ(A))^I is an *a posteriori equilibrium* of g if it is a subjective correlated equilibrium of g and µ_i(S[∞]) = 1 for all i.

Undominated/Strict A Posteriori Equilibrium

Definition 3

- (µ_i)^I_{i=1} ∈ (∆(A))^I is an undominated N-subjective correlated equilibrium of g if it is an N-subjective correlated equilibrium of g such that µ_i(W^N) = 1 for all i.
- (µ_i)^I_{i=1} ∈ (Δ(A))^I is an undominated a posteriori equilibrium of g if it is an a posteriori equilibrium of g such that µ_i(W[∞]) = 1 for all i.
- (µ_i)^I_{i=1} ∈ (Δ(A))^I is a strict a posteriori equilibrium of g if it is an a posteriori equilibrium of g such that for all i and all a_i,

$$\mu_i(a_i) > 0 \Rightarrow \{a_i\} = br_i(\mu_i(\cdot|a_i)).$$

Type Spaces

• Type space
$$\mathcal{T} = ((T_i, P_i)_{i \in I})$$
:

• $T_i = \{0, 1, 2, ...\}$: set of *i*'s types

•
$$P_i \in \Delta(T)$$
: *i*'s prior

Assume $P_i(t_i) = P_i(\{t_i\} \times T_{-i}) > 0$ for all i and t_i .

Let

$$P_i(E_{-i}|t_i) = \frac{P_i(\{t_i\} \times E_{-i})}{P_i(t_i)}$$

for $t_i \in T_i$ and $E_{-i} \subset T_{-i}$.

• For $E \in \mathcal{S}$,

$$K_i(E) = \{t_i \in T_i \mid t_i \in E_i \text{ and } P_i(E_{-i}|t_i) = 1\}.$$

• $P_0 \in \Delta(T)$: the analyst's prior

Incomplete Information Games

Fix
$$I$$
, $(A_i)_{i \in I}$, and $(T_i)_{i \in I}$.

- ▶ Incomplete information game $(\mathbf{u}, (P_i)_{i \in I})$: $u_i : A \times T \to \mathbb{R}$
- *i*'s strategy: $\sigma_i : T_i \to \Delta(A_i)$; set of all strategies Σ_i

►
$$U_i(a_i, \sigma_{-i}|t_i) = \sum_{t_{-i} \in T_{-i}} P_i(t_{-i}|t_i) u_i((a_i, \sigma_{-i}(t_{-i})), (t_i, t_{-i}))$$

For a strategy profile σ and i ∈ {0} ∪ I, write σ_{Pi} ∈ Δ(A) for the induced action distribution: σ_{Pi}(a) = ∑_{t∈T} P_i(t)σ(a|t).

• Given \mathbf{g} and $(\mathbf{u}, (P_i)_{i \in I})$, let

$$\begin{split} T_i^{g_i} = \{ t_i \in T_i \mid u_i(a, t_i, t_{-i}) = g_i(a) \text{ for all } a \in A \text{ and} \\ \text{ for all } t_{-i} \in T_{-i} \text{ with } P_i(t_{-i}|t_i) > 0 \}, \end{split}$$

and
$$T^{\mathbf{g}} = \prod_{i=1}^{I} T_i^{g_i}$$
.

Robust Equilibria I

•
$$(\mathbf{u}, (P_i)_{i \in I})$$
 is an (ε, N) -perturbation of \mathbf{g} if $P_i(\bigcap_{n=1}^N (K_*)^n (T^{\mathbf{g}})) \ge 1 - \varepsilon$ for all $i \in I$.

Definition 4

- ▶ $\mu = (\mu_i)_{i \in I} \in (\Delta(A))^I$ is *N*-robust in g if for any $\delta > 0$, there exists $\varepsilon > 0$ such that any (ε, N) -perturbation of g has a BNE σ such that $\|\mu_i - \sigma_{P_i}\| \le \delta$ for all $i \in I$.
- ▶ $\mu = (\mu_i)_{i \in I} \in (\Delta(A))^I$ is *robust* in g if there exists $N \ge 0$ such that μ is *N*-robust.

