Generalized Belief Operator and the Impact of Small Probability Events on Higher Order Beliefs

Daisuke Oyama

Topics in Economic Theory

October 2, 2015

Paper

- Oyama, D. and S. Takahashi (2015). "Generalized Belief Operator and the Impact of Small Probability Events on Higher Order Beliefs."

Sufficient Conditions for Robustness

- Higher order beliefs approach

Kajii and Morris (1997)
A p-dominant equilibrium with $\sum_{i} p_{i}<1$ is robust.

- Potential approach

Ui (2002)
A potential maximizer is robust (to canonical elaborations).

- Potential + monotonicity/supermodularity

Morris and Ui (2005)
A monotone potential maximizer is robust if \mathbf{g} or v is supermodular.

- Potential + monotonicity/supermodularity + iteration

Oyama and Tercieux (2009)
An iterated monotone potential maximizer is robust if \mathbf{g} or v^{k} is supermodular.

This Paper

- Show that in generic binary supermodular games, a^{*} is a robust equilibrium if and only if it is an MP-maximizer.
- Higher order beliefs approach

Introduce a generalized belief operator: game $\mathbf{f} \leftrightarrow$ "f-belief" (Kajii and Morris: p-dominant equilibrium $\leftrightarrow \mathbf{p}$-belief)

- If \mathbf{f} admits a monotone potential, then a version of the Critical Path Theorem holds.
- If \mathbf{f} does not admit a monotone potential, then a contagion result holds.

Binary Supermodular Games

- Set of players $I=\{1, \ldots,|I|\}$
- $\mathcal{I}=2^{I}$
- $\mathcal{I}_{-i}=2^{I \backslash\{i\}}$
- Action set $A_{i}=\{0,1\}$
- Identify $S \in \mathcal{I}_{-i}$ with i 's opponents' action profile such that j plays action 1 if and only if $j \in S$.
- Payoff function $f_{i}: \mathcal{I}_{-i} \rightarrow \mathbb{R}$:
- if i plays 1 and the opponents play $S \in \mathcal{I}_{-i}, i$'s payoff is $f_{i}(S)$;
- if i plays $0, i$'s payoff is 0 (regardless of the opponents' play).
- Assumption: f_{i} is weakly increasing, i.e., $S \subset S^{\prime} \Rightarrow f_{i}(S) \leq f_{i}\left(S^{\prime}\right)$.

Type Spaces

- Type space $\mathcal{T}=\left(\left(T_{i}\right)_{i \in I}, P\right)$:
- $T_{i}=\{0,1,2, \ldots\}$: set of i 's types
- $P \in \Delta(T)$: common prior

Assume $P\left(t_{i}\right)=P\left(\left\{t_{i}\right\} \times T_{-i}\right)>0$ for all i and t_{i}.

- Let

$$
P\left(E_{-i} \mid t_{i}\right)=\frac{P\left(\left\{t_{i}\right\} \times E_{-i}\right)}{P\left(t_{i}\right)}
$$

for $t_{i} \in T_{i}$ and $E_{-i} \subset T_{-i}$.

- For $i \in I, t_{i} \in T_{i}$, and $\mathbf{E}_{-i}=\left(E_{j}\right)_{j \neq i}$ with $E_{j} \subseteq T_{j}$, define $P^{\mathbf{E}_{-i}}\left(\cdot \mid t_{i}\right)=\left(P^{\mathbf{E}_{-i}}\left(S \mid t_{i}\right)\right)_{S \in \mathcal{I}_{-i}} \in \Delta\left(\mathcal{I}_{-i}\right)$ by

$$
\begin{aligned}
P^{\mathbf{E}_{-i}}\left(S \mid t_{i}\right) & =P\left(\left\{t_{-i} \in T_{-i} \mid\left\{j \neq i \mid t_{j} \in E_{j}\right\}=S\right\} \mid t_{i}\right) \\
& =P\left(\prod_{j \in S} E_{j} \times \prod_{j \notin S \cup\{i\}}\left(T_{j} \backslash E_{j}\right) \mid t_{i}\right)
\end{aligned}
$$

for $S \in \mathcal{I}_{-i}$.

- For $q_{i} \in \Delta\left(\mathcal{I}_{-i}\right)$, define

$$
\left\langle q_{i}, f_{i}\right\rangle=\sum_{S \in \mathcal{I}_{-i}} q_{i}(S) f_{i}(S)
$$

f_{i}-Belief Operator

- i 's f_{i}-belief operator $B_{i}^{f_{i}}: \prod_{j \in I} 2^{T_{j}} \rightarrow 2^{T_{i}}$ is defined by

$$
B_{i}^{f_{i}}(\mathbf{E})=\left\{t_{i} \in T_{i} \mid t_{i} \in E_{i} \text { and }\left\langle P^{\mathbf{E}_{-i}}\left(\cdot \mid t_{i}\right), f_{i}\right\rangle \geq 0\right\}
$$

for $\mathbf{E}=\left(E_{j}\right)_{j \in I}$ with $E_{j} \subseteq T_{j}$.

