Equilibrium Computation for Two-Player Games in Strategic Form II

Daisuke Oyama

Advanced Economic Theory

September 30, 2016
Polyhedra/Polytopes

- An affine combination of $z_1, \ldots, z_k \in \mathbb{R}^n$ is $\sum_{i=1}^{k} \lambda_i z_i$ for some $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ such that $\sum_{i=1}^{k} \lambda_i = 1$.

- It is called a convex combination if $\lambda_i \geq 0$ for all i.

- A subset of \mathbb{R}^n is convex if it is closed under convex combinations.

- z_1, \ldots, z_k are affinely independent if none of these points is an affine combination of the others, or equivalently, $z_1 - z_k, \ldots, z_{k-1} - z_k$ are linearly independent.

- A convex set has dimension d if has $d + 1$, but no more, affinely independent points.
Polyhedra/Polytopes

- A polyhedron P in \mathbb{R}^d is a set $\{z \in \mathbb{R}^d \mid Cz \leq q\}$ for some matrix C and vector q.

 It is called full-dimensional if it has dimension d.

- A polyhedron is called a polytope if it is bounded.

- A face of a polyhedron P is a set $\{z \in P \mid c'z = q_0\}$ for some $c \in \mathbb{R}^d$ and $q_0 \in \mathbb{R}$ such that the inequality $c'z \leq q_0$ holds for all $z \in P$.

- Any nonempty face F of P is written as $\{z \in P \mid c_i z = q_i, \ i \in I\}$ for some rows $\{c_i\}_{i \in I}$ of C.

 $c_i z \leq q_i$ are called binding inequalities.

- A vertex of P is the unique element of a 0-dimensional face of P.

- An edge of P is a 1-dimensional face of P.
A facet of a d-dimensional polyhedron is a face of dimension $d - 1$.

A d-dimensional polyhedron P is called simple if no point belongs to more than d facets of P.
Best Response Polyhedra/Polytopes

Let a bimatrix game \((A, B)\) is given.

- **Best response polyhedron:**

 \[
 \overline{P} = \{(x, v) \in \mathbb{R}^M \times \mathbb{R} \mid x \geq 0, B'x \leq v1, 1'x = 1\}, \\
 \overline{Q} = \{(y, u) \in \mathbb{R}^N \times \mathbb{R} \mid Ay \leq u1, y \geq 0, 1'y = 1\}.
 \]

- Assume, without loss of generality, that \(A\) and \(B'\) are nonnegative and have no zero column.

- **Best response polytope:**

 \[
 P = \{x \in \mathbb{R}^M \mid x \geq 0, B'x \leq 1\}, \\
 Q = \{y \in \mathbb{R}^N \mid Ay \leq 1, y \geq 0\}.
 \]
Example

\[M = \{1, 2, 3\}, \quad N = \{4, 5\} : \]

\[
A = \begin{bmatrix} 3 & 3 \\ 2 & 5 \\ 0 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 2 \\ 2 & 6 \\ 3 & 1 \end{bmatrix}.
\]

The left picture in Fig. 3.1 shows \(\bar{Q} \) for our example, for \(0 \leq y^4 \leq 1 \) which uniquely determines \(y^5 \) as \(1 - y^4 \). The circled numbers indicate the facets of \(\bar{Q} \), which are either the strategies \(i \in M \) of the other player 1 or the own strategies \(j \in N \). Facets 1, 2, 3 of player 1 indicate his best responses together with his expected payoff \(u \). For example, 1 is a best response when \(y^4 \geq 2/3 \). Facets 4 and 5 of player 2 tell when the respective own strategy has probability zero, namely \(y^4 = 0 \) or \(y^5 = 0 \).

We say a point \((y, u)\) of \(\bar{Q} \) has label \(k \in M \cup N \) if the \(k \)th inequality in the definition of \(\bar{Q} \) is binding, which for \(k = i \in M \) is the \(i \)th binding inequality \(\sum_{j \in N} a_{ij} y_j = u \) (meaning \(i \) is a best response to \(y \)), or for \(k = j \in N \) the binding inequality \(y_j = 0 \). In the example, \((y^4, y^5, u) = (2/3, 1/3, 3)\) has labels 1 and 2, so rows 1 and 2 are best responses to \(y^4 \) with expected payoff 3 to player 1. The labels of a point \((x, v)\) of \(P \) are defined correspondingly: It has label \(i \in M \) if \(x^i = 0 \), and label \(j \in N \) if \(\sum_{i \in M} b_{ij} x^i = v \). With these labels, an equilibrium is a pair \((x, y)\) of mixed strategies so that with the corresponding expected payoffs \(v \) and \(u \), the pair \((x, v) , (y, u)\) in \(P \times Q \) is completely labeled, which means that every label \(k \in M \cup N \) appears either as a label of \((x, v)\) or of \((y, u)\). This is equivalent to the best response condition (3.2): A missing label would mean a pure strategy of a player, for example \(i \) of player 1, that does not have probability zero, so \(x^i > 0 \), and is also not a best response, since \(\sum_{j \in N} a_{ij} y_j < u \), because the respective inequality \(i \) is not binding in \(P \) or \(Q \). But this is exactly when the best response condition is violated. Conversely, if every label appears in \(P \) or \(Q \), then each pure
These bijections are not linear. However, they preserve the face incidences since a binding inequality in H_1 corresponds to a binding inequality in P_1 and vice versa. In particular, vertices have the same labels defined by the binding inequalities, which are some of the $m+n$ inequalities defining P_1 and P_2 in (2.18).