Robust Equilibria II

►
$$((\mathbf{u}, (P_i)_{i \in I}), P_0)$$
 is an (ε, N) -elaboration of \mathbf{g} if $P_0(\bigcap_{n=1}^N (K_*)^n (T^{\mathbf{g}})) \ge 1 - \varepsilon$ for all $i \in I$.

Definition 5

- ► $\xi \in \Delta(A)$ is *N*-robust in g if for any $\delta > 0$, there exists $\varepsilon > 0$ such that any (ε, N) -elaboration of g, $((\mathbf{u}, (P_i)_{i \in I}), P_0)$, $(\mathbf{u}, (P_i)_{i \in I})$ has a BNE σ such that $\|\xi - \sigma_{P_0}\| \le \delta$.
- ▶ $\xi \in \Delta(A)$ is *robust* in g if there exists $N \ge 0$ such that ξ is N-robust.

Point-Valued Robustness

Theorem 1

Suppose that $S^{\infty} = W^{\infty}$ in g.

g has a robust equilibrium if and only if g is dominance solvable.

Iterative Dominance Purification of A Posteriori Equilibrium

Lemma 1

Let $(\mu_i)_{i \in I}$ be a strict a posteriori equilibrium of \mathbf{g} with common support.

Then for any $\varepsilon > 0$ and $N \ge 0$, there exists an (ε, N) -perturbation of g such that there is a unique rationalizable strategy profile σ and it satisfies $\sigma_{P_i} = \mu_i$ for all $i \in I$.

Corollary 2

Let $(\mu_i)_{i \in I}$ be an undominated a posteriori equilibrium of g. Then for any $\delta > 0$, $\varepsilon > 0$, and $N \ge 0$, there exists an (ε, N) -perturbation of g such that there is a unique rationalizable strategy profile σ and it satisfies $\|\sigma_{P_i} - \mu_i\| \le \delta$ for all $i \in I$.

Example: Matching Pennies

- Let (μ₁, μ₂) ∈ Δ(A) × Δ(A) be any strict a posteriori equilibrium with full support, where A = {H₁, T₁} × {H₂, T₂}.
- Fix any ε > 0 and N ≥ 0, and construct a dominance solvable (ε, N)-perturbation such that the unique rationalizable strategy σ satisfies σ_{Pi} = μ_i for all i ∈ I.
- ► $T_1 = \{(0, H_1), (0, T_1), (1, H_1), (1, T_1), (2, H_1), (2, T_1), \ldots\}$ $T_2 = \{(0, H_2), (0, T_2), (1, H_2), (1, T_2), (2, H_2), (2, T_2), \ldots\}$

$$P_1((k, a_1), (k - 1, a_2)) = \varepsilon_k \mu_1(a_1, a_2)$$

$$P_1((k, a_1), (k + 1, a_2)) \approx 0$$

$$(\varepsilon_k \approx \tilde{\varepsilon} (1 - \tilde{\varepsilon})^k, \ \tilde{\varepsilon} = 1 - (1 - \varepsilon)^{1/(N+1)})$$

Proof of the Necessity Part

- Suppose that $W^{\infty} \neq \emptyset$.
- If |W[∞]| > 1, then we can take distinct a posteriori equilibria (µ_i) and (µ_i') whose support is W[∞].
- ▶ Applying Lemma 1 to each of (µ_i) and (µ_i') shows that there is no robust equilibrium.

Discussion

Kajii and Morris (1997):

A unique correlated equilibrium is robust under common prior. $\therefore \bigcap_{\varepsilon > 0} \overline{\{\text{equilibrium action distributions of }\varepsilon\text{-perturbations}\}}$ $= \{\text{correlated equilibria}\}$

Under non-common priors:

 $\bigcap_{\varepsilon > 0} \overline{\{\text{rationalizable action distributions of }\varepsilon\text{-perturbations}\}} = \{a \text{ posteriori equilibria}\}$

+

Each a posteriori equilibrium can be "contagious" in some ε -perturbation with non-common priors.