- Note:

$$
\begin{aligned}
& \left\langle P^{\mathbf{E}_{-i}}\left(\cdot \mid t_{i}\right), f_{i}\right\rangle=\sum_{S \in \mathcal{I}_{-i}} P^{\mathbf{E}_{-i}}\left(S \mid t_{i}\right) f_{i}(S) \\
& =\sum_{S \in \mathcal{I}_{-i}} P\left(\left\{t_{-i} \in T_{-i} \mid\left\{j \neq i \mid t_{j} \in E_{j}\right\}=S\right\} \mid t_{i}\right) f_{i}(S) \\
& =\sum_{t_{-i} \in T_{-i}} P\left(t_{-i} \mid t_{i}\right) f_{i}\left(\left\{j \neq i \mid t_{j} \in E_{j}\right\}\right)
\end{aligned}
$$

Example 1 (p-Belief)

$$
B_{i}^{f_{i}}(\mathbf{E})=\left\{t_{i} \in T_{i} \mid t_{i} \in E_{i} \text { and }\left\langle P^{\mathbf{E}_{-i}}\left(\cdot \mid t_{i}\right), f_{i}\right\rangle \geq 0\right\}
$$

- Let $f_{i}^{p_{i}}(S)= \begin{cases}1-p_{i} & \text { if } S=I \backslash\{i\}, \\ -p_{i} & \text { otherwise. }\end{cases}$
- Then,

$$
\begin{aligned}
& \sum_{S \in \mathcal{I}_{-i}} P^{\mathbf{E}_{-i}}\left(S \mid t_{i}\right) f_{i}^{p_{i}}(S)=P^{\mathbf{E}_{-i}}\left(I \backslash\{i\} \mid t_{i}\right)-p_{i} \\
&=P\left(E_{-i} \mid t_{i}\right)-p_{i} \\
& \text { so } t_{i} \in B_{i}^{f_{i}^{p_{i}}}(\mathbf{E}) \Longleftrightarrow t_{i} \in B_{i}^{p_{i}}(E)
\end{aligned}
$$

- Thus, p-belief only captures the case where all agents belong to E_{j} or not.

Proposition 1

1. $B_{i}^{f_{i}}(\mathbf{E}) \subset E_{i}$.
2. If $E_{j} \subset F_{j}$ for all j, then $B_{i}^{f_{i}}(\mathbf{E}) \subset B_{i}^{f_{i}}(\mathbf{F})$.
3. If $E_{j}^{0} \supset E_{j}^{1} \supset \cdots$ for all j, then

$$
B_{i}^{f_{i}}\left(\left(\bigcap_{k=0}^{\infty} E_{j}^{k}\right)_{j \in I}\right)=\bigcap_{k=0}^{\infty} B_{i}^{f_{i}}\left(\left(E_{j}^{k}\right)_{j \in I}\right)
$$

- For each $S \in \mathcal{I}_{-i}$,

$$
\begin{aligned}
& P\left(\left\{t_{-i} \in T_{-i} \mid\left\{j \neq i \mid t_{j} \in \bigcap_{k=0}^{\infty} E_{j}^{k}\right\} \subset S\right\} \mid t_{i}\right) \\
& \quad=\lim _{k \rightarrow \infty} P\left(\left\{t_{-i} \in T_{-i} \mid\left\{j \neq i \mid t_{j} \in E_{j}^{k}\right\} \subset S\right\} \mid t_{i}\right)
\end{aligned}
$$

Common f-Belief

- Define

$$
\begin{aligned}
& B_{i}^{\mathbf{f}, 0}(\mathbf{E})=E_{i} \\
& B_{i}^{\mathbf{f}, k+1}(\mathbf{E})=B_{i}^{\mathbf{f}}\left(\left(B_{j}^{\mathbf{f}, k}(\mathbf{E})\right)_{j \in I}\right)
\end{aligned}
$$

and

$$
C B_{i}^{\mathbf{f}}(\mathbf{E})=\bigcap_{k=1}^{\infty} B_{i}^{\mathbf{f}, k}(\mathbf{E})
$$

- \mathbf{E} is common \mathbf{f}-belief at $t \in T$ if $t_{i} \in C B_{i}^{\mathbf{f}}(\mathbf{E})$ for each $i \in I$.

f-Evidence

- \mathbf{F} is \mathbf{f}-evident if $F_{i} \subset B_{i}^{\mathbf{f}}(\mathbf{F})$ for each $i \in I$.

