Nonnegative Matrices I

Daisuke Oyama

Topics in Economic Theory

September 26, 2017

References

- J. L. Stuart, "Digraphs and Matrices," in Handbook of Linear Algebra, Chapter 29, 2006.
- R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, Cambridge, 1991.

Directed Graphs and Matrices

- A directed graph $G=(V, E)$ consists of
- a nonempty finite set V of vertices (or nodes) and
- a subset E of $V \times V$, whose elements are called edges (or arcs).
- An undirected graph can be seen as a special case of a directed graph where $(u, v) \in E$ if and only if $(v, u) \in E$.
- The adjacency matrix of a directed graph $G=(V, E)$ with $V=\left\{v_{1}, \ldots, v_{n}\right\}$ is the $n \times n$ matrix A such that $a_{i j}=1$ if $\left(v_{i}, v_{j}\right) \in E$ and $a_{i j}=0$ otherwise.
- The directed graph of an $n \times n$ matrix A is the directed graph (V, E) with $V=\{1, \ldots, n\}$ such that $(i, j) \in E$ if and only if $a_{i j} \neq 0$.

Strongly Connected Components of a Directed Graph

- We say that $u \in V$ has access to $v \in V$ and denote $u \rightarrow v$ if $u=v$, or there are $v_{0}, \ldots, v_{k} \in V$ with $v_{0}=u$ and $v_{k}=v$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all $i=0, \ldots, k-1$.
- The sequence of edges $\left(v_{0}, v_{1}\right), \ldots,\left(v_{k-1}, v_{k}\right)$ is called a walk of length k.
- By convention, for all $v \in V$ there is a walk of length 0 from v to v (even if $(v, v) \notin E$).
- The binary relation \rightarrow on V is a preorder (or quasi-order), i.e., it is reflexive ($u \rightarrow u$ for all $u \in V$) and transitive.
- Define the binary relation \leftrightarrow on V by $u \leftrightarrow v$ if $u \rightarrow v$ and $v \rightarrow u$ (in which case we say that u and v communicate).

Then \leftrightarrow is an equivalence relation, i.e., it is symmetric ($u \leftrightarrow v$ if and only if $v \leftrightarrow u$), reflexive, and transitive.

- For each v, its equivalent class with respect to \leftrightarrow is

$$
[v]=\{u \in V \mid u \leftrightarrow v\} .
$$

- The quotient set of V by \leftrightarrow is

$$
V / \leftrightarrow=\{[v] \mid v \in V\} .
$$

- Elements of V / \leftrightarrow are called strongly connected components (SCCs) of G.
- If G has a unique SCC, then it is called strongly connected.
- The reduced directed graph (or condensation directed graph) of $G=(V, E)$ is the directed graph $R(G)=\left(V^{\prime}, E^{\prime}\right)$ given as follows:
- $V^{\prime}=V / \leftrightarrow$,
- $\left(V_{i}, V_{j}\right) \in E^{\prime}$ if and only if $V_{i} \neq V_{j}$ and $\left(v_{i}, v_{j}\right) \in E$ for some $v_{i} \in V_{i}$ and $v_{j} \in V_{j}$.
- For $V_{i}, V_{j} \in V^{\prime}$, $V_{i} \rightarrow V_{j}$ if and only if $v_{i} \rightarrow v_{j}$ for some (in fact, for all) $v_{i} \in V_{i}$ and $v_{j} \in V_{j}$.
- The access preorder \rightarrow for $R(G)$ is also a partial order, i.e., it is also anti-symmetric (if $U \rightarrow V$ and $V \rightarrow U$, then $U=V$).
- For $R(G)=\left(V^{\prime}, E^{\prime}\right)$, elements of V^{\prime} can be ordered as V_{1}, \ldots, V_{k} so that if $\left(V_{i}, V_{j}\right) \in E^{\prime}$, then $i<j$.

