Equilibrium Computation for Two-Player Games in Strategic Form III

Daisuke Oyama

Advanced Economic Theory

October 4, 2016

Reference

 von Stengel, B. (2007). "Equilibrium Computation for Two-Player Games in Strategic and Extensive Form," Chapter 3, Algorithmic Game Theory.

Best Response Polyhedra/Polytopes

Let a bimatrix game (A, B) is given.

Best response polyhedra:

$$\overline{P} = \{ (x, v) \in \mathbb{R}^M \times \mathbb{R} \mid x \ge \mathbf{0}, \ B'x \le v\mathbf{1}, \ \mathbf{1}'x = 1 \}, \overline{Q} = \{ (y, u) \in \mathbb{R}^N \times \mathbb{R} \mid Ay \le u\mathbf{1}, \ y \ge \mathbf{0}, \ \mathbf{1}'y = 1 \}.$$

- ► Assume, without loss of generality, that A and B' are nonnegative and have no zero column.
- Best response polytopes:

$$P = \{ x \in \mathbb{R}^M \mid x \ge \mathbf{0}, \ B'x \le \mathbf{1} \}, Q = \{ y \in \mathbb{R}^N \mid Ay \le \mathbf{1}, \ y \ge \mathbf{0} \}.$$

Example

$$M = \{1, 2, 3\}, N = \{4, 5\}:$$
$$A = \begin{bmatrix} 3 & 3\\ 2 & 5\\ 0 & 6 \end{bmatrix}, B = \begin{bmatrix} 3 & 2\\ 2 & 6\\ 3 & 1 \end{bmatrix}.$$

Labels

•
$$x \in P$$
 has label $k \in M \cup N$ if
• for $k = j \in N$, $(B'x)_j = 1$, or
• for $k = i \in M$, $x_i = 0$.
• $y \in Q$ has label $k \in M \cup N$ if

• for $k = i \in M$, $(Ay)_i = 1$, or

• for
$$k = j \in N$$
, $y_j = 0$.

- (x,y) ∈ P × Q is completely labeled if every k ∈ M ∪ N appears as a label of either x or y.
- $(\mathbf{0}, \mathbf{0}) \in P \times Q$ is completely labeled.
- 3". $(x,y) \in P \times Q$, $(x,y) \neq (0,0)$, is an ("un-normalized") Nash equilibrium if and only if (x,y) is completely labeled.
 - $(\mathbf{0}, \mathbf{0}) \in P \times Q$: "artificial equilibrium"

Example

$$M = \{1, 2, 3\}, N = \{4, 5\}:$$
$$A = \begin{bmatrix} 3 & 3\\ 2 & 5\\ 0 & 6 \end{bmatrix}, B' = \begin{bmatrix} 3 & 2 & 3\\ 2 & 6 & 1 \end{bmatrix}.$$

► *P*:

$$3x_1 + 2x_2 + 3x_3 \le 1$$

$$2x_1 + 6x_2 + 1x_3 \le 1$$
(4)
(5)

► Q:

$$\begin{array}{ll} 3y_4 + 3y_5 \leq 1 & (1) \\ 2y_4 + 5y_5 \leq 1 & (2) \\ 6y_5 \leq 1 & (3) \end{array}$$

Example

$$M = \{1, 2, 3\}, N = \{4, 5\}:$$

$$A = \begin{bmatrix} 3 & 3 \\ 2 & 5 \\ 0 & 6 \end{bmatrix}, B' = \begin{bmatrix} 3 & 2 & 3 \\ 2 & 6 & 1 \end{bmatrix}.$$
(2) (left)
$$P = \begin{bmatrix} 4 & 5 \\ 2 & 6 & 1 \end{bmatrix}.$$
(3) (bottom)
$$y_{5} = \begin{bmatrix} 3 & 2 & 3 \\ 2 & 6 & 1 \end{bmatrix}.$$

Lemke-Howson

Start with the artificial equilibrium $(\mathbf{0},\mathbf{0})$ (12)(3)(4)(5)

1. $(\mathbf{0}, \mathbf{0}) \rightarrow (c, \mathbf{0})$ 135 45

Drop label 2 in P for example. Label 5 is picked up.

