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Best Response Polyhedra/Polytopes

Let a bimatrix game (A,B) is given.

▶ Best response polyhedra:

P = {(x, v) ∈ RM × R | x ≥ 0, B′x ≤ v1, 1′x = 1},
Q = {(y, u) ∈ RN × R | Ay ≤ u1, y ≥ 0, 1′y = 1}.

▶ Assume, without loss of generality, that A and B′ are
nonnegative and have no zero column.

▶ Best response polytopes:

P = {x ∈ RM | x ≥ 0, B′x ≤ 1},
Q = {y ∈ RN | Ay ≤ 1, y ≥ 0}.
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Example
M = {1, 2, 3}, N = {4, 5}:

A =

3 3
2 5
0 6

 , B =

3 2
2 6
3 1

 .
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The left picture in Fig. 3.1 shows Q for our example, for 0 ≤ y4 ≤ 1 which
uniquely determines y5 as 1 − y4. The circled numbers indicate the facets
of Q, which are either the strategies i ∈ M of the other player 1 or the
own strategies j ∈ N . Facets 1, 2, 3 of player 1 indicate his best responses
together with his expected payoff u. For example, 1 is a best response when
y4 ≥ 2/3. Facets 4 and 5 of player 2 tell when the respective own strategy
has probability zero, namely y4 = 0 or y5 = 0.
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Fig. 3.1. Best reponse polyhedron Q for strategies of player 2, and corresponding
polytope Q, which has vertices 0, p, q, r, s.

We say a point (y, u) of Q has label k ∈ M ∪N if the kth inequality in the
definition of Q is binding, which for k = i ∈ M is the ith binding inequalityP

j∈N aijyj = u (meaning i is a best response to y), or for k = j ∈ N

the binding inequality yj = 0. In the example, (y4, y5, u) = (2/3, 1/3, 3) has
labels 1 and 2, so rows 1 and 2 are best responses to y with expected payoff 3
to player 1. The labels of a point (x, v) of P are defined correspondingly: It
has label i ∈ M if xi = 0, and label j ∈ N if

P
i∈M bijxi = v. With these

labels, an equilibrium is a pair (x, y) of mixed strategies so that with the
corresponding expected payoffs v and u, the pair ((x, v), (y, u)) in P ×Q is
completely labeled, which means that every label k ∈ M∪N appears either as
a label of (x, v) or of (y, u). This is equivalent to the best response condition
(3.2): A missing label would mean a pure strategy of a player, for example i

of player 1, that does not have probability zero, so xi > 0, and is also not a
best response, since

P
j∈N aijyj < u, because the respective inequality i is

not binding in P or Q. But this is exactly when the best response condition
is violated. Conversely, if every label appears in P or Q, then each pure
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Labels
▶ x ∈ P has label k ∈ M ∪N if

▶ for k = j ∈ N , (B′x)j = 1, or

▶ for k = i ∈ M , xi = 0.

▶ y ∈ Q has label k ∈ M ∪N if

▶ for k = i ∈ M , (Ay)i = 1, or

▶ for k = j ∈ N , yj = 0.

▶ (x, y) ∈ P ×Q is completely labeled if every k ∈ M ∪N
appears as a label of either x or y.

▶ (0,0) ∈ P ×Q is completely labeled.

3′′. (x, y) ∈ P ×Q, (x, y) ̸= (0,0), is an (“un-normalized”) Nash
equilibrium if and only if (x, y) is completely labeled.

▶ (0,0) ∈ P ×Q: “artificial equilibrium”
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Example
M = {1, 2, 3}, N = {4, 5}:

A =

3 3
2 5
0 6

 , B′ =

[
3 2 3
2 6 1

]
.

▶ P :

3x1 + 2x2 + 3x3 ≤ 1 (4)

2x1 + 6x2 + 1x3 ≤ 1 (5)

▶ Q:

3y4 + 3y5 ≤ 1 (1)

2y4 + 5y5 ≤ 1 (2)

6y5 ≤ 1 (3)
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Example
M = {1, 2, 3}, N = {4, 5}:

A =

3 3
2 5
0 6

 , B′ =

[
3 2 3
2 6 1

]
.
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Fig. 3.2. The best response polytopes P (with vertices 0, a, b, c, d, e) and Q for the
game in (3.3). The arrows describe the Lemke–Howson algorithm, see Section 3.4.

labels 1, 2, 3, and (written as x�) vertex a = (1/3, 0, 0) with labels 2, 3, 4,
vertex b = (2/7, 1/14, 0) with labels 3, 4, 5, vertex c = (0, 1/6, 0) with labels
1, 3, 5, vertex d = (0, 1/8, 1/4) with labels 1, 4, 5, and e = (0, 0, 1/3) with
labels 1, 2, 4. Note that the vectors alone show only the “own” labels as
the unplayed own strategies; the information about the other player’s best
responses is important as well. The following three completely labeled vertex
pairs define the Nash equilibria of the game, which we already found earlier:
the pure strategy equilibrium (a, s), and the mixed equilibria (b, r) and (d, q).
The vertices c and e of P , and p of Q, are not part of an equilibrium.

