Equilibrium Computation for Two-Player Games in Strategic Form II

Daisuke Oyama

Advanced Economic Theory

September 30, 2016

Reference

- von Stengel, B. (2007). "Equilibrium Computation for Two-Player Games in Strategic and Extensive Form," Chapter 3, Algorithmic Game Theory.

Polyhedra/Polytopes

- An affine combination of $z_{1}, \ldots, z_{k} \in \mathbb{R}^{n}$ is $\sum_{i=1}^{k} \lambda_{i} z_{i}$ for some $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$ such that $\sum_{i=1}^{k} \lambda_{i}=1$.
- It is called a convex combination if $\lambda_{i} \geq 0$ for all i.
- A subset of \mathbb{R}^{n} is convex if it is closed under convex combinations.
- z_{1}, \ldots, z_{k} are affinely independent if none of these points is an affine combination of the others, or equivalently, $z_{1}-z_{k}, \ldots, z_{k-1}-z_{k}$ are linearly independent.
- A convex set has dimension d if has $d+1$, but no more, affinely independent points.

Polyhedra/Polytopes

- A polyhedron P in \mathbb{R}^{d} is a set $\left\{z \in \mathbb{R}^{d} \mid C z \leq q\right\}$ for some matrix C and vector q.

It is called full-dimensional if it has dimension d.

- A polyhedron is called a polytope if it is bounded.
- A face of a polyhedron P is a set $\left\{z \in P \mid c^{\prime} z=q_{0}\right\}$ for some $c \in \mathbb{R}^{d}$ and $q_{0} \in \mathbb{R}$ such that the inequality $c^{\prime} z \leq q_{0}$ holds for all $z \in P$.
- Any nonempty face F of P is written as $\left\{z \in P \mid c_{i} z=q_{i}, i \in I\right\}$ for some rows $\left\{c_{i}\right\}_{i \in I}$ of C.
$c_{i} z \leq q_{i}$ are called binding inequalities.
- A vertex of P is the unique element of a 0-dimensional face of P.
- An edge of P is a 1-dimensional face of P.

Polyhedra/Polytopes

- A facet of a d-dimensional polyhedron is a face of dimension $d-1$.
- A d-dimensional polyhedron P is called simple if no point belongs to more than d facets of P.

Best Response Polyhedra/Polytopes

Let a bimatrix game (A, B) is given.

- Best response polyhedron:

$$
\begin{aligned}
& \bar{P}=\left\{(x, v) \in \mathbb{R}^{M} \times \mathbb{R} \mid x \geq \mathbf{0}, B^{\prime} x \leq v \mathbf{1}, \mathbf{1}^{\prime} x=1\right\} \\
& \bar{Q}=\left\{(y, u) \in \mathbb{R}^{N} \times \mathbb{R} \mid A y \leq u \mathbf{1}, y \geq \mathbf{0}, \mathbf{1}^{\prime} y=1\right\}
\end{aligned}
$$

- Assume, without loss of generality, that A and B^{\prime} are nonnegative and have no zero column.
- Best response polytope:

$$
\begin{aligned}
& P=\left\{x \in \mathbb{R}^{M} \mid x \geq \mathbf{0}, B^{\prime} x \leq \mathbf{1}\right\} \\
& Q=\left\{y \in \mathbb{R}^{N} \mid A y \leq \mathbf{1}, y \geq \mathbf{0}\right\}
\end{aligned}
$$

Example

$$
M=\{1,2,3\}, N=\{4,5\}:
$$

$$
A=\left[\begin{array}{ll}
3 & 3 \\
2 & 5 \\
0 & 6
\end{array}\right], \quad B=\left[\begin{array}{ll}
3 & 2 \\
2 & 6 \\
3 & 1
\end{array}\right]
$$

(From von Stengel 2002)

Nash Equilibrium

- For $x \in \Delta^{M}$ and $y \in \Delta^{N}$, write

$$
\begin{array}{ll}
\bar{x}=\underset{j \in N}{\arg \max }\left(B^{\prime} x\right)_{j}, & x^{\circ}=\left\{i \in M \mid x_{i}=0\right\}, \\
\bar{y}=\underset{i \in M}{\arg \max }(A y)_{i}, & y^{\circ}=\left\{j \in N \mid y_{j}=0\right\} .
\end{array}
$$

