Properties of the Product Topology on the Universal Type Space

Daisuke Oyama

Topics in Economic Theory

September 22, 2015

Papers

- Lipman, B.L. (2003). "Finite Order Implications of Common Priors," Econometrica 71, 1255-1267.
- Weinstein, J. and M. Yildiz (2007). "A Structure Theorem for Rationalizability with Application to Robust Predictions of Refinements," Econometrica 75, 365-400.

Type Spaces

- ► Fix the set of states Θ (finite)
- Type space $\mathcal{T} = (T_i, \pi_i)_{i=1}^I$:
 - ► *T_i*: set of *i*'s types (countable)
 - $\pi_i \colon T_i \to \Delta(T_{-i} \times \Theta)$: *i*'s belief
- ▶ Universal type space $(T^*, f)_{i=1}^I$, $T^* \subset \prod_{k=0}^{\infty} \Delta(X^k)$

Endowed with the product topology: $\delta^n = (\delta^{n,k})_{k=0}^{\infty} \to \delta = (\delta^k)_{k=0}^{\infty} \text{ iff } \delta^{n,k} \to \delta^k \text{ for all } k \text{ (weakly)}$

• Each $t_i \in T_i$ is embedded into T^* by:

$$\hat{\pi}_{i}^{1}(t_{i})(\theta) = \sum_{t_{-i} \in T_{-i}} \pi_{i}(t_{i})(t_{-i}, \theta)$$

$$\hat{\pi}_{i}^{k}(t_{i})((\delta_{-i}^{\ell})_{\ell=1}^{k-1}, \theta) = \sum_{t_{-i}: \hat{\pi}_{-i}^{\ell}(t_{-i}) = \delta_{-i}^{\ell}, \, \ell=1, \dots, k-1} \pi_{i}(t_{i})(t_{-i}, \theta)$$

•
$$\hat{\pi}_i^*(t_i) = (\hat{\pi}_i^k(t_i))_{k=1}^\infty \in T^*$$

Identify T_i with $\hat{\pi}_i^*(T_i) \subset T^*$

►
$$(T_i)_{i=1}^I$$
, $T_i \subset T^*$, is a belief-closed subspace if $f(t_i)(T_{-i} \times \Theta) = 1$ for all i and all $t_i \in T_i$.

It is finite if each T_i is finite.

▶ $t_i \in T^*$ is a finite type if $t_i \in T_i$ for some finite belief-closed subspace $(T_i)_{i=1}^{I}$.

►
$$\mathcal{T} = (T_i, \pi_i)_{i=1}^I$$
 has common support if $\pi_i(t_i)(t_{-i}, \theta) > 0 \iff \pi_j(t_j)(t_{-j}, \theta) > 0$ for all i, j .

• $\mathcal{T} = (T_i, \pi_i)_{i=1}^I$ admits a common prior if there exists $\mu \in \Delta(T \times \Theta)$ such that $\mu(t_i) = \sum_{t_{-i}, \theta} \mu((t_i, t_{-i}), \theta) > 0$ for all t_i and

$$\pi_i(t_i)(t_{-i},\theta) = \frac{\mu((t_i,t_{-i}),\theta)}{\mu(t_i)}$$

for all t_i , t_{-i} , and θ .

• $t_i \in T^*$ is a weakly consistent (common prior type) if it is from some type space that has common support (admits a common prior).

Denseness of Common Prior Types (Lipman)

- ► *T*_f: set of finite types
- ► T_{f,wc}: set of finite and weakly consistent types
- $T_{\rm f,cp}$: set of finite and common prior types ($\subset T_{\rm f,wc}$)

Proposition 1

- 1. $T_{\rm f}$ is dense in T^* . (Mertens and Zamir)
- 2. $T_{\rm f,wc}$ is dense in $T_{\rm f}$.
- 3. $T_{\rm f,cp}$ is dense in $T_{\rm f,wc}$. (Lipman)

Example

 $\blacktriangleright \ \Theta = \{\theta^1, \theta^2\}$

•
$$T_1 = \{t_1\}, T_2 = \{t_2\}$$

• $\pi_1(t_1)(t_2, \cdot) = (2/3, 1/3), \ \pi_2(t_2)(t_1, \cdot) = (1/3, 2/3)$

Lipman's result:

For each N, there exist a finite common prior type space (T'_i, π'_i) and $t'_i \in T'_i$ such that $\hat{\pi}^k_i(t'_i) = \hat{\pi}^k_i(t_i)$ for all $k \leq N$.

