Properties of the Product Topology on the Universal Type Space

Daisuke Oyama

Topics in Economic Theory

September 22, 2015

Papers

- Lipman, B.L. (2003). "Finite Order Implications of Common Priors," Econometrica 71, 1255-1267.
- Weinstein, J. and M. Yildiz (2007). "A Structure Theorem for Rationalizability with Application to Robust Predictions of Refinements," Econometrica 75, 365-400.

Type Spaces

- Fix the set of states Θ (finite)
- Type space $\mathcal{T}=\left(T_{i}, \pi_{i}\right)_{i=1}^{I}$:
- T_{i} : set of i 's types (countable)
- $\pi_{i}: T_{i} \rightarrow \Delta\left(T_{-i} \times \Theta\right): ~ i$'s belief
- Universal type space $\left(T^{*}, f\right)_{i=1}^{I}, T^{*} \subset \prod_{k=0}^{\infty} \Delta\left(X^{k}\right)$

Endowed with the product topology: $\delta^{n}=\left(\delta^{n, k}\right)_{k=0}^{\infty} \rightarrow \delta=\left(\delta^{k}\right)_{k=0}^{\infty}$ iff $\delta^{n, k} \rightarrow \delta^{k}$ for all k (weakly)

- Each $t_{i} \in T_{i}$ is embedded into T^{*} by:
- $\hat{\pi}_{i}^{1}\left(t_{i}\right)(\theta)=\sum_{t_{-i} \in T_{-i}} \pi_{i}\left(t_{i}\right)\left(t_{-i}, \theta\right)$
- $\hat{\pi}_{i}^{k}\left(t_{i}\right)\left(\left(\delta_{-i}^{\ell}\right)_{\ell=1}^{k-1}, \theta\right)=\sum_{t_{-i}: \hat{\pi}_{-i}^{\ell}\left(t_{-i}\right)=\delta_{-i}^{\ell}, \ell=1, \ldots, k-1} \pi_{i}\left(t_{i}\right)\left(t_{-i}, \theta\right)$
- $\hat{\pi}_{i}^{*}\left(t_{i}\right)=\left(\hat{\pi}_{i}^{k}\left(t_{i}\right)\right)_{k=1}^{\infty} \in T^{*}$

Identify T_{i} with $\hat{\pi}_{i}^{*}\left(T_{i}\right) \subset T^{*}$

- $\left(T_{i}\right)_{i=1}^{I}, T_{i} \subset T^{*}$, is a belief-closed subspace if $f\left(t_{i}\right)\left(T_{-i} \times \Theta\right)=1$ for all i and all $t_{i} \in T_{i}$.
It is finite if each T_{i} is finite.
- $t_{i} \in T^{*}$ is a finite type if $t_{i} \in T_{i}$ for some finite belief-closed subspace $\left(T_{i}\right)_{i=1}^{I}$.
- $\mathcal{T}=\left(T_{i}, \pi_{i}\right)_{i=1}^{I}$ has common support if $\pi_{i}\left(t_{i}\right)\left(t_{-i}, \theta\right)>0 \Longleftrightarrow \pi_{j}\left(t_{j}\right)\left(t_{-j}, \theta\right)>0$ for all i, j.
- $\mathcal{T}=\left(T_{i}, \pi_{i}\right)_{i=1}^{I}$ admits a common prior if there exists $\mu \in \Delta(T \times \Theta)$ such that $\mu\left(t_{i}\right)=\sum_{t_{-i}, \theta} \mu\left(\left(t_{i}, t_{-i}\right), \theta\right)>0$ for all t_{i} and

$$
\pi_{i}\left(t_{i}\right)\left(t_{-i}, \theta\right)=\frac{\mu\left(\left(t_{i}, t_{-i}\right), \theta\right)}{\mu\left(t_{i}\right)}
$$

for all t_{i}, t_{-i}, and θ.

- $t_{i} \in T^{*}$ is a weakly consistent (common prior type) if it is from some type space that has common support (admits a common prior).

Denseness of Common Prior Types (Lipman)

- T_{f} : set of finite types
- $T_{\mathrm{f}, \mathrm{wc}}$: set of finite and weakly consistent types
- $T_{\mathrm{f}, \mathrm{cp}}$: set of finite and common prior types ($\subset T_{\mathrm{f}, \mathrm{wc}}$)

Proposition 1

1. T_{f} is dense in T^{*}. (Mertens and Zamir)
2. $T_{\mathrm{f}, \mathrm{wc}}$ is dense in T_{f}.
3. $T_{\mathrm{f}, \mathrm{cp}}$ is dense in $T_{\mathrm{f}, \mathrm{wc}}$. (Lipman)

Example

- $\Theta=\left\{\theta^{1}, \theta^{2}\right\}$
- $T_{1}=\left\{t_{1}\right\}, T_{2}=\left\{t_{2}\right\}$
- $\pi_{1}\left(t_{1}\right)\left(t_{2}, \cdot\right)=(2 / 3,1 / 3), \pi_{2}\left(t_{2}\right)\left(t_{1}, \cdot\right)=(1 / 3,2 / 3)$
- Lipman's result:

For each N, there exist a finite common prior type space $\left(T_{i}^{\prime}, \pi_{i}^{\prime}\right)$ and $t_{i}^{\prime} \in T_{i}^{\prime}$ such that $\hat{\pi}_{i}^{k}\left(t_{i}^{\prime}\right)=\hat{\pi}_{i}^{k}\left(t_{i}\right)$ for all $k \leq N$.