Figure 2.5. The map $H_2 \rightarrow P_2$, $\left(y_j, u \right) \mapsto y_j \cdot \left(\frac{1}{u} \right)$ as a projective transformation with projection point $(0,0)$. The left-hand side shows this for a single component y_j of y, the right-hand side shows how P_2 arises in this way from H_2 in the example (2.15).

Figure 2.5 shows a geometric interpretation of the bijection $\left(y, u \right) \mapsto y \cdot \left(\frac{1}{u} \right)$ as a projective transformation (see Ziegler, 1995, Sect. 2.6). On the left-hand side, the pair $\left(y_j, u \right)$ is shown as part of $\left(y, u \right)$ in H_2 for any component y_j of y. The line connecting this pair to $(0,0)$ contains the point $y_j' = y_j / u$. Thus, $P_2 \times \{1\}$ is the intersection of the lines connecting any $\left(y, u \right)$ in H_2 with $(0,0)$ in $\mathbb{R}^{m+n} \times \{1\}$.

The vertices 0 of P_1 and P_2 do not arise as such projections, but correspond to H_1 and H_2 “at infinity”.

2.5. Complementary pivoting

Traversing a polyhedron along its edges has a simple algebraic implementation known as pivoting. The constraints defining the polyhedron are thereby represented as linear equations with nonnegative variables. For $P_1 \times P_2$, these have the form

$$Ay + r = 1$$

$$Bx + s = 1$$

(2.20)

(From von Stengel 2002)
Nash Equilibrium

- For $x \in \Delta^M$ and $y \in \Delta^N$, write

$$\bar{x} = \arg\max_{j \in N} (B'x)_j, \quad x^o = \{i \in M \mid x_i = 0\},$$

$$\bar{y} = \arg\max_{i \in M} (Ay)_i, \quad y^o = \{j \in N \mid y_j = 0\}.$$

3. $(x, y) \in \Delta^M \times \Delta^N$ is a Nash equilibrium if and only if

$$\text{supp}(x) \subset \bar{y}, \quad \text{supp}(y) \subset \bar{x}.$$

3'. $(x, y) \in \Delta^M \times \Delta^N$ is a Nash equilibrium if and only if

$$\bar{y} \cup x^o = M, \quad \bar{x} \cup y^o = N,$$

or equivalently,

$$(\bar{x} \cup x^o) \cup (\bar{y} \cup y^o) = M \cup N.$$
Labels

- \((x, v) \in \overline{P}\) has label \(k \in M \cup N\) if
 - for \(k = j \in N\), \((B'x)_j = v\), so that \(j \in \bar{x}\), or
 - for \(k = i \in M\), \(x_i = 0\), so that \(i \in x^\circ\).

- \((y, u) \in \overline{Q}\) has label \(k \in M \cup N\) if
 - for \(k = i \in M\), \((Ay)_i = u\), so that \(i \in \bar{y}\), or
 - for \(k = j \in N\), \(y_j = 0\), so that \(j \in y^\circ\).

- \(((x, v), (y, u)) \in \overline{P} \times \overline{Q}\) is completely labeled if every \(k \in M \cup N\) appears as a label of either \((x, v)\) or \((y, u)\).

3′′. \((x, y) \in \Delta^M \times \Delta^N\) is a Nash equilibrium if and only if \(((x, v), (y, u))\) with \(u = \max_i (Ay)_i\) and \(v = \max_j (B'x)_j\) is completely labeled.
Example

\[M = \{1, 2, 3\}, \quad N = \{4, 5\}: \]

\[
A = \begin{bmatrix} 3 & 3 \\ 2 & 5 \\ 0 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 2 \\ 2 & 6 \\ 3 & 1 \end{bmatrix}.
\]

Fig. 3.2. The best response polytopes \(P \) (with vertices \(a, b, c, d, e \)) and \(Q \) for the game in (3.3). The arrows describe the Lemke–Howson algorithm, see Section 3.4.
Nondegeneracy

- Recall:

 A two-player game is nondegenerate if for any \(x \in \Delta^M \) and any \(y \in \Delta^N \),

 \[
 |\bar{x}| \leq |\operatorname{supp}(x)|, \quad |\bar{y}| \leq |\operatorname{supp}(y)|,
 \]

 or equivalently,

 \[
 |x^\circ| + |\bar{x}| \leq m, \quad |y^\circ| + |\bar{y}| \leq n,
 \]

 i.e., every \(x \in P \) \((y \in Q) \) has no more than \(m \) \((n) \) labels.

- If the game is nondegenerate, then in \(P \) \((Q) \), only vertices can have \(m \) \((n) \) labels.

 \[\because\] If a non-vertex point had \(m \) labels, it would belong to a face of dimension 1 or larger, and a vertex of it would have additional labels.
Vertex Enumeration

- Input: Nondegenerate bimatrix game
- Output: All Nash equilibria of the game
- Method:
 For each vertex \(x\) of \(P \setminus \{0\}\) and each vertex \(y\) of \(Q \setminus \{0\}\), check that \((x, y)\) is completely labeled.
An algorithm for vertex enumeration:

“lexicographic reverse search”

- *lrs* and its Julia wrapper *LRSLib.jl*

- “*lrsNash*” (Avis et al. 2010)
 - Enumerate only vertices x of $P \setminus \{0\}$ (assuming $|M| \leq |N|$).
 - For each vertex x of $P \setminus \{0\}$, find the facet given by the missing labels L of x.
 - By nondegeneracy $|L| = n$, and that facet either is empty or consists of a single vertex y.
 - In the latter case, (x, y) is a Nash equilibrium.

If $m = n$, the maximum number of vertices of P is approximately $(27/4)^{n/2} \approx 2.6^n$.