Nonnegative Matrices II

Daisuke Oyama

Topics in Economic Theory

September 29, 2017

References

- 二階堂副包『現代経済学の数学的方法』岩波書店，1960年．
- 室田一雄•杉原正顯『線形代数II』東京大学工学教程基礎系数学，丸善出版，2013年．

Hawkins-Simon Condition I

Proposition 1

For an $n \times n$ matrix B such that $b_{i j} \leq 0$ for all $i \neq j$, the following conditions are equivalent:

1. For any $c \geq 0$, there exists $x \geq 0$ such that $B x=c$.
2. There exist $c \gg 0$ and $x \geq 0$ such that $B x=c$.
3. There exist $c \gg 0$ and $x \gg 0$ such that $B x=c$.
4. $\left|B_{k}\right|>0$ for all $k=1, \ldots, n$. ("Hawkins-Simon Condition")
5. There exist lower and upper triangular matrices L and U with positive diagonals and nonpositive off-diagonals such that $B=L U$.
6. B is nonsingular, and $B^{-1} \geq O$.

Proof

$1 \Rightarrow 2$

- Obvious.
$2 \Rightarrow 3$
- Suppose that $B y=d$ for some $y \geq 0$ and $d \gg 0$.
- Let $\alpha>0$ small enough that $d+\alpha(B \mathbf{1}) \gg 0$, and let $c=d+\alpha(B \mathbf{1}) \gg 0$ and $x=y+\alpha \mathbf{1} \gg 0$.
- Then we have $B x=B y+\alpha(B \mathbf{1})=c$.
$3 \Rightarrow 4$
- " $3 \Rightarrow 4$ " holds for $n=1$.
- Assume that " $3 \Rightarrow 4$ " holds for $n-1$.
- We have $b_{11}=\left(c_{1}-\sum_{j \neq 1} b_{1 j} x_{j}\right) / x_{1}>0$ since $b_{1 j} \leq 0$ for all $j \neq 1$.
- Let

$$
D=\left(\begin{array}{ccccc}
1 & & & & 0 \\
-\frac{b_{21}}{b_{11}} & 1 & & & \\
-\frac{b_{31}}{b_{11}} & 0 & 1 & & \\
\vdots & \vdots & \ddots & \ddots & \\
-\frac{b_{n 1}}{b_{11}} & 0 & \cdots & 0 & 1
\end{array}\right) .
$$

- Then

$$
D B=\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 n} \\
0 & & \\
\vdots & B^{\prime} & \\
0 & &
\end{array}\right)
$$

where $b_{i j}^{\prime}=b_{i j}-\frac{b_{i 1}}{b_{11}} b_{1 j} \leq 0$ for all $i, j \geq 2, i \neq j$.

- Also $(D c)_{i}=c_{i}-\frac{b_{i 1}}{b_{11}} c_{1}>0$ for all $i \geq 2$.
- Letting $y=\left(x_{2}, \ldots, x_{n}\right)^{\prime} \gg 0$ and $d=\left((D c)_{2}, \ldots,(D c)_{n}\right)^{\prime} \gg 0$, we have $B^{\prime} y=d$.
- Therefore, by the induction hypothesis, $\left|B_{\ell}^{\prime}\right|>0$ for all $\ell=1, \ldots, n-1$.
- Hence, for all $k=1, \ldots, n$, we have $\left|B_{k}\right|=b_{11}\left|B_{k-1}^{\prime}\right|>0$.
$4 \Rightarrow 5$
- " $4 \Rightarrow 5$ " holds for $n=1$.
- Assume that " $4 \Rightarrow 5$ " holds for $n-1$.
- Suppose that B satisfies 4 .
- Let D and B^{\prime} be as in the previous proof.
- Since $\left|B_{\ell}^{\prime}\right|=\frac{1}{b_{11}}\left|B_{\ell+1}\right|>0$ for all $\ell=1, \ldots, n-1, B^{\prime}$ is written as $B^{\prime}=L^{\prime} U^{\prime}$ by the induction hypothesis.
- Let

$$
\begin{aligned}
& L=D^{-1}\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & L^{\prime} & \\
0 & &
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
* & & & \\
\vdots & & L^{\prime} & \\
* & & &
\end{array}\right) \\
& U=\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 n} \\
0 & & \\
\vdots & U^{\prime} & \\
0 &
\end{array}\right)
\end{aligned}
$$

where $\ell_{i 1}=\frac{b_{i 1}}{b_{11}} \leq 0$ for $i=2, \ldots, n$.

- Then $B=L U$.
$5 \Rightarrow 6$
- L^{-1} and U^{-1} exist and are nonnegative.
- Therefore, $B^{-1}=U^{-1} L^{-1} \geq O$.
$6 \Rightarrow 1$
- For any $c \geq 0, B^{-1} c \geq 0$. Let $x=B^{-1} c$.

Frobenius Roots

- Let A be an $n \times n$ nonnegative matrix.
- Let

$$
M=\{\rho>0 \mid \rho I-A \text { satisfies HS }\}
$$

Lemma 1
$M=(m, \infty)$ for some m.

- $M \neq \emptyset$.

