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Polyhedra/Polytopes

▶ An affine combination of z1, . . . , zk ∈ Rn is
∑k

i=1 λizi for

some λ1, . . . , λk ∈ R such that
∑k

i=1 λi = 1.

▶ It is called a convex combination if λi ≥ 0 for all i.

▶ A subset of Rn is convex if it is closed under convex
combinations.

▶ z1, . . . , zk are affinely independent if none of these points is
an affine combination of the others, or equivalently,
z1 − zk, . . . , zk−1 − zk are linearly independent.

▶ A convex set has dimension d if has d+ 1, but no more,
affinely independent points.
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Polyhedra/Polytopes

▶ A polyhedron P in Rd is a set {z ∈ Rd | Cz ≤ q} for some
matrix C and vector q.

It is called full-dimensional if it has dimension d.

▶ A polyhedron is called a polytope if it is bounded.

▶ A face of a polyhedron P is a set {z ∈ P | c′z = q0} for some
c ∈ Rd and q0 ∈ R such that the inequality c′z ≤ q0 holds for
all z ∈ P .

▶ Any nonempty face F of P is written as
{z ∈ P | ciz = qi, i ∈ I} for some rows {ci}i∈I of C.

ciz ≤ qi are called binding inequalities.

▶ A vertex of P is the unique element of a 0-dimensional face of
P .

▶ An edge of P is a 1-dimensional face of P .
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Polyhedra/Polytopes

▶ A facet of a d-dimensional polyhedron is a face of dimension
d− 1.

▶ A d-dimensional polyhedron P is called simple if no point
belongs to more than d facets of P .
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Best Response Polyhedra/Polytopes

Let a bimatrix game (A,B) is given.

▶ Best response polyhedron:

P = {(x, v) ∈ RM × R | x ≥ 0, B′x ≤ v1, 1′x = 1},
Q = {(y, u) ∈ RN × R | Ay ≤ u1, y ≥ 0, 1′y = 1}.

▶ Assume, without loss of generality, that A and B′ are
nonnegative and have no zero column.

▶ Best response polytope:

P = {x ∈ RM | x ≥ 0, B′x ≤ 1},
Q = {y ∈ RN | Ay ≤ 1, y ≥ 0}.
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Example
M = {1, 2, 3}, N = {4, 5}:

A =

3 3
2 5
0 6

 , B =

3 2
2 6
3 1

 .

10 B. von Stengel

The left picture in Fig. 3.1 shows Q for our example, for 0 ≤ y4 ≤ 1 which
uniquely determines y5 as 1 − y4. The circled numbers indicate the facets
of Q, which are either the strategies i ∈ M of the other player 1 or the
own strategies j ∈ N . Facets 1, 2, 3 of player 1 indicate his best responses
together with his expected payoff u. For example, 1 is a best response when
y4 ≥ 2/3. Facets 4 and 5 of player 2 tell when the respective own strategy
has probability zero, namely y4 = 0 or y5 = 0.
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Fig. 3.1. Best reponse polyhedron Q for strategies of player 2, and corresponding
polytope Q, which has vertices 0, p, q, r, s.

We say a point (y, u) of Q has label k ∈ M ∪N if the kth inequality in the
definition of Q is binding, which for k = i ∈ M is the ith binding inequalityP

j∈N aijyj = u (meaning i is a best response to y), or for k = j ∈ N

the binding inequality yj = 0. In the example, (y4, y5, u) = (2/3, 1/3, 3) has
labels 1 and 2, so rows 1 and 2 are best responses to y with expected payoff 3
to player 1. The labels of a point (x, v) of P are defined correspondingly: It
has label i ∈ M if xi = 0, and label j ∈ N if

P
i∈M bijxi = v. With these

labels, an equilibrium is a pair (x, y) of mixed strategies so that with the
corresponding expected payoffs v and u, the pair ((x, v), (y, u)) in P ×Q is
completely labeled, which means that every label k ∈ M∪N appears either as
a label of (x, v) or of (y, u). This is equivalent to the best response condition
(3.2): A missing label would mean a pure strategy of a player, for example i

of player 1, that does not have probability zero, so xi > 0, and is also not a
best response, since

P
j∈N aijyj < u, because the respective inequality i is

not binding in P or Q. But this is exactly when the best response condition
is violated. Conversely, if every label appears in P or Q, then each pure
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These bijections are not linear. However, they preserve the face incidences since a binding
inequality in H1 corresponds to a binding inequality in P1 and vice versa. In particular,
vertices have the same labels defined by the binding inequalities, which are some of the
m+n inequalities defining P1 and P2 in (2.18).
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Figure 2.5. The map H2→ P2, (y,u) �→ y� = y · (1/u) as a projective transformation with
projection point (0,0). The left-hand side shows this for a single component
y j of y, the right-hand side shows how P2 arises in this way from H2 in the
example (2.15).

Figure 2.5 shows a geometric interpretation of the bijection (y,u) �→ y · (1/u) as
a projective transformation (see Ziegler, 1995, Sect. 2.6). On the left-hand side, the pair
(y j,u) is shown as part of (y,u) in H2 for any component y j of y. The line connecting this
pair to (0,0) contains the point (y�j,1) with y�j = y j/u. Thus, P2×{1} is the intersection of
the lines connecting any (y,u) in H2 with (0,0) in IRN×IR with the set {(y�,1) | y� ∈ IRN}.
The vertices 0 of P1 and P2 do not arise as such projections, but correspond to H1 and H2
“at infinity”.