Nondegeneracy of a bimatrix game (A,B) can be stated in terms of the
polytopes P and Q in (3.6) as follows: no point in P has more than m labels,
and no point in Q has more than n labels. (If x ∈ P and x has support of size
k and L is the set of labels of x, then |L ∩M | = m− k, so |L| > m implies
x has more than k best responses in L ∩ N .) Then P and Q are simple
polytopes, because a point of P , say, that is on more than m facets would
have more than m labels. Even if P and Q are simple polytopes, the game
can be degenerate if the description of a polytope is redundant in the sense
that some inequality can be omitted, but nevertheless is sometimes binding.
This occurs if a player has a pure strategy that is weakly dominated by or
payoff equivalent to some other mixed strategy. Non-simple polytopes or
redundant inequalities of this kind do not occur for “generic” payoffs; this
illustrates the assumption of nondegeneracy from a geometric viewpoint. (A
strictly dominated strategy may occur generically, but it defines a redundant
inequality that is never binding, so this does not lead to a degenerate game.)
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Lemke-Howson

Start with the artificial equilibrium (0,0) ①②③ ④⑤

1. (0,0) → (c,0) ①③⓹ ④⑤
Drop label 2 in P for example. Label 5 is picked up.

2. (c,0) → (c, p) ①③⑤ ⓷④
Drop label 5 in Q. Label 3 is picked up.

3. (c, p) → (d, p) ①⓸⑤ ③④
Drop label 3 in P . Label 4 is picked up.

4. (d, p) → (d, q) ①④⑤ ⓶③
Drop label 4 in Q. Label 2 is picked up.

5. (d, q) is completely labeled, and so it is a Nash equilibrium
(after normalization).

7 / 28



Existence, Finiteness, Oddness in Nondegenerate Games

▶ For k ∈ M ∪N ,
(x, y) ∈ P ×Q is k-almost completely labeled
if every label in M ∪N \ {k} appears a label of x or y.

▶ Suppose that the game is nondegenerate.

▶ Fix any k ∈ M ∪N .

Let Vk be the set of k-almost completely labeled vertex pairs.

▶ Vk ̸= ∅ as (0,0) ∈ Vk.

▶ Nash equilibria are all contained in Vk.
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Existence, Finiteness, Oddness in Nondegenerate Games

▶ In Vk, define an edge (x, y)-(x′, y′) if

▶ |L(x) ∩ L(x′)| = m− 1 and y = y′, or

▶ x = x′ and |L(y) ∩ L(y′)| = n− 1.

▶ If (x, y) ∈ Vk is completely labeled, then its degree is one.

▶ If (x, y) ∈ Vk is such that L(x) ∩ L(y) = {k}, then its degree
is two.

▶ Therefore, the graph only has paths and cycles, and there are
an even number of endpoints.

▶ With (0,0) excluded, there are an odd number of Nash
equilibria.

In particular, there is at least one Nash equilibrium.
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Complementary Pivoting

▶ Introduce slack variables:

3x1 +2x2 +3x3 + s4 = 1
2x1 +6x2 + x3 + s5 = 1

r1 +3y4 +3y5 = 1
+ r2 +2y4 +5y5 = 1

+ r3 +6y5 = 1

x ≥ 0, s ≥ 0, r ≥ 0, y ≥ 0.

▶ A solution (x, s, r, y) is completely labeled if and only if

x′r = 0, y′s = 0.
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Complementary Pivoting

▶ For example:
(x, s) = (0, 0, 0, 1, 1), (r, y) = (1, 1, 1, 0, 0) is a solution,
where s4, s5 > 0 and r1, r2, r3 > 0 are called basic variables,
while x1, x2, x3 = 0 and y4, y5 = 0 nonbasic variables.

▶ Pivoting is a change of the basis where a nonbasic variable
enters and a basic variable leaves the set of basic variables
while satisfying the nonnegativity constraint.
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Complementary Pivoting

▶ 0:

4 3x1 + 2x2 + 3x3 + s4 = 1

5 2x1 + 6x2 + x3 + s5 = 1

▶ c:

4 7
3x1 + 8

3x3 + s4 − 1
3s5 = 2

3

2 1
3x1 + x2 + 1

6x3 + 1
6s5 = 1

6

▶ d:

3 7
8x1 + x3 + 3

8s4 −1
8s5 = 1

4

2 3
16x1 + x2 − 1

16s4 + 3
16s5 = 1

8
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Complementary Pivoting
▶ 0:

1 r1 + 3y4 + 3y5 = 1

2 + r2 + 2y4 + 5y5 = 1

3 + r3 + 6y5 = 1

▶ p:

1 r1 − 1
2r3 + 3y4 = 1

2

2 + r2 − 5
6r3 + 2y4 = 1

6

5 + 1
6r3 + y5 = 1

6

▶ q:

1 r1 − 3
2r2 + 3

4r3 = 1
4

4 + 1
2r2 − 5

12r3 + y4 = 1
12

5 + 1
6r3 + y5 = 1

6
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Integer Pivoting

▶ Computation using floating-point numbers yields rounding
errors, and with a large number of pivoting steps they may
accumulate to be a large amount.