3. $(x, y) \in \Delta^{M} \times \Delta^{N}$ is a Nash equilibrium if and only if

$$
\operatorname{supp}(x) \subset \bar{y}, \quad \operatorname{supp}(y) \subset \bar{x}
$$

3'. $(x, y) \in \Delta^{M} \times \Delta^{N}$ is a Nash equilibrium if and only if

$$
\bar{y} \cup x^{\circ}=M, \quad \bar{x} \cup y^{\circ}=N,
$$

or equivalently,

$$
\left(\bar{x} \cup x^{\circ}\right) \cup\left(\bar{y} \cup y^{\circ}\right)=M \cup N .
$$

Labels

- $(x, v) \in \bar{P}$ has label $k \in M \cup N$ if
- for $k=j \in N,\left(B^{\prime} x\right)_{j}=v$, so that $j \in \bar{x}$, or
- for $k=i \in M, x_{i}=0$, so that $i \in x^{\circ}$.
- $(y, u) \in \bar{Q}$ has label $k \in M \cup N$ if
- for $k=i \in M,(A y)_{i}=u$, so that $i \in \bar{y}$, or
- for $k=j \in N, y_{j}=0$, so that $j \in y^{\circ}$.
- $((x, v),(y, u)) \in \bar{P} \times \bar{Q}$ is completely labeled if every $k \in M \cup N$ appears as a label of either (x, v) or (y, u).
$3^{\prime \prime} .(x, y) \in \Delta^{M} \times \Delta^{N}$ is a Nash equilibrium if and only if $((x, v),(y, u))$ with $u=\max _{i}(A y)_{i}$ and $v=\max _{j}\left(B^{\prime} x\right)_{j}$ is completely labeled.

Example

$$
M=\{1,2,3\}, N=\{4,5\}:
$$

$$
A=\left[\begin{array}{ll}
3 & 3 \\
2 & 5 \\
0 & 6
\end{array}\right], \quad B=\left[\begin{array}{ll}
3 & 2 \\
2 & 6 \\
3 & 1
\end{array}\right]
$$

Nondegeneracy

- Recall:

A two-player game is nondegenerate if for any $x \in \Delta^{M}$ and any $y \in \Delta^{N}$,

$$
|\bar{x}| \leq|\operatorname{supp}(x)|, \quad|\bar{y}| \leq|\operatorname{supp}(y)|,
$$

or equivalently,

$$
\left|x^{\circ}\right|+|\bar{x}| \leq m, \quad\left|y^{\circ}\right|+|\bar{y}| \leq n,
$$

i.e., every $x \in P(y \in Q)$ has no more than $m(n)$ labels.

- If the game is nondegenerate, then in $P(Q)$, only vertices can have $m(n)$ labels.
\because If a non-vertex point had m labels, it would belong to a face of dimension 1 or larger, and a vertex of it would have additional labels.

Vertex Enumeration

- Input: Nondegenerate bimatrix game
- Output: All Nash equilibria of the game
- Method:

For each vertex x of $P \backslash\{\mathbf{0}\}$ and each vertex y of $Q \backslash\{\mathbf{0}\}$, check that (x, y) is completely labeled.

- An algorithm for vertex enumeration:
"lexicographic reverse search"
- Irs and its Julia wrapper LRSLib.jl
- "IrsNash" (Avis et al. 2010)
- Enumerate only vertices x of $P \backslash\{0\}$ (assuming $|M| \leq|N|$).
- For each vertex x of $P \backslash\{0\}$, find the facet given by the missing labels L of x.
- By nondegeneracy $|L|=n$, and that facet either is empty or consists of a single vertex y.
- In the latter case, (x, y) is a Nash equilibrium.

If $m=n$, the maximum number of vertices of P is approximately $(27 / 4)^{n / 2} \approx 2.6^{n}$.