Fix any $x \gg 0$. Then for a large $\rho>0$, we have $\rho x-A x \gg 0$. For any such ρ, we have $\rho \in M$.

- If $\rho \in M$ and $\rho^{\prime}>\rho$, then $\rho^{\prime} \in M$.

By $\rho \in M,(\rho I-A) x \gg 0$ for some $x \geq 0$. Then $\left(\rho^{\prime} I-A\right) x=(\rho I-A) x+\left(\rho^{\prime}-\rho\right) x \gg 0$. Hence, $\rho^{\prime} \in M$.

- M is open. Because $M=\bigcup_{x \gg 0}\{\rho>0 \mid(\rho I-A) x \gg 0\}$.

Proposition 2

Let A be an $n \times n$ nonnegative matrix, and M be as defined above. Then there exists $x \geq 0, x \neq 0$, such that $A x=(\inf M) x$.

Proof

- Fix any $c \gg 0$.
- For $\rho \in M$, define $x(\rho)=(\rho I-A)^{-1} c \geq 0$.
- We claim that if $\rho<\rho^{\prime}$, then $x(\rho) \geq x\left(\rho^{\prime}\right)$.

Indeed, since $(\rho I-A)\left(x(\rho)-x\left(\rho^{\prime}\right)\right)=\left(\rho^{\prime}-\rho\right) x\left(\rho^{\prime}\right) \geq 0$, we have $x(\rho)-x\left(\rho^{\prime}\right)=\left(\rho^{\prime}-\rho\right)(\rho I-A)^{-1} x\left(\rho^{\prime}\right) \geq 0$.

- Now, let $\left\{\rho_{k}\right\} \subset M$ be such that $\rho_{k} \searrow \inf M$.

Then $x\left(\rho_{k}\right) \leq x\left(\rho_{k+1}\right)$.

- Let $\eta_{k}=\left\|x\left(\rho_{k}\right)\right\|$, where $\eta_{k} \leq \eta_{k+1}$.
- If $\left\{\eta_{k}\right\}$ is bounded above, then $\lim _{k \rightarrow \infty} x\left(\rho_{k}\right)=x \geq 0$ exists.

Then by letting $k \rightarrow \infty$ in $\left(\rho_{k} I-A\right) x\left(\rho_{k}\right)=c$, we have $((\inf M) I-A) x=c$, which implies that $\inf M \in M$, contradicting the openness of M.

- Thus, $\eta_{k} \rightarrow \infty$.
- Let $y_{k}=x\left(\rho_{k}\right) / \eta_{k}$.

Since $\left\{y_{k}\right\}$ is contained in a compact set, it has a convergent subsequence, again denoted by $\left\{y_{k}\right\}$, with a limit $y \geq 0, \neq 0$.

- By construction, $\left(\rho_{k} I-A\right) y_{k}=c / \eta_{k}$.

Let $k \rightarrow \infty$. Then we have $((\inf M) I-A) y=0$, or $A y=(\inf M) y$.

Perron-Frobenius Theorem I

Proposition 3
Let A be an $n \times n$ nonnegative matrix.

1. $\lambda(A)$ is an eigenvalue of A, and there exists a nonnegative eigenvector that belongs to $\lambda(A)$.
2. If $A \geq B \geq O$, then $\lambda(A) \geq \lambda(B)$.

Proof

1.

- Let $\omega \in \mathbb{C}$ be any eigenvalue of A, and $z \in \mathbb{C}^{n}, z \neq 0$, be its eigenvector.

It suffices to show that $|\omega| \leq \inf M$.

- For all $i=1, \ldots, n,|\omega|\left|z_{i}\right|=\left|\omega z_{i}\right|=\left|\sum_{j} a_{i j} z_{j}\right| \leq \sum_{j} a_{i j}\left|z_{j}\right|$, we have $A \hat{z} \geq|\omega| \hat{z}$, or $(|\omega| I-A) \hat{z} \leq 0$, where $\hat{z}=\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right)^{\prime}$.
- If $|\omega| \in M$, then $(|\omega| I-A)^{-1}$ would exist and be nonnegative, so that $\hat{z} \leq 0$, contradicting $\hat{z} \geq 0, \hat{z} \neq 0$.
- Therefore, $|\omega| \notin M$, and hence $|\omega| \leq \inf M$.

2.

- Let $A \geq B \geq O$.

It suffices to show that $M(A) \subset M(B)$.

- Let $\rho \in M(A)$. Then $(\rho I-A) x \gg 0$ for some $x \geq 0$.
- For any such $x \geq 0, \rho x \gg A x \geq B x$, or $(\rho I-B) x \gg 0$, which implies that $\rho \in M(B)$.

Hawkins-Simon Condition II

Proposition 4

For an $n \times n$ nonnegative matrix A and a positive real number ρ, the following conditions are equivalent:

1. $\rho I-A$ satisfies the Hawkins-Simon condition.
2. $\lambda(A)<\rho$.