	Т	2	9
1	$\frac{1}{8}$	0	0
2	$\frac{1}{8}$	0	0
3	0	$\frac{2}{8}$	0

2 3

(Easier to see with a partition model)

 $\frac{2}{8}$

•
$$\hat{\pi}_1^k(t_1'=1) = \hat{\pi}_1^k(t_1)$$
 for all $k \le 2$

Email Game

- The product topology does not care about the tail of a hierarchy of beliefs.
- It matters for strategic behavior.
- In the Email Game example: for all N,

•
$$\hat{\pi}_1^k(t_1=N)=t_1^{\theta^1,k}$$
 for all $k\leq N$,

•
$$R_1(\hat{\pi}_1^*(t_1=N)) = \{B\} \neq R_1(t_1^{\theta^1}) = \{A, B\}.$$

Generic Uniqueness of Rationalizable Actions (Weinstein and Yildiz)

- ► A_i: finite set of actions for i
- $g_i \colon A \times \Theta \to \mathbb{R}$: payoff function for i
- $R_i^{\mathcal{T}}(t_i)$: ICR
- Richness Assumption:

For each *i* and a_i , there exists $\theta^{a_i} \in \Theta$ such that $g_i(a_i, a_{-i}, \theta^{a_i}) > g_i(a'_i, a_{-i}, \theta^{a_i})$ for all $a'_i \neq a_i$ and all a_{-i} .

Proposition 2

Under the Richness Assumption, for any $t \in \prod_{i=1}^{I} T^*$ and any $a \in R(t)$, there exists a sequence of types t^n such that

• $t^n \rightarrow t$ and

$$\blacktriangleright R(t^n) = \{a\}.$$

Moreover, such types can be taken as common prior types. (Lipman)

Email Game

$$\bullet \ \Theta = \{\theta^1, \theta^A, \theta^B\}$$

 $\blacktriangleright \theta^1$:

$$\begin{array}{cccc}
 A_2 & B_2 \\
 A_1 & 4,4 & 0,3 \\
 B_1 & 3,0 & 2,2 \\
\end{array}$$

 $\theta^A\!\!:\,A$ is strictly dominant; $\theta^B\!\!:\,B$ is strictly dominant

►
$$t^{\theta^1}$$
: common knowledge type of θ^1
 $R_i(t_i^{\theta^1}) = \{A_i, B_i\}$

• "Standard Email Game prior" P^{ε} :

$$t^n \to t^{\theta^1}, R_i(t^n_i) = \{B_i\}$$

 $(P^{\varepsilon}(\theta^1) = 1 - \varepsilon)$

• For A_i :

•
$$P'(\theta^A, t_1 = 0, t_2 = 0) = \frac{1+\varepsilon}{2}$$

• $P'(\theta^1, t_1 = 1, t_2 = 0) = \frac{1+\varepsilon}{2} \frac{1-\varepsilon}{2}$
• $P'(\theta^1, t_1 = 1, t_2 = 1) = \frac{1+\varepsilon}{2} \left(\frac{1-\varepsilon}{2}\right)^2$
• $P'(\theta^1, t_1 = 2, t_2 = 1) = \frac{1+\varepsilon}{2} \left(\frac{1-\varepsilon}{2}\right)^3$
• ...

 $\big(P'(\theta^1) = \tfrac{1-\varepsilon}{2}\big)$

Alternatively,

•
$$P''(\theta^A, t_1 = 0, t_2 = 0) = \varepsilon$$

•
$$P''(\theta^1, t_1 = 1, t_2 = 0) = \varepsilon \frac{1-\varepsilon}{2}$$

•
$$P''(\theta^1, t_1 = 1, t_2 = 1) = \varepsilon \left(\frac{1-\varepsilon}{2}\right)^2$$

•
$$P''(\theta^1, t_1 = 2, t_2 = 1) = \varepsilon \left(\frac{1-\varepsilon}{2}\right)^3$$

$$P''(\theta^1, t_1 = \infty, t_2 = \infty) = 1 - \frac{2}{1+\varepsilon}\varepsilon$$

 $P^{\prime\prime}(\theta^1)=1-\varepsilon\text{,}$

but the dominance-solvability on the whole subspace is lost.