2.5. Complementary pivoting

Traversing a polyhedron along its edges has a simple algebraic implementation known
as pivoting. The constraints defining the polyhedron are thereby represented as linear
equations with nonnegative variables. For P1×P2, these have the form

Ay�+ r = 1M
B�x� + s= 1N

(2.20)

13

(From von Stengel 2002)
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Nash Equilibrium

▶ For x ∈ ∆M and y ∈ ∆N , write

x̄ = argmax
j∈N

(B′x)j , x◦ = {i ∈ M | xi = 0},

ȳ = argmax
i∈M

(Ay)i, y◦ = {j ∈ N | yj = 0}.

3. (x, y) ∈ ∆M ×∆N is a Nash equilibrium if and only if

supp(x) ⊂ ȳ, supp(y) ⊂ x̄.

3′. (x, y) ∈ ∆M ×∆N is a Nash equilibrium if and only if

ȳ ∪ x◦ = M, x̄ ∪ y◦ = N,

or equivalently,

(x̄ ∪ x◦) ∪ (ȳ ∪ y◦) = M ∪N.
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Labels

▶ (x, v) ∈ P has label k ∈ M ∪N if

▶ for k = j ∈ N , (B′x)j = v, so that j ∈ x̄, or

▶ for k = i ∈ M , xi = 0, so that i ∈ x◦.

▶ (y, u) ∈ Q has label k ∈ M ∪N if

▶ for k = i ∈ M , (Ay)i = u, so that i ∈ ȳ, or

▶ for k = j ∈ N , yj = 0, so that j ∈ y◦.

▶ ((x, v), (y, u)) ∈ P ×Q is completely labeled if every
k ∈ M ∪N appears as a label of either (x, v) or (y, u).

3′′. (x, y) ∈ ∆M ×∆N is a Nash equilibrium if and only if
((x, v), (y, u)) with u = maxi(Ay)i and v = maxj(B

′x)j is
completely labeled.
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Example
M = {1, 2, 3}, N = {4, 5}:

A =

3 3
2 5
0 6

 , B =

3 2
2 6
3 1

 .
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Fig. 3.2. The best response polytopes P (with vertices 0, a, b, c, d, e) and Q for the
game in (3.3). The arrows describe the Lemke–Howson algorithm, see Section 3.4.

labels 1, 2, 3, and (written as x�) vertex a = (1/3, 0, 0) with labels 2, 3, 4,
vertex b = (2/7, 1/14, 0) with labels 3, 4, 5, vertex c = (0, 1/6, 0) with labels
1, 3, 5, vertex d = (0, 1/8, 1/4) with labels 1, 4, 5, and e = (0, 0, 1/3) with
labels 1, 2, 4. Note that the vectors alone show only the “own” labels as
the unplayed own strategies; the information about the other player’s best
responses is important as well. The following three completely labeled vertex
pairs define the Nash equilibria of the game, which we already found earlier:
the pure strategy equilibrium (a, s), and the mixed equilibria (b, r) and (d, q).
The vertices c and e of P , and p of Q, are not part of an equilibrium.

Nondegeneracy of a bimatrix game (A,B) can be stated in terms of the
polytopes P and Q in (3.6) as follows: no point in P has more than m labels,
and no point in Q has more than n labels. (If x ∈ P and x has support of size
k and L is the set of labels of x, then |L ∩M | = m− k, so |L| > m implies
x has more than k best responses in L ∩ N .) Then P and Q are simple
polytopes, because a point of P , say, that is on more than m facets would
have more than m labels. Even if P and Q are simple polytopes, the game
can be degenerate if the description of a polytope is redundant in the sense
that some inequality can be omitted, but nevertheless is sometimes binding.
This occurs if a player has a pure strategy that is weakly dominated by or
payoff equivalent to some other mixed strategy. Non-simple polytopes or
redundant inequalities of this kind do not occur for “generic” payoffs; this
illustrates the assumption of nondegeneracy from a geometric viewpoint. (A
strictly dominated strategy may occur generically, but it defines a redundant
inequality that is never binding, so this does not lead to a degenerate game.)
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Nondegeneracy

▶ Recall:

A two-player game is nondegenerate if for any x ∈ ∆M and
any y ∈ ∆N ,

|x̄| ≤ |supp(x)|, |ȳ| ≤ |supp(y)|,

or equivalently,

|x◦|+ |x̄| ≤ m, |y◦|+ |ȳ| ≤ n,

i.e., every x ∈ P (y ∈ Q) has no more than m (n) labels.

▶ If the game is nondegenerate, then in P (Q), only vertices can
have m (n) labels.

∵ If a non-vertex point had m labels, it would belong to a face of

dimension 1 or larger, and a vertex of it would have additional labels.
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Vertex Enumeration

▶ Input: Nondegenerate bimatrix game

▶ Output: All Nash equilibria of the game

▶ Method:

For each vertex x of P \ {0} and each vertex y of Q \ {0},
check that (x, y) is completely labeled.
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▶ An algorithm for vertex enumeration:

“lexicographic reverse search”

▶ lrs and its Julia wrapper LRSLib.jl

▶ “lrsNash” (Avis et al. 2010)

▶ Enumerate only vertices x of P \ {0} (assuming |M | ≤ |N |).
▶ For each vertex x of P \ {0}, find the facet given by the

missing labels L of x.

▶ By nondegeneracy |L| = n, and that facet either is empty or
consists of a single vertex y.

▶ In the latter case, (x, y) is a Nash equilibrium.

If m = n, the maximum number of vertices of P is
approximately (27/4)n/2 ≈ 2.6n.
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