▶ If the input data consist of integers, exact computation is
possible by integer pivoting.
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▶ pivot element = 6:

x1 x2 x3 s4 s5

4 3 2 3 1 0 1

5 2 6 1 0 1 1

▶ Multiply all rows except the pivot row by the pivot element:

x1 x2 x3 s4 s5

4 18 12 18 6 0 6

5 2 6 1 0 1 1

▶ Subtract suitable multiples of the pivot row from the other
rows to obtain zero entries in the pivot column:

x1 x2 x3 s4 s5

4 14 0 16 6 −2 4

5 2 6 1 0 1 1
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▶ pivot element = 6:

r1 r2 r3 y4 y5

1 1 0 0 3 3 1

2 0 1 0 2 5 1

3 0 0 1 0 6 1

▶ Multiply all rows except the pivot row by the pivot element:

r1 r2 r3 y4 y5

1 6 0 0 18 18 6

2 0 6 0 12 30 6

3 0 0 1 0 6 1

16 / 28



▶ Subtract suitable multiples of the pivot row from the other
rows to obtain zero entries in the pivot column:

r1 r2 r3 y4 y5

1 6 0 −3 18 0 3

2 0 6 −5 12 0 1

3 0 0 1 0 6 1
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▶ pivot element = 16:

x1 x2 x3 s4 s5

4 14 0 16 6 −2 4

2 2 6 1 0 1 1

▶ Multiply all rows except the pivot row by the pivot element:

x1 x2 x3 s4 s5

4 14 0 16 6 −2 4

2 32 96 16 0 16 16

▶ Subtract suitable multiples of the pivot row from the other
rows to obtain zero entries in the pivot column:

x1 x2 x3 s4 s5

4 14 0 16 6 −2 4

2 18 96 0 −6 18 12
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▶ All rows except the pivot row can be divided by the previous
pivot element 6:

x1 x2 x3 s4 s5

4 14 0 16 6 −2 4

2 3 16 0 −1 3 2
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▶ pivot element = 12:

r1 r2 r3 y4 y5

1 6 0 −3 18 0 3

2 0 6 −5 12 0 1

5 0 0 1 0 6 1

▶ Multiply all rows except the pivot row by the pivot element:

r1 r2 r3 y4 y5

1 72 0 −36 216 0 36

2 0 6 −5 12 0 1

5 0 0 12 0 72 12
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▶ Subtract suitable multiples of the pivot row from the other
rows to obtain zero entries in the pivot column:

r1 r2 r3 y4 y5

1 72 −108 54 0 0 18

2 0 6 −5 12 0 1

5 0 0 12 0 72 12

▶ All rows except the pivot row can be divided by the previous
pivot element 6:

r1 r2 r3 y4 y5

1 12 −18 9 0 0 3

2 0 6 −5 12 0 1

5 0 0 2 0 12 2
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Degenerate Games
▶ The game is nondegenerate if and only if in any basic feasible

solution, the basic variables have positive values.

Therefore, for nondegenerate games, the minimum ratio test
has a unique minimizer.

▶ If the game is degenerate, the minimum ratio test may have
more than one minimizers.

▶ In this case, arbitrary tie breaking may lead to cycling, so that
the algorithm falls into an infinite loop.

▶ The “lexico-minimum ratio test” is to avoid cycling.

▶ Suppose that the game is degenerate.

Instead of considering the original system B′x+ s = 1,
consider

B′x+ s = 1+ (ε1, . . . , εn)′

with sufficiently small ε > 0.
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▶ After any number of pivoting steps, the system can be written
as

CB′x+ Cs = C1+ C(ε1, . . . , εn)′,

where C is the inverse of a basic matrix.

▶ Write ci0 + ci1ε
1 + · · ·+ cinε

n for the ith entry of the vector
in the right hand, and let di be the ith row of the pivoting
column.

▶ Lexico-minimum ratio test:

▶ Choose the minimizers of ci0/di.

▶ If more than one, among them choose the minimizers of ci1/di.

