Nonnegative Matrices II

Daisuke Oyama

Topics in Economic Theory

September 29, 2017

References

二階堂副包『現代経済学の数学的方法』岩波書店,1960年. 室田一雄・杉原正顯『線形代数 II』東京大学工学教程基礎系数学,丸善出版,2013年.

Hawkins-Simon Condition I

Proposition 1

For an $n \times n$ matrix B such that $b_{ij} \leq 0$ for all $i \neq j$, the following conditions are equivalent:

- 1. For any $c \ge 0$, there exists $x \ge 0$ such that Bx = c.
- 2. There exist $c \gg 0$ and $x \ge 0$ such that Bx = c.
- 3. There exist $c \gg 0$ and $x \gg 0$ such that Bx = c.
- 4. $|B_k| > 0$ for all $k = 1, \ldots, n$. ("Hawkins-Simon Condition")
- 5. There exist lower and upper triangular matrices L and U with positive diagonals and nonpositive off-diagonals such that B = LU.
- 6. B is nonsingular, and $B^{-1} \ge O$.

Proof

 $1 \Rightarrow 2$

- Obvious.
- $2 \Rightarrow 3$
 - Suppose that By = d for some $y \ge 0$ and $d \gg 0$.
 - Let $\alpha > 0$ small enough that $d + \alpha(B\mathbf{1}) \gg 0$, and let $c = d + \alpha(B\mathbf{1}) \gg 0$ and $x = y + \alpha \mathbf{1} \gg 0$.
 - Then we have $Bx = By + \alpha(B\mathbf{1}) = c$.

 $3 \Rightarrow 4$

• "
$$3 \Rightarrow 4$$
" holds for $n = 1$.

• Assume that "3 \Rightarrow 4" holds for n-1.

• We have
$$b_{11} = \left(c_1 - \sum_{j \neq 1} b_{1j} x_j\right) / x_1 > 0$$
 since $b_{1j} \leq 0$ for all $j \neq 1$.

•

Let

$$D = \begin{pmatrix} 1 & & & 0 \\ -\frac{b_{21}}{b_{11}} & 1 & & & \\ -\frac{b_{31}}{b_{11}} & 0 & 1 & & \\ \vdots & \vdots & \ddots & \ddots & \\ -\frac{b_{n1}}{b_{11}} & 0 & \cdots & 0 & 1 \end{pmatrix}$$

$$DB = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ 0 & & & \\ \vdots & B' & & \\ 0 & & & \end{pmatrix},$$

where $b'_{ij} = b_{ij} - \frac{b_{i1}}{b_{11}}b_{1j} \leq 0$ for all $i, j \geq 2$, $i \neq j$.

• Also
$$(Dc)_i = c_i - \frac{b_{i1}}{b_{11}}c_1 > 0$$
 for all $i \ge 2$.

Letting
$$y = (x_2, \dots, x_n)' \gg 0$$
 and $d = ((Dc)_2, \dots, (Dc)_n)' \gg 0$, we have $B'y = d$.

▶ Therefore, by the induction hypothesis, $|B'_{\ell}| > 0$ for all $\ell = 1, ..., n - 1$.

• Hence, for all $k = 1, \ldots, n$, we have $|B_k| = b_{11}|B'_{k-1}| > 0$.

 $4 \Rightarrow 5$

• "4 \Rightarrow 5" holds for n = 1.

- Assume that "4 \Rightarrow 5" holds for n-1.
- Suppose that B satisfies 4.
- Let D and B' be as in the previous proof.
- Since $|B'_{\ell}| = \frac{1}{b_{11}}|B_{\ell+1}| > 0$ for all $\ell = 1, \ldots, n-1$, B' is written as B' = L'U' by the induction hypothesis.

$$L = D^{-1} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & \\ \vdots & L' \\ 0 & & \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ * & & \\ \vdots & L' \\ * & & \end{pmatrix},$$
$$U = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ 0 & & \\ \vdots & U' & \\ 0 & & \end{pmatrix},$$

where $\ell_{i1} = \frac{b_{i1}}{b_{11}} \leq 0$ for $i = 2, \dots, n$.

▶ Then B = LU.

 $\mathbf{5} \Rightarrow \mathbf{6}$

▶ L^{-1} and U^{-1} exist and are nonnegative.

• Therefore,
$$B^{-1} = U^{-1}L^{-1} \ge O$$
.

 $\mathbf{6} \Rightarrow \mathbf{1}$

For any
$$c \ge 0$$
, $B^{-1}c \ge 0$. Let $x = B^{-1}c$.

Frobenius Roots

Let A be an n × n nonnegative matrix.