Proposition 2
$\left(C B_{i}^{\mathbf{f}}(\mathbf{E})\right)_{i \in I}$ is the largest \mathbf{f}-evident event in \mathbf{E}.

Connection to Games 1

- Type space $\mathcal{T}=\left(\left(T_{i}\right)_{i=1}^{I}, P\right)$
- Set of players $I=\{1, \ldots,|I|\}$
- Action set $A_{i}=\{0,1\}$
- \mathbf{F} is identified with the (pure) strategy profile σ such that $\sigma_{i}\left(t_{i}\right)=1$ if and only if $t_{i} \in F_{i}$.
- Fix \mathbf{E}.
- Incomplete information game \mathbf{u}^{f} :

If $t_{i} \in E_{i}$: for all t_{-i} with $P\left(t_{-i} \mid t_{i}\right)>0$,

$$
\begin{aligned}
u_{i}^{f_{i}}\left(1, a_{-i}, t_{i}, t_{-i}\right) & =f_{i}\left(\left\{j \neq i \mid a_{j}=1\right\}\right), \\
u_{i}^{f_{i}}\left(0, a_{-i}, t_{i}, t_{-i}\right) & =0 .
\end{aligned}
$$

If $t_{i} \notin E_{i}: 0$ is a dominant action.

- $B_{i}^{f_{i}}\left(\left(E_{i}, \mathbf{F}_{-i}\right)\right)$ is the (largest) best response to \mathbf{F}_{-i} (play 1 if indifferent).
- $1 \in R_{i}\left(t_{i}\right)$ if and only if $t_{i} \in C B_{i}^{\mathbf{f}}(\mathbf{E})$.
- \mathbf{F} is an equilibrium if and only if $F_{i} \subset E_{i}$ and \mathbf{F} is \mathbf{f}-evident.
- $\left(C B_{i}^{\mathbf{f}}(\mathbf{E})\right)_{i \in I}$ is the largest equilibrium.

Connection to Games 2

- Type space $\mathcal{T}=\left(\left(T_{i}\right)_{i=1}^{I}, P\right)$
- Set of players $I=\{1, \ldots,|I|\}$
- Action set $A_{i}=\{0,1\}$
- Complete information game f (supermodular)
- Incomplete information game u:
- Define $T_{i}^{f_{i}} \subset T_{i}$ by the following:
$t_{i} \in T_{i}^{f_{i}}$ if and only if for all t_{-i} with $P\left(t_{-i} \mid t_{i}\right)>0$ and all $a_{-i} \in A_{-i}$,

$$
\begin{aligned}
u_{i}^{f_{i}}\left(1, a_{-i}, t_{i}, t_{-i}\right) & =f_{i}\left(\left\{j \neq i \mid a_{j}=1\right\}\right), \\
u_{i}^{f_{i}}\left(0, a_{-i}, t_{i}, t_{-i}\right) & =0
\end{aligned}
$$

Write $\mathbf{T}^{\mathbf{f}}=\left(T_{i}^{f_{i}}\right)_{i \in I}$.

Lemma 3

\mathbf{u} has an equilibrium σ such that for all $i \in I, \sigma_{i}\left(t_{i}\right)(1)=1$ for all $t_{i} \in C B_{i}^{\mathbf{f}}\left(\mathbf{T}^{\mathbf{f}}\right)$.

Proof

- For each i, let $F_{i}=B_{i}^{f_{i}}\left(\left(C B_{j}^{\mathbf{f}}\left(\mathbf{T}^{\mathbf{f}}\right)\right)_{j \in I}\right)\left(\subset T_{i}^{f_{i}}\right)$.

Then $C B_{i}^{\mathbf{f}}\left(\mathbf{T}^{\mathbf{f}}\right) \subset F_{i}\left(\right.$ in fact $\left.C B_{i}^{\mathbf{f}}\left(\mathbf{T}^{\mathbf{f}}\right)=F_{i}\right)$.

- Consider the modified game \mathbf{u}^{\prime} where each player i must play 1 if $t_{i} \in F_{i}$.

Let σ^{*} be any equilibrium of \mathbf{u}^{\prime}.
We want to show that σ^{*} is also an equilibrium of \mathbf{u}.

- For $t_{i} \in T_{i} \backslash F_{i}$, 1 is a best response to σ_{-i}^{*} by construction.
- Suppose $t_{i} \in F_{i}$.