("Iterative dominance purification of a posteriori equilibrium")

Weinstein and Yildiz (2007): "Interim approach"

For any type t and any rationalizable action a^* of t, there exist a dominance solvable incomplete information game and a sequence of types from this game such that

- 1. this sequence converges to t in product topology, and
- 2. each type of this sequence plays a^* .

Moreover, by Lipman (2003, 2010), such an incomplete information game can be one with a common prior.

This paper: "Ex ante approach"

The above set of properties is incompatible with the requirement that the ex ante probability that the payoffs are close to those of t must be small.

- \blacktriangleright It is impossible in general to have an $(\varepsilon,N)\mbox{-}{\rm perturbation}$ such that
 - 1. it has a common prior,
 - 2. it is dominance solvable, and
 - 3. the unique rationalizable strategy induces an action distribution that is close to the given a posteriori equilibrium.

Set-Valued Robustness I

Definition 6

- A product set of action distribution profiles $M = \prod_{i \in I} M_i \subset (\Delta(A))^I$ is *N*-robust in g if it is closed, and for all $\delta > 0$, there exists $\varepsilon > 0$ such that any (ε, N) -perturbation of g has a BNE σ such that for all $i \in I$, there exists $\mu_i \in M_i$ such that $\|\mu_i - \sigma_{P_i}\| \leq \delta$.
- ► M is robust in g if there exists N ≥ 0 such that M is N-robust.

Theorem 2

Suppose that $S^{\infty} = W^{\infty}$ in g.

The set of a posteriori equilibria of g is the smallest robust set of g.

Set-Valued Robustness II

Definition 7

- A set of action distributions Ξ ⊂ Δ(A) is N-robust in g if it is closed, and for all δ > 0, there exists ε > 0 such that any (ε, N)-elaboration of g, ((u, (P_i)_{i∈I}), P₀), (u, (P_i)_{i∈I}) has a BNE σ such that there exists ξ ∈ Ξ such that ||ξ − σ_{P0} || ≤ δ.
- ▶ Ξ is *robust* in g if there exists $N \ge 0$ such that Ξ is N-robust.

Theorem 3

Suppose that $S^{\infty} = W^{\infty}$ in g.

 $\Delta(S^{\infty})$ is the smallest robust set of g.

Uniform Bound on the Heterogeneity in Priors

A measure of heterogeneity in priors:

$$\rho((P_i)_{i \in I}) = \max_{i \neq j} \sup_{t \in T} \frac{P_i(t)}{P_j(t)},$$

where $q/0 = \infty$ for q > 0 and 0/0 = 1.

 μ = (μ_i)_{i∈I} ∈ (Δ(A))^I is *r*-robust in g if for any δ > 0, there exists ε > 0 such that any ε-perturbation of g with ρ((P_i)_{i∈I}) ≤ r has a BNE σ such that ||μ_i - σ_{Pi}|| ≤ δ for all i ∈ I.

Critical Path Theorem

Proposition 3

For any r > 1, if $p < 1/{1 + r(|I| - 1)}$, then in any type space $(T_i, P_i)_{i \in I}$ with $\rho((P_i)_{i \in I}) \le r$, any simple event E satisfies

$$P_j(CB^p(E)) \ge 1 - \frac{1-p}{1-\{1+r(|I|-1)\}p} \max_{i\in I} (1-P_i(E))$$

for all $j \in I$.

Robustness with Uniform Bound

Proposition 4

Suppose that a^* is a *p*-dominant equilibrium of g with $p < 1/\{1 + r(|I| - 1)\}.$ Then $[a^*]^I$ is *r*-robust.