Let

 $M = \{ \rho > 0 \mid \rho I - A \text{ satisfies HS} \}.$

Lemma 1 $M = (m, \infty)$ for some m.

 $\blacktriangleright M \neq \emptyset.$

Fix any $x \gg 0$. Then for a large $\rho > 0$, we have $\rho x - Ax \gg 0$. For any such ρ , we have $\rho \in M$.

Proposition 2

Let A be an $n \times n$ nonnegative matrix, and M be as defined above. Then there exists $x \ge 0$, $x \ne 0$, such that $Ax = (\inf M)x$.

Proof

Fix any
$$c \gg 0$$
.

For
$$\rho \in M$$
, define $x(\rho) = (\rho I - A)^{-1}c \ge 0$.

► We claim that if
$$\rho < \rho'$$
, then $x(\rho) \ge x(\rho')$.
Indeed, since $(\rho I - A)(x(\rho) - x(\rho')) = (\rho' - \rho)x(\rho') \ge 0$, we have $x(\rho) - x(\rho') = (\rho' - \rho)(\rho I - A)^{-1}x(\rho') \ge 0$.

Now, let $\{\rho_k\} \subset M$ be such that $\rho_k \searrow \inf M$. Then $x(\rho_k) \le x(\rho_{k+1})$.

• Let
$$\eta_k = ||x(\rho_k)||$$
, where $\eta_k \le \eta_{k+1}$.

▶ If $\{\eta_k\}$ is bounded above, then $\lim_{k\to\infty} x(\rho_k) = x \ge 0$ exists. Then by letting $k \to \infty$ in $(\rho_k I - A)x(\rho_k) = c$, we have $((\inf M)I - A)x = c$, which implies that $\inf M \in M$, contradicting the openness of M.

• Thus,
$$\eta_k \to \infty$$
.

• Let
$$y_k = x(\rho_k)/\eta_k$$
.

Since $\{y_k\}$ is contained in a compact set, it has a convergent subsequence, again denoted by $\{y_k\}$, with a limit $y \ge 0, \neq 0$.

• By construction,
$$(\rho_k I - A)y_k = c/\eta_k$$
.

Let $k \to \infty$. Then we have $((\inf M)I - A)y = 0$, or $Ay = (\inf M)y$.

Perron-Frobenius Theorem I

Proposition 3

Let A be an $n \times n$ nonnegative matrix.

- 1. $\lambda(A)$ is an eigenvalue of A, and there exists a nonnegative eigenvector that belongs to $\lambda(A)$.
- 2. If $A \ge B \ge O$, then $\lambda(A) \ge \lambda(B)$.

Proof

1.

• Let $\omega \in \mathbb{C}$ be any eigenvalue of A, and $z \in \mathbb{C}^n$, $z \neq 0$, be its eigenvector.

It suffices to show that $|\omega| \leq \inf M$.

- For all i = 1, ..., n, $|\omega||z_i| = |\omega z_i| = \left|\sum_j a_{ij} z_j\right| \le \sum_j a_{ij}|z_j|$, we have $A\hat{z} \ge |\omega|\hat{z}$, or $(|\omega|I - A)\hat{z} \le 0$, where $\hat{z} = (|z_1|, ..., |z_n|)'$.
- If |ω| ∈ M, then (|ω|I − A)⁻¹ would exist and be nonnegative, so that ² ≤ 0, contradicting ² ≥ 0, ² ≠ 0.
- Therefore, $|\omega| \notin M$, and hence $|\omega| \leq \inf M$.

2.

• Let
$$A \ge B \ge O$$
.

It suffices to show that $M(A) \subset M(B)$.

• Let
$$\rho \in M(A)$$
. Then $(\rho I - A)x \gg 0$ for some $x \ge 0$.

For any such $x \ge 0$, $\rho x \gg Ax \ge Bx$, or $(\rho I - B)x \gg 0$, which implies that $\rho \in M(B)$.

Hawkins-Simon Condition II

Proposition 4

For an $n \times n$ nonnegative matrix A and a positive real number ρ , the following conditions are equivalent:

1. $\rho I - A$ satisfies the Hawkins-Simon condition.

 $2. \ \lambda(A) < \rho.$

Hawkins-Simon Condition III

Proposition 5

For an $n \times n$ nonnegative matrix A and a positive real number ρ , the following conditions are equivalent:

1. $\rho I - A$ satisfies the Hawkins-Simon condition.

2. $\lim_{k\to\infty} \frac{1}{\rho} \sum_{\ell=0}^{k} \frac{1}{\rho^{\ell}} A^{\ell}$ exists (which is equal to $(\rho I - A)^{-1}$).