- The expected payoff from playing action 1 is:

$$
\begin{aligned}
U_{i} & \left(1, \sigma_{-i}^{*} \mid t_{i}\right) \\
& =\sum_{t_{-i} \in T_{-i}} P\left(t_{-i} \mid t_{i}\right) \sum_{a_{-i} \in A_{-i}} u_{i}\left(1, a_{-i}, t_{i}, t_{-i}\right) \prod_{j \neq i} \sigma_{j}^{*}\left(a_{j} \mid t_{j}\right) \\
& =\sum_{t_{-i} \in T_{-i}} P\left(t_{-i} \mid t_{i}\right) f_{i}\left(\left\{j \neq i \mid \sigma_{j}^{*}\left(1 \mid t_{j}\right)=1\right\}\right) \\
& \leq \sum_{t_{-i} \in T_{-i}} P\left(t_{-i} \mid t_{i}\right) f_{i}\left(\left\{j \neq i \mid t_{j} \in C B_{j}^{\mathbf{f}}\left(\mathbf{T}^{\mathbf{f}}\right)\right\}\right) \\
& =\left\langle P^{\left.\left(C B_{j}^{\mathbf{f}}\left(\mathbf{T}^{\mathbf{f}}\right)\right)_{j \neq i}\left(\cdot \mid t_{i}\right), f_{i}\right\rangle \geq 0 .}\right.
\end{aligned}
$$

Thus playing 1 is a best response to σ_{-i}^{*} for $t_{i} \in F_{i}$.

Potential

Definition 1
$\mathbf{f}=\left(f_{i}\right)_{i \in I}$ admits a potential $v: \mathcal{I} \rightarrow \mathbb{R}$ if

$$
f_{i}(S)=v(S \cup\{i\})-v(S)
$$

for any $i \in I$ and $S \in \mathcal{I}_{-i}$.

Characterizations

- $\mathbf{f}=\left(f_{i}\right)_{i \in I}$ admits a potential if and only if
$(*) \quad f_{i}(S)+f_{j}(S \cup\{i\})=f_{j}(S)+f_{i}(S \cup\{j\})$
for any $i \neq j$ and $S \subset I \backslash\{i, j\}$.
- If $(*)$ holds, then the potential is determined uniquely up to constants:

$$
v(S)=v(\emptyset)+\sum_{\ell=1}^{k} f_{i_{\ell}}\left(\left\{i_{1}, \ldots, i_{\ell-1}\right\}\right)
$$

for $S=\left\{i_{1}, \ldots, i_{k}\right\} \in \mathcal{I}$, where the summation is independent of the order of players in S.

Example 1 (p-Belief)

- Let $f_{i}^{p_{i}}(S)= \begin{cases}1-p_{i} & \text { if } S=I \backslash\{i\}, \\ -p_{i} & \text { otherwise. }\end{cases}$
- For $S \subset I \backslash\{i, j\}$, we have

$$
\begin{aligned}
& f_{i}(S)+f_{j}(S \cup\{i\})=f_{j}(S)+f_{i}(S \cup\{j\}) \\
& = \begin{cases}1-p_{i}-p_{j} & \text { if } S=I \backslash\{i, j\}, \\
-p_{i}-p_{j} & \text { if } S \varsubsetneqq I \backslash\{i, j\} .\end{cases}
\end{aligned}
$$

- A potential is given by

$$
v(S)= \begin{cases}1-\sum_{i \in I} p_{i} & \text { if } S=I \\ -\sum_{i \in S} p_{i} & \text { otherwise }\end{cases}
$$

$$
\Rightarrow f_{i}(S)=v(S \cup\{i\})-v(S) \forall i \in I, \forall S \in \mathcal{I}_{-i}
$$

- Note that v is uniquely maximized at I iff $\sum_{i \in I} p_{i}<1$.
\cdots the condition for the Critical Path Result.
- We will argue that this is not a coincidence.

Example 2 (Anonymity and Symmetry)

- Let $f_{i}^{m_{i}}(S)=g(|S|)-m_{i}$, where $g:\{0,1,2, \ldots,|I|-1\} \rightarrow \mathbb{R}$ and $m_{i} \in \mathbb{R}$.
- f has a potential:

$$
v(S)=\sum_{n=0}^{|S|-1} g(n)-\sum_{i \in S} m_{i}
$$

... "integral" of g (+ constants).

Monotone Potential

Definition 2

$\mathbf{f}=\left(f_{i}\right)_{i \in I}$ admits a monotone potential $v: \mathcal{I} \rightarrow \mathbb{R}$ if there exists $\boldsymbol{\lambda}=\left(\lambda_{i}\right)_{i \in I}$ with $\lambda_{i}>0$ such that

$$
f_{i}(S) \geq \lambda_{i}(v(S \cup\{i\})-v(S))
$$

for any $i \in I$ and $S \in \mathcal{I}_{-i}$.

- If $\left\langle q_{i}, f_{i}\right\rangle<0$, then $\left\langle q_{i}, v(\cdot \cup\{i\})-v(\cdot)\right\rangle<0$.
- Theorems will be about implications of existence/non-existence of a monotone potential that is uniquely maximized at I.