2.
$$(c, \mathbf{0}) \to (c, p)$$
 135 34

Drop label 5 in Q. Label 3 is picked up.

3.
$$(c,p) \to (d,p)$$
 (1.45) (3.4)

Drop label 3 in P. Label 4 is picked up.

4.
$$(d, p) \to (d, q)$$
 145 **2**3

Drop label 4 in Q. Label 2 is picked up.

5. (d,q) is completely labeled, and so it is a Nash equilibrium (after normalization).

Existence, Finiteness, Oddness in Nondegenerate Games

- For k ∈ M ∪ N,
 (x, y) ∈ P × Q is k-almost completely labeled
 if every label in M ∪ N \ {k} appears a label of x or y.
- Suppose that the game is nondegenerate.
- Fix any $k \in M \cup N$.

Let V_k be the set of k-almost completely labeled vertex pairs.

- $V_k \neq \emptyset$ as $(\mathbf{0}, \mathbf{0}) \in V_k$.
- Nash equilibria are all contained in V_k .

Existence, Finiteness, Oddness in Nondegenerate Games

• In V_k , define an edge (x, y)-(x', y') if

$$\blacktriangleright \ |L(x)\cap L(x')|=m-1 \text{ and } y=y'\text{, or }$$

•
$$x = x'$$
 and $|L(y) \cap L(y')| = n - 1$.

- If $(x, y) \in V_k$ is completely labeled, then its degree is one.
- ▶ If $(x, y) \in V_k$ is such that $L(x) \cap L(y) = \{k\}$, then its degree is two.
- Therefore, the graph only has paths and cycles, and there are an even number of endpoints.
- ▶ With (0,0) excluded, there are an odd number of Nash equilibria.

In particular, there is at least one Nash equilibrium.

Introduce slack variables:

 $x \geq \mathbf{0} \text{, } s \geq \mathbf{0} \text{, } r \geq \mathbf{0} \text{, } y \geq \mathbf{0} \text{.}$

• A solution (x, s, r, y) is completely labeled if and only if

$$x'r = 0, \quad y's = 0.$$

For example:

(x,s) = (0,0,0,1,1), (r,y) = (1,1,1,0,0) is a solution, where $s_4, s_5 > 0$ and $r_1, r_2, r_3 > 0$ are called *basic variables*, while $x_1, x_2, x_3 = 0$ and $y_4, y_5 = 0$ *nonbasic variables*.

Pivoting is a change of the basis where a nonbasic variable enters and a basic variable leaves the set of basic variables while satisfying the nonnegativity constraint.

► 0 :						
4	$3x_1$	$+2x_{2}$	$+3x_{3}$	$+ s_4$		= 1
5	$2x_1$	$+ 6x_2$	$+x_{3}$		$+ s_5$	= 1
► c:						
4	$\frac{7}{3}x_1$		$+\frac{8}{3}x_{3}$	$+ s_4$	$-\frac{1}{3}s_{5}$	$=\frac{2}{3}$
2	$\frac{1}{3}x_1$	$+x_{2}$	$+\frac{1}{6}x_{3}$		$+\frac{1}{6}s_{5}$	$=\frac{1}{6}$
► d:						
3	$\frac{7}{8}x_1$		$+ x_3$	$+\frac{3}{8}s_{4}$	$-\frac{1}{8}s_5$	$=\frac{1}{4}$
2	$\frac{3}{16}x_1$	$+x_{2}$		$-\frac{1}{16}s_{4}$	$+\frac{3}{16}s_5$	$=\frac{1}{8}$