- $N=2$

$$
T_{1}^{\prime}=\{1,2,3\}, T_{2}^{\prime}=\{1,2,3\}
$$

Common prior:

$$
\theta=\theta^{1}
$$

$$
\theta=\theta^{2}
$$

	$1 \begin{array}{lll}1 & 2\end{array}$		
1	$\frac{1}{8}$	$\frac{1}{8}$	0
2	0	0	$\frac{2}{8}$
3	0	0	0

	1		2
3			
		$\frac{1}{8}$	0

(Easier to see with a partition model)

- $\hat{\pi}_{1}^{k}\left(t_{1}^{\prime}=1\right)=\hat{\pi}_{1}^{k}\left(t_{1}\right)$ for all $k \leq 2$

Email Game

- The product topology does not care about the tail of a hierarchy of beliefs.
- It matters for strategic behavior.
- In the Email Game example: for all N,
- $\hat{\pi}_{1}^{k}\left(t_{1}=N\right)=t_{1}^{\theta^{1}, k}$ for all $k \leq N$,
- $R_{1}\left(\hat{\pi}_{1}^{*}\left(t_{1}=N\right)\right)=\{B\} \neq R_{1}\left(t_{1}^{\theta^{1}}\right)=\{A, B\}$.

Generic Uniqueness of Rationalizable Actions (Weinstein

 and Yildiz)- A_{i} : finite set of actions for i
- $g_{i}: A \times \Theta \rightarrow \mathbb{R}$: payoff function for i
- $R_{i}^{\mathcal{T}}\left(t_{i}\right):$ ICR
- Richness Assumption:

For each i and a_{i}, there exists $\theta^{a_{i}} \in \Theta$ such that $g_{i}\left(a_{i}, a_{-i}, \theta^{a_{i}}\right)>g_{i}\left(a_{i}^{\prime}, a_{-i}, \theta^{a_{i}}\right)$ for all $a_{i}^{\prime} \neq a_{i}$ and all a_{-i}.

Proposition 2

Under the Richness Assumption, for any $t \in \prod_{i=1}^{I} T^{*}$ and any $a \in R(t)$, there exists a sequence of types t^{n} such that

- $t^{n} \rightarrow t$ and
- $R\left(t^{n}\right)=\{a\}$.

Moreover, such types can be taken as common prior types. (Lipman)

Email Game

- $\Theta=\left\{\theta^{1}, \theta^{A}, \theta^{B}\right\}$
- θ^{1} :

	A_{2}	B_{2}
A_{1}	4,4	0,3
B_{1}	3,0	2,2

$\theta^{A}: A$ is strictly dominant; $\theta^{B}: B$ is strictly dominant

- $t^{\theta^{1}}$: common knowledge type of θ^{1}

$$
R_{i}\left(t_{i}^{\theta^{1}}\right)=\left\{A_{i}, B_{i}\right\}
$$

- "Standard Email Game prior" P^{ε} :

$$
\begin{aligned}
& t^{n} \rightarrow t^{\theta^{1}}, R_{i}\left(t_{i}^{n}\right)=\left\{B_{i}\right\} \\
& \left(P^{\varepsilon}\left(\theta^{1}\right)=1-\varepsilon\right)
\end{aligned}
$$

- For A_{i} :
- $P^{\prime}\left(\theta^{A}, t_{1}=0, t_{2}=0\right)=\frac{1+\varepsilon}{2}$
- $P^{\prime}\left(\theta^{1}, t_{1}=1, t_{2}=0\right)=\frac{1+\varepsilon}{2} \frac{1-\varepsilon}{2}$
- $P^{\prime}\left(\theta^{1}, t_{1}=1, t_{2}=1\right)=\frac{1+\varepsilon}{2}\left(\frac{1-\varepsilon}{2}\right)^{2}$
- $P^{\prime}\left(\theta^{1}, t_{1}=2, t_{2}=1\right)=\frac{1+\varepsilon}{2}\left(\frac{1-\varepsilon}{2}\right)^{3}$
- ...
$\left(P^{\prime}\left(\theta^{1}\right)=\frac{1-\varepsilon}{2}\right)$
- Alternatively,
- $P^{\prime \prime}\left(\theta^{A}, t_{1}=0, t_{2}=0\right)=\varepsilon$
- $P^{\prime \prime}\left(\theta^{1}, t_{1}=1, t_{2}=0\right)=\varepsilon \frac{1-\varepsilon}{2}$
- $P^{\prime \prime}\left(\theta^{1}, t_{1}=1, t_{2}=1\right)=\varepsilon\left(\frac{1-\varepsilon}{2}\right)^{2}$
- $P^{\prime \prime}\left(\theta^{1}, t_{1}=2, t_{2}=1\right)=\varepsilon\left(\frac{1-\varepsilon}{2}\right)^{3}$
- ...
- $P^{\prime \prime}\left(\theta^{1}, t_{1}=\infty, t_{2}=\infty\right)=1-\frac{2}{1+\varepsilon} \varepsilon$
$P^{\prime \prime}\left(\theta^{1}\right)=1-\varepsilon$,
but the dominance-solvability on the whole subspace is lost.