Example 3 (Unanimity)

- Let $f_{i}^{a_{i}, b_{i}}(S)=\left\{\begin{array}{ll}a_{i} & \text { if } S=I \backslash\{i\}, \\ -b_{i} & \text { if } S=\emptyset, \\ 0 & \text { otherwise } .\end{array} \quad\left(a_{i}, b_{i}>0\right)\right.$
- \mathbf{f} has a potential uniquely maximized at I

$$
\Longleftrightarrow a_{1}=\cdots=a_{|I|}>b_{1}=\cdots=b_{|I|} .
$$

- \mathbf{f} has a monotone potential uniquely maximized at I $\Longleftrightarrow a_{i} a_{j}>b_{i} b_{j}$ for all $i \neq j$.

Critical Path Theorem for Generalized Beliefs

Theorem 1
If $\mathbf{f}=\left(f_{i}\right)_{i \in I}$ admits a monotone potential v uniquely maximized at I, then for any type space (T, P) and for any $\mathbf{E}=\left(E_{i}\right)_{i \in I}$, $E_{i} \subset T_{i}$,

$$
P\left(C B^{\mathbf{f}}(\mathbf{E})\right) \geq 1-\xi(v)(1-P(E))
$$

where

$$
\begin{aligned}
& \xi(v)=1+\frac{M}{v(I)-v^{\prime}} \\
& v^{\prime}=\max _{S \subsetneq I} v(S) \\
& M=\max _{S \subseteq S^{\prime} \subseteq I}\left(v(S)-v\left(S^{\prime}\right)\right) .
\end{aligned}
$$

Sketch of Proof

The goal is to show that $P(E), P\left(B^{\mathbf{f}}(\mathbf{E})\right), P\left(B^{\mathbf{f}}\left(\mathbf{B}^{\mathbf{f}}(\mathbf{E})\right)\right), \ldots$ do not decrease too fast.

For a technical reason (that will be clear later), we iterate belief operators sequentially:

$$
\begin{aligned}
& E_{i}^{1}=E_{i}, \\
& E_{i}^{n+1}= \begin{cases}B_{i}^{f_{i}}\left(\mathbf{E}^{n}\right) & \text { if } i \equiv n(\bmod |I|), \\
E_{i}^{n} & \text { if } i \not \equiv n(\bmod |I|) .\end{cases}
\end{aligned}
$$

We have

$$
C B_{i}^{\mathrm{f}}(\mathbf{E})=E_{i}^{1} \cap E_{i}^{i+1} \cap E_{i}^{i+|I|+1} \cap E_{i}^{i+2|I|+1} \cap \cdots
$$

We partition T_{i} into $\left\{D_{i}^{n}\right\}_{n=0,1, \ldots, \infty}$, where

$$
\begin{aligned}
& D_{i}^{0}=T_{i} \backslash E_{i}^{1} \\
& D_{i}^{n}=E_{i}^{n} \backslash E_{i}^{n+1}=\left\{t_{i} \in T_{i} \mid t_{i} \text { is eliminated at step } n\right\}, \\
& D_{i}^{\infty}=C B_{i}^{\mathbf{f}}(\mathbf{E}) .
\end{aligned}
$$

For $\mathbf{n}=\left(n_{i}\right)_{i \in I} \in(\mathbb{N} \cup\{\infty\})^{I}$, we let $\pi(\mathbf{n})=P\left(\prod_{i} D_{i}^{n_{i}}\right)$.

Illustration for $I=\{1,2\}$

D_{2}^{0}		D_{2}^{2}	D_{2}^{4}	D_{2}^{6}	\cdots
D_{1}^{0}	$\pi(0,0)$	$\pi(0,2)$	$\pi(0,4)$	$\pi(0,6)$	
D_{1}^{1}	$\pi(1,0)$	$\pi(1,2)$	$\pi(1,4)$	$\pi(1,6)$	
D_{1}^{3}	$\pi(3,0)$	$\pi(3,2)$	$\pi(3,4)$	$\pi(3,6)$	
D_{1}^{5}	$\pi(5,0)$	$\pi(5,2)$	$\pi(5,4)$	$\pi(5,6)$	
\vdots					

where

$$
\begin{aligned}
& E_{1}=D_{1}^{1} \cup D_{1}^{3} \cup D_{1}^{5} \cup \cdots \\
& E_{2}=D_{2}^{2} \cup D_{2}^{4} \cup D_{2}^{6} \cup \cdots
\end{aligned}
$$