▶ · · ·

▶ cik appears as the coefficient of the slack variable sk.
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Example
M = {1, 2, 3}, N = {4, 5}:

A =

3 3
2 5
0 6

 , B′ =

[
3 2 3
3 6 1

]
.
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d
e

c
0

a

(back)

(bottom)

(left)

1x

x

x3

2

P
12

5

4

3

0

r
p

s

q

Q

y5

y4

1

2

4

5

3

Fig. 2 Best response polytopes for the degenerate game (8)

edge of Q that joins vertices r and s, defines a component of Nash equilibria, where
player 2 plays some mixed strategy (y4, 1 − y4) for 2/3 ≤ y4 ≤ 1.

The following central observation characterizes all Nash equilibria of a general
bimatrix game (A, B) with P and Q as defined in (7).

Proposition 3 For K , L ⊆ M ∪ N, let

P(K ) = { x ∈ P | ∀i ∈ K ∩ M : xi = 0, ∀ j ∈ K ∩ N : (B⊤x) j = 1}
Q(L) = { y ∈ Q | ∀i ∈ L ∩ M : (Ay)i = 1, ∀ j ∈ L ∩ N : y j = 0} (9)

Then (x, y) ∈ P × Q − {0, 0} is a Nash equilibrium if and only if there are sets K
and L so that K ∪ L = M ∪ N and (x, y) ∈ P(K ) × Q(L).

Proof Given K and L so that K ∪ L = M ∪ N , any (x, y) ∈ P(K ) × Q(L) is by (9)
completely labeled. If x = 0, then B⊤x < 1, so x has no label in N (i.e., K ⊆ M),
which implies N ⊆ L and therefore y = 0 (and thus Ay < 1 and L = N , K = M);
similarly, y = 0 implies x = 0. However, the case (x, y) = (0, 0) is excluded, so
(x, y) is a Nash equilibrium.

Conversely, a Nash equilibrium (x, y) in P × Q − {0, 0} belongs to P(K )× Q(L)

where K and L are the sets of labels of x and y, respectively. ⊓+

Clearly, the set P(K ) in (9) is a face of P , and Q(L) is a face of Q. By Prop. 3, the
set of Nash equilibria is the union of products P(K )× Q(L) of faces of the polytopes
P and Q. The following proposition, due to Winkels (1979) and Jansen (1981), char-
acterizes these products in terms of pairs of vertices of P and Q. We write conv U for
the convex hull of a set U .

Proposition 4 Let (A, B) be a bimatrix game, and (x, y) ∈ P × Q. Then (x, y) is
a Nash equilibrium of (A, B) if and only if there is a set U of vertices of P − {0}
and a set V of vertices of Q − {0} so that x ∈ conv U and y ∈ conv V , and every
(u, v) ∈ U × V is completely labeled.

123

(From Avis et al. 2010)
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Complementary Pivoting with Lexico-Minimum Test

Initial pivot = 1

▶ 0:

4 3x1 + 2x2 + 3x3 + s4 = 1 + ε

5 3x1 + 6x2 + x3 + s5 = 1 + ε2

▶ a:

4 − 4x2 + 2x3 + s4 − s5 = 0 + ε− ε2

1 x1 + 2x2 + 1
3x3 + 1

3s5 = 1
3 + 1

3ε
2

▶ a:

3 −2x2 + x3 + 1
2s4 − 1

2s5 = 0 + 1
2ε−

1
2ε

2

1 x1 + 8
3x2 − 1

6s4 + 1
2s5 = 1

3 − 1
6ε+

1
2ε

2
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Complementary Pivoting with Lexico-Minimum Test
▶ 0:

1 r1 + 3y4 + 3y5 = 1

2 + r2 + 2y4 + 5y5 = 1

3 + r3 + 6y5 = 1

▶ p:

1 r1 − 1
2r3 + 3y4 = 1

2

2 + r2 − 5
6r3 + 2y4 = 1

6

5 + 1
6r3 + y5 = 1

6

▶ q:

1 r1 − 3
2r2 + 3

4r3 = 1
4

4 + 1
2r2 − 5

12r3 + y4 = 1
12

5 + 1
6r3 + y5 = 1

6
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Complementary Pivoting with Lexico-Minimum Test

▶ d:

3 3
4x1 + x3 + 3

8s4 −1
8s5 = 1

4 + 3
8ε−

1
8ε

2

2 3
8x1 + x2 − 1

16s4 + 3
16s5 = 1

8 − 1
16ε+

3
16ε

2
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Examples of Cycles by “Ad Hoc” Tie Breaking Rules

M = {1, 2, 3}, N = {4, 5, 6}

▶ Tie breaking that picks the variable with the smallest row
index in the tableau leads to cycling:

A =

0 0 0
0 1 1
1 1 0

 , B′ =

1 0 1
1 1 0
0 0 2

 .

▶ Tie breaking that picks the variable with the smallest variable
index leads to cycling:

A =

0 0 0
1 0 1
0 1 1

 , B′ =

0 0 2
1 0 1
1 1 0

 .
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