From Imitation Games to Kakutani by McLennan and Tourky

Daisuke Oyama

Advanced Economic Theory

October 21, 2016

Reference

McLennan, A. and R. Tourky (2006). "From Imitation Games to Kakutani."

Imitation Games

A two-player normal form game (A, B), where A and B are m × n matrices, is an *imitation game* if m = n and B = I, where I is the m × m identity matrix.

• Let
$$\mathcal{I} = \{1, ..., m\}$$
, and
 $\Delta^m = \{x \in \mathbb{R}^m_+ \mid x_1 + \dots + x_m = 1\}.$

For any
$$\iota \in \Delta^m$$
, $\arg \max_{i \in \mathcal{I}} (I\iota)_i \subset \operatorname{supp}(\iota)$.

▶ For
$$\rho \in \Delta^m$$
, let

$$\rho^{\circ} = \{ i \in \mathcal{I} \mid \rho_i = 0 \}, \quad \overline{\rho} = \arg \max_{i \in \mathcal{I}} (A\rho)_i.$$

- A is in general position if $|\rho^{\circ}| + |\overline{\rho}| \leq m$ for all $\rho \in \Delta^m$.
- A is in general position if and only if (A, I) is nondegenerate.

I-Equilibria

- ▶ $\rho \in \Delta^m$ is an *I*-equilibrium of an imitation game (A, I) if $\rho^{\circ} \cup \overline{\rho} = \mathcal{I}$, or equivalently $\operatorname{supp}(\rho) \subset \overline{\rho}$.
- ▶ $\rho \in \Delta^m$ is an *I*-equilibrium of (A, I) if and only if there exists $\iota \in \Delta^m$ such that (ι, ρ) is a Nash equilibrium of (A, I).
- If (ι, ρ) is a Nash equilibrium of (A, I), then

$$\operatorname{supp}(\rho) \subset \operatorname{arg\,max}_{i \in \mathcal{I}} (I\iota)_i \subset \operatorname{supp}(\iota) \subset \operatorname{arg\,max}_{i \in \mathcal{I}} (A\rho)_i.$$

• If ρ is an *I*-equilibrium of (A, I), then let ι be defined by $\iota_i = \frac{1}{|\operatorname{supp}(\rho)|}$ for $i \in \operatorname{supp}(\rho)$.

Then we have $\mathrm{supp}(\rho)\subset \mathrm{arg}\max_{i\in\mathcal{I}}(A\rho)_i$ and

$$\operatorname{supp}(\rho) = \operatorname{supp}(\iota) = \operatorname{arg\,max}_{i \in \mathcal{I}} (I\iota)_i.$$

Existence of *I*-Equilibrium

- The imitation game (A, I) has an I-equilibrium.
 Proof: By Lemke-Howson.
- (We cannot use Kakutani here, as our goal is to prove Kakutani's fixed point theorem.)

Correspondences and Imitation Games

- ▶ Let $C \neq \emptyset$ be a closed convex subset of an inner product space.
- Let $F \colon C \to C$ be a nonempty-valued correspondence.
- Fix any $x_1 \in C$.
- ▶ Define sequences $x_1, x_2, \ldots \in C$ and $y_1, y_2, \ldots \in C$ as follows: Given x_1, \ldots, x_m and y_1, \ldots, y_{m-1} :
 - Choose any $y_m \in F(x_m)$.
 - \blacktriangleright Define an imitation game (A,I) with m actions by

$$a_{ij} = -\|x_i - y_j\|^2.$$

• Let $\rho^m \in \Delta^m$ be an *I*-equilibrium of (A, I).

Let

$$x_{m+1} = \sum_{j=1}^m \rho_j^m y_j.$$

${\sf Proposition}\ 1$

For any m,

$$\operatorname{supp}(\rho^m) \subset \underset{i=1,\dots,m}{\operatorname{arg\,min}} \|x_i - x_{m+1}\|.$$

• Define
$$G_F \colon C \to C$$
 by

$$G_F(x) = \bigcap_{\delta > 0} \overline{\operatorname{co} B_\delta(F(x))},$$

where

$$B_{\delta}(F(x)) = \bigcup_{\|x'-x\| < \delta} F(x').$$

Proposition 2

An accumulation point x^* of $\{x_m\}$ is a fixed point of G_F .

Proof

- Let x^* be an accumulation point of $\{x_m\}$.
- Fix any $\delta > 0$ and any $\varepsilon \in (0, \delta/3)$.
- ▶ Let m_0 be such that $x_{m_0} \in B_{\varepsilon}(x^*)$, and take any $m_1 > m_0$ such that $x_{m_1+1} \in B_{\varepsilon}(x^*)$.
- We have $||x_{m_0} x_{m_1+1}|| < (2/3)\delta$.
- ► Then for all $j \in M = \arg \min_{j=1,...,m_1} ||x_j x_{m_1+1}||$, we have $||x_j x_{m_1+1}|| < (2/3)\delta$ and hence $||x_j x^*|| < \delta$.
- Therefore, $y_j \in B_{\delta}(F(x^*))$ for all $j \in M$.

- ▶ By Proposition 1, $x_{m_1+1} = \sum_{j \in M} \rho_j y_j$, where ρ_j is an *I*-equilibrium of the imitation game.
- This means that $x_{m_1+1} \in \operatorname{co} B_{\delta}(F(x^*))$.
- Since $\varepsilon > 0$ has been taken arbitrarily, it follows that $x^* \in \overline{\operatorname{co} B_{\delta}(F(x^*))}$.
- Since $\delta > 0$ has been taken arbitrarily, it follows that $x^* \in \bigcap_{\delta > 0} \overline{\operatorname{co} B_{\delta}(F(x^*))}$.

Upper Semi-Continuity

- A correspondence F: C → C is upper semi-continuous if for any x ∈ C, for any open neighborhood V of F(x), there exists a neighborhood U of x such that F(U) ⊂ V.
- (McLennan-Tourky require F(x) in addition to be closed.)

Kakutani's Fixed Point Theorem

Theorem 1

Suppose that $C \neq \emptyset$ is a compact convex subset of an inner product space, and that $F: C \rightarrow C$ is a nonempty-, convex-, and compact-valued upper semi-continuous correspondence.

Then F has a fixed point.

Proof

- $\{x^m\}$ has an accumulation point x^* since C is (sequentially) compact.
- x^* is a fixed point of G_F by Proposition 2.
- Show that $G_F = F$.
 - ► For any $\delta > 0$, there exists $\delta' > 0$ such that $F(B_{\delta'}(x)) \subset B_{\delta}(F(x))$ by the upper semi-continuity of F.
 - $\operatorname{co} F(B_{\delta'}(x)) = F(B_{\delta'}(x))$ by the convexity of F.
 - $\bigcap_{\delta>0} \overline{B_{\delta}(F(x))} = F(x)$ by the closedness of F.