	D_{2}^{0}		D_{2}^{2}	D_{2}^{4}	D_{2}^{6}		\cdots
D_{1}^{0}	$\pi(0,0)$	$\pi(0,2)$	$\pi(0,4)$	$\pi(0,6)$			
D_{1}^{1}	$\pi(1,0)$	$\pi(1,2)$	$\pi(1,4)$	$\pi(1,6)$			
D_{1}^{3}	$\pi(3,0)$	$\pi(3,2)$	$\pi(3,4)$	$\pi(3,6)$			
D_{1}^{5}	$\pi(5,0)$	$\pi(5,2)$	$\pi(5,4)$	$\pi(5,6)$			

We have

$$
\begin{aligned}
& \pi(1,0) f_{1}(\emptyset)+(\pi(1,2)+\pi(1,4)+\cdots) f_{1}(\{2\}) \leq 0 \\
& \Rightarrow \pi(1,0)(v(\{1\})-v(\emptyset)) \\
& \quad+(\pi(1,2)+\pi(1,4)+\cdots)(v(\{1,2\})-v(\{2\})) \leq 0 .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& (\pi(0,2)+\pi(1,2)) f_{2}(\emptyset)+(\pi(3,2)+\pi(5,2)+\cdots) f_{2}(\{1\}) \leq 0 \\
& \Rightarrow(\pi(0,2)+\pi(1,2))(v(\{2\})-v(\emptyset)) \\
& \quad+(\pi(3,2)+\pi(5,2)+\cdots)(v(\{1,2\})-v(\{1\})) \leq 0 .
\end{aligned}
$$

Lemma 4

If $F_{i} \subset T_{i} \backslash B_{i}^{f_{i}}(\mathbf{E})$, then
$\sum_{S \in \mathcal{I}_{-i}} P\left(F_{i} \times \prod_{j \in S} E_{j} \times \prod_{j \notin S \cup\{i\}}\left(T_{j} \backslash E_{j}\right)\right) f_{i}(S) \leq 0$.

Let $S(k, \mathbf{n})=\left\{i \in I \mid n_{i}>k\right\}$.
Claim 1
For all $i \in I$ and $1 \leq k<\infty$,

$$
\sum_{\mathbf{n}: n_{i}=k} \pi(\mathbf{n})\left(v\left(S\left(n_{i}, \mathbf{n}\right) \cup\{i\}\right)-v\left(S\left(n_{i}, \mathbf{n}\right)\right)\right) \leq 0
$$

Proof

If $k \equiv i(\bmod |I|)$, then

$$
\begin{aligned}
& \sum_{\mathbf{n}: n_{i}=k} \pi(\mathbf{n}) f_{i}\left(S\left(n_{i}, \mathbf{n}\right)\right) \\
= & \sum_{S \in \mathcal{I}_{-i}} \sum_{\mathbf{n}: n_{i}=k, S(k, \mathbf{n})=S} P\left(D_{i}^{k} \times \prod_{j \neq i} D_{j}^{n_{j}}\right) f_{i}(S) \\
= & \sum_{S \in \mathcal{I}_{-i}} P\left(D_{i}^{k} \times \prod_{j \in S} E_{j}^{k} \times \prod_{j \notin S \cup\{i\}}\left(T_{j} \backslash E_{j}^{k}\right)\right) f_{i}(S) \leq 0 .
\end{aligned}
$$

The claim then follows from the definition of monotone potential v.

- Let $x_{i}(0)=0$ and for $1 \leq k<\infty$,

$$
\begin{aligned}
& \varepsilon=1-P(E)=\sum_{\mathbf{n}: \min (\mathbf{n})=0} \pi(\mathbf{n}), \\
& x_{i}(k)=\sum_{\mathbf{n}: 1 \leq n_{i}=\min (\mathbf{n}) \leq k} \pi(\mathbf{n}), \\
& x(k)=\sum_{i \in I} x_{i}(k)=\sum_{\mathbf{n}: 1 \leq \min (\mathbf{n}) \leq k} \pi(\mathbf{n}) .
\end{aligned}
$$

- For $1 \leq n<\infty$,

$$
\begin{aligned}
1-P\left(\prod_{i \in I} \tilde{B}_{i}^{\mathbf{f}, n}(\mathbf{E})\right) & \leq 1-P\left(\prod_{i \in I} E_{i}^{n|I|+1}\right) \\
& =\sum_{\mathbf{n}: \min (\mathbf{n}) \leq n|I|} \pi(\mathbf{n})=\varepsilon+x(n|I|) .
\end{aligned}
$$

Claim 2
For $1 \leq k<\infty$,

$$
x(k) \leq \frac{M}{v(I)-v^{\prime}} \varepsilon .
$$

The key identity: for any \mathbf{n},

$$
\begin{array}{r}
\sum_{i: \ell \leq n_{i} \leq k} v\left(S\left(n_{i}, \mathbf{n}\right) \cup\{i\}\right)-v\left(S\left(n_{i}, \mathbf{n}\right)\right) \\
=v(S(\ell-1, \mathbf{n}))-v(S(k, \mathbf{n}))
\end{array}
$$