Irreducibility of a Matrix

- Let A be an $n \times n$ matrix, and $G(A)$ the directed graph of A.
- For $n \geq 2$, we define A to be irreducible if $G(A)$ is strongly connected, and reducible otherwise.
- For $n=1$, we define A to be irreducible if $A \neq O$, and reducible if $A=O$.
- Let $n \geq 2$.

If A is reducible with $k \geq 2 \mathrm{SCCs}$, then there exists a permutation matrix P such that

$$
P A P^{\prime}=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 k} \\
O & A_{22} & \cdots & A_{2 k} \\
\vdots & \ddots & \ddots & \vdots \\
O & \cdots & O & A_{k k}
\end{array}\right)
$$

where $A_{11}, \ldots, A_{k k}$ are square irreducible matrices, which are called the irreducible components of A.
(The form above is called a Frobenius normal form of A.)

Periodicity of a Strongly Connected Directed Graph

(Definitions may differ across different textbooks.)

Let $G=(V, E)$ be a directed graph.

- A walk of length k is a sequence of edges $\left(v_{0}, v_{1}\right), \ldots,\left(v_{k-1}, v_{k}\right)$ of length k.
- A walk is closed if $v_{k}=v_{0}$.
- A simple walk or path is a walk such that all vertices, possibly except v_{0} and v_{k}, are distinct.
- A cycle is a simple walk such that $v_{k}=v_{0}$.

A cycle of length k is called a k-cycle.

Let $G=(V, E)$ be a strongly connected directed graph with $|V| \geq 2$.

- The period of a vertex $v \in V$ is the greatest common divisor of the lengths of all closed walks containing v.
It equals the GCD of the lengths of all cycles containing v.
- If some vertex of G has period d, then all vertices of G (being strongly connected) have period d.
The period of G is the period of some (in fact, any) vertex of G.
- G is aperiodic if its period is 1 , and periodic otherwise.
- G is primitive if there exists a positive integer k such that for any $u, v \in V$, there exists a walk of length k from u to v.

It is imprimitive if it is not primitive.

- The following are equivalent:
- G is primitive.
- G is aperiodic.
- There exists a positive integer k such that for any $t \geq k$ and for any $u, v \in V$, there exists a walk of length t from u to v.
- The period of G is also called the index of imprimitivity.
- Suppose that a strongly connected directed graph G has period d.

Fix any vertex $u_{0} \in V$.
For each $m=0, \ldots, d-1$, let V_{m} be the set of vertices v such that there exists a walk of length $k d+m$ from u_{0} to v for some k.

These sets V_{0}, \ldots, V_{d-1} constitute a partition of V and are called cyclic components.

Periodicity of an Irreducible Matrix

Let A be an $n \times n$ irreducible matrix, and $G(A)$ the directed graph of A.

- The period, or the index of imprimitivity, of A is the period of the index of imprimitivity of $G(A)$.
- A is aperiodic if its period is 1 , or equivalently, if $G(A)$ is aperiodic.
- If A has period d, then there exists a permutation matrix P such that

$$
P A P^{\prime}=\left(\begin{array}{ccccc}
O & A_{0} & O & \cdots & O \\
O & O & A_{1} & \cdots & O \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
O & O & O & \cdots & A_{d-2} \\
A_{d-1} & O & O & \cdots & O
\end{array}\right)
$$

(The form above is called a cyclic normal form of A.)

Powers of an Irreducible Nonnegative Matrix

Let A be an $n \times n$ nonnegative matrix.
For a nonnegative integer k, write $a_{i j}^{(k)}$ for the (i, j) entry of A^{k} (where $A^{0}=I$).

- $a_{i j}^{(k)}>0$ if and only if there is a walk of length k from i to j.

Let A be an $n \times n$ irreducible nonnegative matrix.

- For each (i, j), there exists $k=0, \ldots, n-1$ such that $a_{i j}^{(k)}>0$.
- A is primitive if there exists k such that $A^{k} \gg O$.
- A is primitive if and only if it is aperiodic.