► 0 :						
1	r_1			$+ 3y_4$	$+ 3y_5$	= 1
2		$+ r_{2}$		$+ 2y_4$	$+5y_{5}$	= 1
3			$+ r_{3}$		$+ 6y_{5}$	= 1
► p:						
1	r_1		$-\frac{1}{2}r_{3}$	$+ 3y_{4}$		$=\frac{1}{2}$
2		$+ r_{2}$	$-\frac{5}{6}r_{3}$	$+ 2y_4$		$=\frac{1}{6}$
5			$+\frac{1}{6}r_{3}$		$+ y_5$	$=\frac{1}{6}$
► q:						
1	r_1	$-\frac{3}{2}r_{2}$	$+\frac{3}{4}r_{3}$			$=\frac{1}{4}$
4		$+\frac{1}{2}r_{2}$	$-\frac{5}{12}r_{3}$	$+ y_4$		$=\frac{1}{12}$
5			$+\frac{1}{6}r_{3}$		$+ y_5$	$=\frac{1}{6}$

Integer Pivoting

- Computation using floating-point numbers yields rounding errors, and with a large number of pivoting steps they may accumulate to be a large amount.
- If the input data consist of integers, exact computation is possible by *integer pivoting*.

• pivot element = 6:

	x_1	x_2	x_3	s_4	s_5	
4	3	2	3	1	0	1
5	2	<u>6</u>	1	0	1	1

Multiply all rows except the pivot row by the pivot element:

	x_1	x_2	x_3	s_4	s_5	
4	18	12	18	6	0	6
5	2	6	1	0	1	1

Subtract suitable multiples of the pivot row from the other rows to obtain zero entries in the pivot column:

• pivot element = 6:

	r_1	r_2	r_3	y_4	y_5	
1	1	0	0	3	3	1
2	0	1	0	2	5	1
3	0	0	1	0	<u>6</u>	1

Multiply all rows except the pivot row by the pivot element:

	r_1	r_2	r_3	y_4	y_5	
1	6	0	0	18	18	6
2	0	6	0	12	30	6
3	0	0	1	0	6	1

Subtract suitable multiples of the pivot row from the other rows to obtain zero entries in the pivot column:

	r_1	r_2	r_3	y_4	y_5	
1	6	0	-3	18	0	3
2	0	6	-5	12	0	1
3	0	0	1	0	6	1

• pivot element = 16:

	x_1	x_2	x_3	s_4	s_5	
4	14	0	<u>16</u>	6	-2	4
2	2	6	1	0	1	1

Multiply all rows except the pivot row by the pivot element:

	x_1	x_2	x_3	s_4	s_5	
4	14	0	<u>16</u>	6	-2	4
2	32	96	16	0	16	16

Subtract suitable multiples of the pivot row from the other rows to obtain zero entries in the pivot column:

All rows except the pivot row can be divided by the previous pivot element 6:

	x_1	x_2	x_3	s_4	s_5	
4	14	0	<u>16</u>	6	-2	4
2	3	16	0	-1	3	2

• pivot element = 12:

	r_1	r_2	r_3	y_4	y_5	
1	6	0	-3	18	0	3
2	0	6	-5	<u>12</u>	0	1
5	0	0	1	0	6	1

Multiply all rows except the pivot row by the pivot element:

	r_1	r_2	r_3	y_4	y_5	
1	72	0	-36	216	0	36
2	0	6	-5	12	0	1
5	0	0	12	0	72	12

Subtract suitable multiples of the pivot row from the other rows to obtain zero entries in the pivot column:

	r_1	r_2	r_3	y_4	y_5	
1	72	-108	54	0	0	18
2	0	6	-5	12	0	1
5	0	0	12	0	72	12

All rows except the pivot row can be divided by the previous pivot element 6:

	r_1	r_2	r_3	y_4	y_5	
1	12	-18	9	0	0	3
2	0	6	-5	12	0	1
5	0	0	2	0	12	2

Degenerate Games

The game is nondegenerate if and only if in any basic feasible solution, the basic variables have positive values.