Proof

For $1 \leq k<\infty$, we have

$$
\begin{aligned}
0 & \geq \sum_{i \in I} \sum_{\ell=1}^{k} \sum_{\mathbf{n}: n_{i}=\ell} \pi(\mathbf{n})\left(v\left(S\left(n_{i}, \mathbf{n}\right) \cup\{i\}\right)-v\left(S\left(n_{i}, \mathbf{n}\right)\right)\right) \\
& =\sum_{\mathbf{n}: \min (\mathbf{n}) \leq k} \sum_{i: 1 \leq n_{i} \leq k} \pi(\mathbf{n})\left(v\left(S\left(n_{i}, \mathbf{n}\right) \cup\{i\}\right)-v\left(S\left(n_{i}, \mathbf{n}\right)\right)\right) \\
& =\sum_{\mathbf{n}: \min (\mathbf{n}) \leq k} \pi(\mathbf{n})(v(S(0, \mathbf{n}))-v(S(k, \mathbf{n}))) \\
& =\sum_{\mathbf{n}: \min (\mathbf{n}) \leq k} \pi(\mathbf{n})(v(\underbrace{S(0, \mathbf{n})}_{=I \text { if } \min (\mathbf{n}) \geq 1})-v(S(k, \mathbf{n}))) \\
& \geq x(k)\left(v(I)-v^{\prime}\right)-M \varepsilon .
\end{aligned}
$$

Implication of Non-Existence of Potential Maximized at I

Recall the definition of monotone potential.
Definition 3 (Coefficients on Left)
$\mathbf{f}=\left(f_{i}\right)_{i \in I}$ admits a monotone potential $v: \mathcal{I} \rightarrow \mathbb{R}$ if there exists $\boldsymbol{\lambda}^{\prime}=\left(\lambda_{i}^{\prime}\right)_{i \in I}$ with $\lambda_{i}^{\prime}>0$ such that

$$
\lambda_{i}^{\prime} f_{i}(S) \geq v(S \cup\{i\})-v(S)
$$

for any $i \in I$ and $S \in \mathcal{I}_{-i}$.
We characterize when \mathbf{f} admits such a monotone potential.
In what follows, we "get rid of" v first, and then $\boldsymbol{\lambda}^{\prime}$.

If v is uniquely maximized at I, then

$$
\begin{aligned}
& \lambda_{i}^{\prime} f_{i}(I \backslash\{i\}) \geq v(I)-v(I \backslash\{i\})>0 \\
& \lambda_{i}^{\prime} f_{i}(I \backslash\{i\})+\lambda_{j}^{\prime} f_{j}(I \backslash\{i, j\}) \\
& \geq(v(I)-v(I \backslash\{i\}))+(v(I \backslash\{i\})-v(I \backslash\{i, j\})) \\
& =v(I)-v(I \backslash\{i, j\})>0, \ldots
\end{aligned}
$$

$\gamma=\left(i_{1}, \ldots, i_{k}\right)$: a finite sequence of distinct players in I.
Γ : the set of all such sequences.

Lemma 5 (Fixed $\boldsymbol{\lambda}^{\prime}$)

$\mathbf{f}=\left(f_{i}\right)_{i \in I}$ admits a monotone potential with $\boldsymbol{\lambda}^{\prime}=\left(\lambda_{i}^{\prime}\right)_{i \in I}$ that is uniquely maximized at I if and only if

$$
\sum_{\ell=1}^{k} \lambda_{i_{\ell}}^{\prime} f_{i_{\ell}}\left(I \backslash\left\{i_{1}, \ldots, i_{\ell}\right\}\right)>0
$$

for every $\gamma \in \Gamma$.

For $i \in I$, let $\Gamma_{i} \subset \Gamma$ be the set of sequences that contain i.
For $\gamma \in \Gamma_{i}$, let $S(i, \gamma) \in \mathcal{I}_{-i}$ be the set of player i 's opponents who are not listed in γ earlier than i.

We can apply a version of Farkas' lemma to "get rid of" $\boldsymbol{\lambda}^{\prime}$.
Lemma 6
$\mathbf{f}=\left(f_{i}\right)_{i \in I}$ admits a monotone potential that is uniquely maximized at I if and only if there is no $\mu \in \Delta(\Gamma)$ such that

$$
\sum_{S \in \mathcal{I}_{-i}} \mu\left(\left\{\gamma \in \Gamma_{i}: S(i, \gamma)=S\right\}\right) f_{i}(S) \leq 0
$$

for any $i \in I$.