Proof

 $1 \Rightarrow 2$

• By 1,
$$(\rho I - A)^{-1}$$
 exists and is nonnegative.

• Let
$$T_k = \frac{1}{\rho} \sum_{\ell=0}^k \frac{1}{\rho^\ell} A^\ell$$
.
Then $T_k \le T_{k+1}$.

• Since
$$(\rho I - A)T_k = T_k(\rho I - A) = I - \frac{1}{\rho^{k+1}}A^{k+1} \le I$$
,
 $T_k \le (\rho I - A)^{-1}$.

• Therefore,
$$\lim_{k\to\infty} T_k = T$$
 exists.

• Then
$$\lim_{k\to\infty} \frac{1}{\rho^k} A^k = \lim_{k\to\infty} \rho(T_k - T_{k-1}) = O.$$

• Therefore, we have
$$(\rho I - A)T = T(\rho I - A) = I$$
, and hence $T = (\rho I - A)^{-1}$.

$2 \Rightarrow 1$

- ▶ By 2, $T = \lim_{k\to\infty} T_k$ exists, which is nonnegative.
- As previously, $\lim_{k\to\infty} \frac{1}{\rho^k} A^k = \lim_{k\to\infty} \rho(T_k T_{k-1}) = O$.

► Then letting
$$k \to \infty$$
 in
 $(\rho I - A)T_k = T_k(\rho I - A) = I - \frac{1}{\rho^{k+1}}A^{k+1}$, we have
 $(\rho I - A)T = T(\rho I - A) = I$, and hence $(\rho I - A)^{-1} = T \ge 0$.

Perron-Frobenius Theorem II

Proposition 6

Let A be an $n \times n$ irreducible nonnegative matrix.

- 1. $\lambda(A) > 0$, $\lambda(A)$ is an eigenvalue of A, and there exists a positive eigenvector that belongs to $\lambda(A)$.
- 2. An eigenvector that belongs to $\lambda(A)$ is unique (up to multiplication).
- 3. If $Ay = \mu y$, $\mu \ge 0$, for some $y \ge 0$, $y \ne 0$, then $\mu = \lambda(A)$.
- 4. If $A \ge B \ge O$ and $A \ne B$, then $\lambda(A) > \lambda(B)$.

Proof

1.

Since A is irreducible, $A\mathbf{1} \gg 0$, or $\min_i(A\mathbf{1})_i > 0$.

Since $(\min_i (A\mathbf{1})_i)I\mathbf{1} \leq A\mathbf{1}$, $\min_i (A\mathbf{1})_i \notin M$. (:: If $\min_i (A\mathbf{1})_i \in M$, then $(\min_i (A\mathbf{1})_i)I - A)^{-1} \geq O$, and we would have $\mathbf{1} \leq 0$.)

Therefore, $\lambda(A) = \inf M \ge \min_i (A\mathbf{1})_i > 0.$

• Let
$$x \ge 0$$
, $x \ne 0$, be such that $Ax = \lambda(A)x$.

Then $(I + A)x = (1 + \lambda(A))x$.

Since I+A is irreducible and aperiodic, $(I+A)^m \gg O$ for some m.

Since $(1 + \lambda(A))^m x = (I + A)^m x \gg 0$, where $1 + \lambda > 0$, we have $x \gg 0$.

2.

- Let $Ax = \lambda(A)x$, $x \gg 0$, and $Ay = \lambda(A)y$, $y \neq 0$.
- Let $\theta = \min_i \frac{y_i}{x_i}$, and let $z = y \theta x \ge 0$, where $z \gg 0$.

• Then
$$Az = \lambda(A)z$$
.

- As we have shown, if $z \neq 0$, we would have $z \gg 0$.
- ▶ Therefore, z = 0, so that $y = \theta x$.

3.

Since A' is also irreducible, we can take an $x \gg 0$ such that $A'x = \lambda(A')x$, where $\lambda(A') = \lambda(A)$.

• Let
$$Ay = \mu y$$
, $y \ge 0$, $y \ne 0$.

Then

$$\mu(x \cdot y) = x \cdot \mu y = x \cdot Ay = (A'x) \cdot y = (\lambda(A)x) \cdot y = \lambda(A)(x \cdot y),$$

and hence $(\mu - \lambda(A))(x \cdot y) = 0.$

Since $x \gg 0$, $y \ge 0$, and $y \ne 0$, $x \cdot y \ne 0$. Hence $\mu = \lambda(A)$.

Periodicity and Eigenvalues of a Nonnegative Matrix

Proposition 7

Let A be an $n \times n$ irreducible nonnegative matrix with period d. Then A has d distinct eigenvalues ρ such that $|\rho| = \lambda(A)$.