Hawkins-Simon Condition III

Proposition 5

For an $n \times n$ nonnegative matrix A and a positive real number ρ, the following conditions are equivalent:

1. $\rho I-A$ satisfies the Hawkins-Simon condition.
2. $\lim _{k \rightarrow \infty} \frac{1}{\rho} \sum_{\ell=0}^{k} \frac{1}{\rho^{\ell}} A^{\ell}$ exists (which is equal to $(\rho I-A)^{-1}$).

Proof

$$
1 \Rightarrow 2
$$

- By $1,(\rho I-A)^{-1}$ exists and is nonnegative.
- Let $T_{k}=\frac{1}{\rho} \sum_{\ell=0}^{k} \frac{1}{\rho^{\ell}} A^{\ell}$.

Then $T_{k} \leq T_{k+1}$.

- Since $(\rho I-A) T_{k}=T_{k}(\rho I-A)=I-\frac{1}{\rho^{k+1}} A^{k+1} \leq I$, $T_{k} \leq(\rho I-A)^{-1}$.
- Therefore, $\lim _{k \rightarrow \infty} T_{k}=T$ exists.
- Then $\lim _{k \rightarrow \infty} \frac{1}{\rho^{k}} A^{k}=\lim _{k \rightarrow \infty} \rho\left(T_{k}-T_{k-1}\right)=O$.
- Therefore, we have $(\rho I-A) T=T(\rho I-A)=I$, and hence $T=(\rho I-A)^{-1}$.
$2 \Rightarrow 1$
- By 2, $T=\lim _{k \rightarrow \infty} T_{k}$ exists, which is nonnegative.
- As previously, $\lim _{k \rightarrow \infty} \frac{1}{\rho^{k}} A^{k}=\lim _{k \rightarrow \infty} \rho\left(T_{k}-T_{k-1}\right)=O$.
- Then letting $k \rightarrow \infty$ in
$(\rho I-A) T_{k}=T_{k}(\rho I-A)=I-\frac{1}{\rho^{k+1}} A^{k+1}$, we have $(\rho I-A) T=T(\rho I-A)=I$, and hence $(\rho I-A)^{-1}=T \geq 0$.

Perron-Frobenius Theorem II

Proposition 6

Let A be an $n \times n$ irreducible nonnegative matrix.

1. $\lambda(A)>0, \lambda(A)$ is an eigenvalue of A, and there exists a positive eigenvector that belongs to $\lambda(A)$.
2. An eigenvector that belongs to $\lambda(A)$ is unique (up to multiplication).
3. If $A y=\mu y, \mu \geq 0$, for some $y \geq 0, y \neq 0$, then $\mu=\lambda(A)$.
4. If $A \geq B \geq O$ and $A \neq B$, then $\lambda(A)>\lambda(B)$.

Proof

1.

- Since A is irreducible, $A 1 \gg 0$, or $\min _{i}(A 1)_{i}>0$.

Since $\left(\min _{i}(A 1)_{i}\right) I \mathbf{1} \leq A \mathbf{1}, \min _{i}(A 1)_{i} \notin M$.
$\left(\because \text { If } \min _{i}(A \mathbf{1})_{i} \in M \text {, then }\left(\min _{i}(A \mathbf{1})_{i}\right) I-A\right)^{-1} \geq O$, and we would have $1 \leq 0$.)
Therefore, $\lambda(A)=\inf M \geq \min _{i}(A \mathbf{1})_{i}>0$.

- Let $x \geq 0, x \neq 0$, be such that $A x=\lambda(A) x$.

Then $(I+A) x=(1+\lambda(A)) x$.
Since $I+A$ is irreducible and aperiodic, $(I+A)^{m} \gg O$ for some m.

Since $(1+\lambda(A))^{m} x=(I+A)^{m} x \gg 0$, where $1+\lambda>0$, we have $x \gg 0$.
2.

- Let $A x=\lambda(A) x, x \gg 0$, and $A y=\lambda(A) y, y \neq 0$.
- Let $\theta=\min _{i} \frac{y_{i}}{x_{i}}$, and let $z=y-\theta x \geq 0$, where $z \ngtr 0$.
- Then $A z=\lambda(A) z$.
- As we have shown, if $z \neq 0$, we would have $z \gg 0$.
- Therefore, $z=0$, so that $y=\theta x$.
- Since A^{\prime} is also irreducible, we can take an $x \gg 0$ such that $A^{\prime} x=\lambda\left(A^{\prime}\right) x$, where $\lambda\left(A^{\prime}\right)=\lambda(A)$.
- Let $A y=\mu y, y \geq 0, y \neq 0$.
- Then
$\mu(x \cdot y)=x \cdot \mu y=x \cdot A y=\left(A^{\prime} x\right) \cdot y=(\lambda(A) x) \cdot y=\lambda(A)(x \cdot y)$,
and hence $(\mu-\lambda(A))(x \cdot y)=0$.
- Since $x \gg 0, y \geq 0$, and $y \neq 0, x \cdot y \neq 0$.

Hence $\mu=\lambda(A)$.

Periodicity and Eigenvalues of a Nonnegative Matrix

Proposition 7
Let A be an $n \times n$ irreducible nonnegative matrix with period d. Then A has d distinct eigenvalues ρ such that $|\rho|=\lambda(A)$.