Contagion Result

Theorem 2

Suppose that $\mathbf{f}=\left(f_{i}\right)_{i \in I}$ is generic and does not admit a monotone potential that is strictly maximized at I. Then for any $\varepsilon \in(0,1]$, there exist a type space $\left(\left(T_{i}\right)_{i \in I}, P\right)$ and a profile $\mathbf{E}=\left(E_{i}\right)_{i \in I}$ with $E=\prod_{i \in I} E_{i}$ such that $P(E)=1-\varepsilon$ and

$$
P\left(C B^{\mathbf{f}}(\mathbf{E})\right)=0
$$

Proof.

By genericity, for sufficiently small $\varepsilon>0$, we have

$$
\sum_{S \in \mathcal{I}_{-i}}(1-\varepsilon)^{|S|} \mu\left(\left\{\gamma \in \Gamma_{i}: S(i, \gamma)=S\right\}\right) f_{i}(S)<0
$$

for any $i \in I$ such that $\mu\left(\Gamma_{i}\right)>0$.
Given such small ε, we consider the following type space.

- $T_{i}=\{1,2,3, \ldots\} \cup\{\infty\}$
- $t_{i}=\theta+\eta_{i}$, where
- θ follows a geometric distribution, $\theta=m$ with probability $\varepsilon(1-\varepsilon)^{m}$ for $m=0,1,2, \ldots$.
- Independently of $\theta, \gamma \in \Gamma$ is drawn according to μ, and $\eta_{i}=\ell$ if i is listed at the ℓ-th place of $\gamma\left(\eta_{i}=\infty\right.$ if i is not listed in γ).

Let $E_{i}=\{|I|,|I|+1, \ldots, \infty\}$ for each $i \in I$.
Then each time $B_{i}^{f_{i}}$ applies, types $|I|,|I|+1, \ldots$ get eliminated.

Robustness in Binary Supermodular Games

- The above results imply:
in generic binary supermodular games
$\mathbf{1}$ is a robust equilibrium if and only if $\mathbf{1}$ is an MP-maximizer.
- "If" part (MP-max \Rightarrow robust):

Follows from Critical Path Result.
... Already known by Ui (2001) and Morris and Ui (2005) via the "potential maximizing strategy" proof.

We give an alternative, "higher order beliefs" proof.

- "Only if" part (not MP-max \Rightarrow not robust): Implication of non-existence of a potential.

If $\mathbf{1}$ is not an MP-maximizer, then one can construct an ε-elaboration such that $P($ type profiles playing $\mathbf{1})=0$.
... New construction in the literature.

Proof: "If" part

- Suppose that the game \mathbf{f} has a monotone potential v maximized at I.
- Fix any $\delta>0$, let $\varepsilon>0$ small enough, and consider any ε-elaboration of \mathbf{f}.
- Let $T^{\mathbf{f}}$ be the set of type profiles whose payoffs are given by \mathbf{f}. By definition, $P\left(T^{\mathbf{f}}\right)=1-\varepsilon$.
- Recall our Critical Path Theorem:

$$
P(\underbrace{C B^{\mathbf{f}}\left(T^{\mathbf{f}}\right)}_{\exists \operatorname{BNE} \sigma^{*} \text { playing } 1 \text { on } C B^{\mathbf{f}}\left(T^{\mathbf{f}}\right)}) \geq 1-\xi(v)(\underbrace{1-P\left(T^{\mathbf{f}}\right)}_{=\varepsilon}) .
$$

- Hence,

$$
P\left(\sigma^{*} \text { plays } \mathbf{1}\right) \geq P\left(C B^{\mathbf{f}}\left(T^{\mathbf{f}}\right)\right) \geq 1-\xi(v) \times \varepsilon \geq 1-\delta
$$

if ε is small enough that $\varepsilon \leq \delta / \xi(v)$.

Proof: "Only if" part

- Suppose that the game \mathbf{f} does not have a monotone potential maximized at I.
- For any $\varepsilon>0$, we can construct an ε-elaboration that has a unique rationalizable strategy σ^{*}, which satisfies

$$
P(t \mid \sigma(t)=\mathbf{1})=0
$$

This implies that $\mathbf{1}$ is not robust.

Example: Unanimity Games

- Consider the game \mathbf{f} given by

$$
f_{i}(S)=\left\{\begin{array}{ll}
a_{i} & \text { if } S=I, \\
-b_{i} & \text { if } S=\emptyset, \\
0 & \text { otherwise }
\end{array} \quad\left(a_{i}, b_{i}>0\right)\right.
$$

- $\mathbf{1}$ is an MP-maximizer
$\Longleftrightarrow a_{i} a_{j}>b_{i} b_{j}$ for all $i \neq j$.

Proposition 7
1 is robust to incomplete information

$$
\Longleftrightarrow a_{i} a_{j}>b_{i} b_{j} \text { for all } i \neq j .
$$