Therefore, for nondegenerate games, the minimum ratio test has a unique minimizer.

- If the game is degenerate, the minimum ratio test may have more than one minimizers.
- In this case, arbitrary tie breaking may lead to cycling, so that the algorithm falls into an infinite loop.
- The "lexico-minimum ratio test" is to avoid cycling.
- Suppose that the game is degenerate.

Instead of considering the original system $B^\prime x + s = \mathbf{1},$ consider

$$B'x + s = \mathbf{1} + (\varepsilon^1, \dots, \varepsilon^n)'$$

with sufficiently small $\varepsilon > 0$.

 After any number of pivoting steps, the system can be written as

$$CB'x + Cs = C\mathbf{1} + C(\varepsilon^1, \dots, \varepsilon^n)',$$

where C is the inverse of a basic matrix.

- ► Write c_{i0} + c_{i1}ε¹ + · · · + c_{in}εⁿ for the *i*th entry of the vector in the right hand, and let d_i be the *i*th row of the pivoting column.
- Lexico-minimum ratio test:
 - Choose the minimizers of c_{i0}/d_i .
 - If more than one, among them choose the minimizers of c_{i1}/d_i .
 - ▶ · · ·
- c_{ik} appears as the coefficient of the slack variable s_k .

Example

(From Avis et al. 2010)

Complementary Pivoting with Lexico-Minimum Test

Initial pivot = 1► **0**: $4 \ 3x_1$ $+2x_2 + 3x_3 + s_4$ $= 1 + \varepsilon$ $+s_5 = 1+\varepsilon^2$ 5 $3x_1$ + $6x_2$ + x_3 ► a: $-4x_2$ $+2x_3$ $+s_4$ $-s_5$ $=0+\varepsilon-\varepsilon^2$ 4 1 x_1 + 2 x_2 + $\frac{1}{2}x_3$ + $\frac{1}{2}s_5$ = $\frac{1}{2} + \frac{1}{2}\varepsilon^2$ ► a: $-2x_2 + x_3 + \frac{1}{2}s_4 - \frac{1}{2}s_5 = 0 + \frac{1}{2}\varepsilon - \frac{1}{2}\varepsilon^2$ 3 1 x_1 $+\frac{8}{3}x_2$ $-\frac{1}{6}s_4$ $+\frac{1}{2}s_5$ $=\frac{1}{2}-\frac{1}{6}\varepsilon+\frac{1}{2}\varepsilon^2$ Complementary Pivoting with Lexico-Minimum Test

► **0**: 1 r_1 $+3y_4 + 3y_5 = 1$ 2 $+2y_4 + 5y_5 = 1$ $+ r_{2}$ $+r_3 + 6y_5 = 1$ 3 ▶ *p*: $1 r_1$ $-\frac{1}{2}r_3 + 3y_4$ $=\frac{1}{2}$ $+r_2 - \frac{5}{6}r_3 + 2y_4 = \frac{1}{6}$ $\mathbf{2}$ $+\frac{1}{6}r_3 + y_5 = \frac{1}{6}$ 5► q: 1 $-\frac{3}{2}r_2 + \frac{3}{4}r_3$ $=\frac{1}{4}$ r_1 $+\frac{1}{2}r_2 - \frac{5}{12}r_3 + y_4$ $=\frac{1}{12}$ 4 $+\frac{1}{6}r_3 + y_5 = \frac{1}{6}$ 5

Complementary Pivoting with Lexico-Minimum Test

Examples of Cycles by "Ad Hoc" Tie Breaking Rules

$$M = \{1, 2, 3\}, N = \{4, 5, 6\}$$

Tie breaking that picks the variable with the smallest row index in the tableau leads to cycling:

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \quad B' = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Tie breaking that picks the variable with the smallest variable index leads to cycling:

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \quad B' = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$