Equilibrium Computation for Two-Player Games in Strategic Form I

Daisuke Oyama

Advanced Economic Theory

September 27, 2016

Reference

- von Stengel, B. (2007). "Equilibrium Computation for Two-Player Games in Strategic and Extensive Form," Chapter 3, Algorithmic Game Theory.

Bimatrix Games

- Two players: 1 and 2
- 1's action space: $M=\{1, \ldots, m\}$

2's action space: $N=\{m+1, \ldots, m+n\}$

- 1's payoff matrix: $A \in \mathbb{R}^{M \times N}$ 2's payoff matrix: $B \in \mathbb{R}^{M \times N}$
- For $x \in \Delta^{M}$ and $y \in \Delta^{N}$,
- 1's expected payoff: $x^{\prime} A y$
- 2's expected payoff: $x^{\prime} B y$
where $\Delta^{L}=\left\{x \in \mathbb{R}_{+}^{L} \mid \sum_{\ell \in L} x_{\ell}=1\right\}, L=M, N$.

Nash Equilibrium

1. $(x, y) \in \Delta^{M} \times \Delta^{N}$ is a Nash equilibrium if

$$
\begin{align*}
& x^{\prime} A y \geq \tilde{x}^{\prime} A y \text { for all } \tilde{x} \in \Delta^{M} \tag{1}\\
& x^{\prime} B y \geq x^{\prime} B \tilde{y} \text { for all } \tilde{y} \in \Delta^{N} . \tag{2}
\end{align*}
$$

2. $(x, y) \in \Delta^{M} \times \Delta^{N}$ is a Nash equilibrium if and only if

$$
\begin{align*}
& (A y)_{i}=\max _{i^{\prime} \in M}(A y)_{i^{\prime}} \text { for all } i \in \operatorname{supp}(x) \tag{3}\\
& \left(B^{\prime} x\right)_{j}=\max _{j^{\prime} \in N}\left(B^{\prime} x\right)_{j^{\prime}} \text { for all } j \in \operatorname{supp}(y) \tag{4}
\end{align*}
$$

Proof

- Fix $y \in \Delta^{N}$, and let $u=\max _{i \in M}(A y)_{i}$. Then
- $e_{i^{*}}^{\prime} A y=u$ for some $i^{*} \in M$, and
- $\tilde{x}^{\prime} A y \leq \sum_{i \in M} \tilde{x}_{i} u=u$ for any $\tilde{x} \in \Delta^{M}$.
- Consider any $x \in \Delta^{M}$. We have

$$
0 \leq \sum_{i \in M} x_{i}\left(u-(A y)_{i}\right)=u-x^{\prime} A y
$$

- Therefore,

$$
(1) \Longleftrightarrow x^{\prime} A y \geq u \Longleftrightarrow \text { (3). }
$$

Nash Equilibrium

- For $x \in \Delta^{M}$ and $y \in \Delta^{N}$, write

$$
\begin{array}{ll}
\bar{x}=\underset{j \in N}{\arg \max }\left(B^{\prime} x\right)_{j}, & x^{\circ}=\left\{i \in M \mid x_{i}=0\right\}, \\
\bar{y}=\underset{i \in M}{\arg \max }(A y)_{i}, & y^{\circ}=\left\{j \in N \mid y_{j}=0\right\} .
\end{array}
$$

3. $(x, y) \in \Delta^{M} \times \Delta^{N}$ is a Nash equilibrium if and only if

$$
\operatorname{supp}(x) \subset \bar{y}, \quad \operatorname{supp}(y) \subset \bar{x}
$$

3'. $(x, y) \in \Delta^{M} \times \Delta^{N}$ is a Nash equilibrium if and only if

$$
\bar{y} \cup x^{\circ}=M, \quad \bar{x} \cup y^{\circ}=N,
$$

or equivalently,

$$
\left(\bar{x} \cup x^{\circ}\right) \cup\left(\bar{y} \cup y^{\circ}\right)=M \cup N .
$$

Example

$$
\begin{aligned}
& M=\{1,2,3\}, N=\{4,5\}: \\
& A=\left[\begin{array}{ll}
3 & 3 \\
2 & 5 \\
0 & 6
\end{array}\right], \quad B=\left[\begin{array}{ll}
3 & 2 \\
2 & 6 \\
3 & 1
\end{array}\right] .
\end{aligned}
$$

Nondegenerate Games

- A two-player game is nondegenerate if for any $x \in \Delta^{M}$ and any $y \in \Delta^{N}$,

$$
|\bar{x}| \leq|\operatorname{supp}(x)|, \quad|\bar{y}| \leq|\operatorname{supp}(y)|,
$$

or equivalently,

$$
\left|x^{\circ}\right|+|\bar{x}| \leq m, \quad\left|y^{\circ}\right|+|\bar{y}| \leq n
$$

- If (x, y) is a Nash equilibrium of a nondegenerate game, then

$$
|\operatorname{supp}(x)|=|\operatorname{supp}(y)| .
$$

$\because|\operatorname{supp}(x)| \leq|\bar{y}| \leq|\operatorname{supp}(y)| \leq|\bar{x}| \leq|\operatorname{supp}(x)|$.

Example of a Degenerate Game

$$
\begin{aligned}
& M=\{1,2,3\}, N=\{4,5\}: \\
& A=\left[\begin{array}{ll}
3 & 3 \\
2 & 5 \\
0 & 6
\end{array}\right], \quad B=\left[\begin{array}{ll}
3 & \frac{3}{6} \\
2 & 6 \\
3 & 1
\end{array}\right] .
\end{aligned}
$$

Recall

- $(x, y) \in \Delta^{M} \times \Delta^{N}$ is a Nash equilibrium if and only if

$$
\begin{align*}
& (A y)_{i}=\max _{i^{\prime} \in M}(A y)_{i^{\prime}} \text { for all } i \in \operatorname{supp}(x) \tag{3}\\
& \left(B^{\prime} x\right)_{j}=\max _{j^{\prime} \in N}\left(B^{\prime} x\right)_{j^{\prime}} \text { for all } j \in \operatorname{supp}(y) \tag{4}
\end{align*}
$$

Support Enumeration

- Input: Nondegenerate bimatrix game
- Output: All Nash equilibria of the game
- Method:

For each $k=1, \ldots, \min \{m, n\}$ and each pair $(I, J), I \subset M$ and $J \subset N$, such that $|I|=|J|=k$, solve the systems of linear equations

$$
\begin{array}{ll}
\sum_{j \in J} a_{i j} y_{j}=u \text { for } i \in I, & \sum_{j \in J} y_{j}=1 \\
\sum_{i \in I} b_{i j} x_{i}=v \text { for } j \in J, \quad \sum_{i \in I} x_{i}=1
\end{array}
$$

Check

- $x_{i}>0$ for all $i \in I$ and $y_{j}>0$ for all $j \in J$,
- $u \geq \sum_{j \in J} a_{i j} y_{j}$ for all $i \notin I$ and $v \geq \sum_{i \in I} b_{i j} x_{i}$ for all $j \notin J$.
- The systems of equations are written in matrix form as

$$
\begin{aligned}
& \left(\begin{array}{cc}
A_{I J} & -\mathbf{1} \\
\mathbf{1}^{\prime} & 0
\end{array}\right)\binom{y_{J}}{u}=\binom{\mathbf{0}}{1}, \\
& \left(\begin{array}{cc}
B_{I J}^{\prime} & -\mathbf{1} \\
\mathbf{1}^{\prime} & 0
\end{array}\right)\binom{x_{I}}{v}=\binom{\mathbf{0}}{1},
\end{aligned}
$$

where

- $A_{I J}=\left(a_{i j}\right)_{i \in I, j \in J}, B_{I J}=\left(b_{i j}\right)_{i \in I, j \in J}$,
- $\mathbf{0}=(0 \cdots 0)^{\prime} \in \mathbb{R}^{k}, \mathbf{1}=(1 \cdots 1)^{\prime} \in \mathbb{R}^{k}$.
- If $m=n$, the number of equal-sized support pairs is

$$
\sum_{k=1}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}-1 \approx \frac{4^{n}}{\sqrt{\pi n}}
$$

(" \approx " by Stirling's formula $\left.n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\right)$.

