Review on Common Beliefs

Daisuke Oyama

Topics in Economic Theory

September 27, 2018

Papers

- Monderer, D. and D. Samet (1989). "Approximating Common Knowledge with Common Beliefs," Games and Economic Behavior 1, 170-190.
- Kajii, A. and S. Morris (1997a). "The Robustness of Equilibria to Incomplete Information," Econometrica 65, 1283-1309.
- Kajii, A. and S. Morris (1997b). "Refinements and Higher Order Beliefs: A Unified Survey."
- Oyama, D. and S. Takahashi (2015). "Generalized Belief Operator and the Impact of Small Probability Events on Higher Order Beliefs."

Type Spaces

- Type space $\left(T_{i}, \pi_{i}\right)_{i \in I}$:
- T_{i} : set of i 's types (countable)
- $\pi_{i}: T_{i} \rightarrow \Delta\left(T_{-i}\right): i$'s belief
- $T=\prod_{i \in I} T_{i}, T_{-i}=\prod_{j \neq i} T_{j}$
- If there is a common prior $P \in \Delta(T)$ with $P\left(t_{i}\right)=P\left(\left\{t_{i}\right\} \times T_{-i}\right)>0$ for all i and t_{i},

$$
\pi_{i}\left(t_{i}\right)\left(E_{-i}\right)=\frac{P\left(\left\{t_{i}\right\} \times E_{-i}\right)}{P\left(t_{i}\right)}
$$

for $E_{-i} \subset T_{-i}$.

- $\mathcal{T}_{i}=2^{T_{i}}, \mathcal{T}=\prod_{i \in I} \mathcal{T}_{i}$,
with a generic element $\mathbf{E}=\left(E_{i}\right)_{i \in I} \in \mathcal{T}$.

p-Belief Operator

- $B_{i}^{p}: \mathcal{T} \rightarrow \mathcal{T}_{i}:$

$$
B_{i}^{p}(\mathbf{E})=\left\{t_{i} \in T_{i} \mid t_{i} \in E_{i} \text { and } \pi_{i}\left(t_{i}\right)\left(E_{-i}\right) \geq p\right\}
$$

where $E_{-i}=\prod_{j \neq i} E_{j}$.

Proposition 1

1. $B_{i}^{p}(\mathbf{E}) \subset E_{i}$.
2. If $\mathbf{E} \subset \mathbf{F}$, then $B_{i}^{p}(\mathbf{E}) \subset B_{i}^{p}(\mathbf{F})$.
3. If $\mathbf{E}^{0} \supset \mathbf{E}^{1} \supset \cdots$, then $B_{i}^{p}\left(\bigcap_{k=0}^{\infty} \mathbf{E}^{k}\right)=\bigcap_{k=0}^{\infty} B_{i}^{p}\left(\mathbf{E}^{k}\right)$.
(3. If $E_{-i}^{0} \supset E_{-i}^{1} \supset \cdots$, then $\pi_{i}\left(t_{i}\right)\left(\bigcap_{k=0}^{\infty} E_{-i}^{k}\right)=\lim _{k \rightarrow \infty} \pi_{i}\left(t_{i}\right)\left(E_{-i}^{k}\right)$.)

Common p-Belief (Iteration)

- For $\mathbf{p} \in[0,1]^{I}$,

$$
\begin{aligned}
B_{*}^{\mathbf{p}}(\mathbf{E}) & =\left(B_{i}^{p_{i}}(\mathbf{E})\right)_{i \in I} \\
C^{\mathbf{p}}(\mathbf{E}) & =\bigcap_{k=1}^{\infty}\left(B_{*}^{\mathbf{p}}\right)^{k}(\mathbf{E}) .
\end{aligned}
$$

Definition 1

$\mathbf{E} \in \mathcal{T}$ is common p-belief at $t \in T$ if $t_{i} \in C_{i}^{\mathbf{p}}(\mathbf{E})$ for all $i \in I$.

Common p-Belief (Fixed Point)

Definition 2

$\mathbf{F} \in \mathcal{T}$ is $\mathbf{p - e v i d e n t ~ i f ~}$

$$
F_{i} \subset B_{i}^{\mathbf{p}}(\mathbf{F}) \text { for all } i \in I .
$$

(Equivalent to the condition with " $F_{i}=B_{i}^{\mathrm{P}}(\mathbf{F})$ ".)

Definition 3

$\mathbf{E} \in \mathcal{T}$ is common \mathbf{p}-belief at $t \in T$ if there exists a \mathbf{p}-evident event profile \mathbf{F} such that

$$
t_{i} \in F_{i} \subset B_{i}^{\mathrm{p}}(\mathbf{E}) \text { for all } i \in I
$$

(Equivalent to the condition with " $t_{i} \in F_{i} \subset E_{i}$ ".)

Equivalence

Proposition 2
$C^{\mathbf{p}}(\mathbf{E})$ is p-evident, i.e., $C_{i}^{\mathbf{p}}(\mathbf{E}) \subset B_{i}^{\mathbf{p}}\left(C^{\mathbf{p}}(\mathbf{E})\right)$ for all $i \in I$.
Proof.
$C^{\mathbf{p}}(\mathbf{E})=\bigcap_{k=1}^{\infty} B_{*}^{\mathbf{p}}\left(\left(B_{*}^{\mathbf{p}}\right)^{k-1}(\mathbf{E})\right)=B_{*}^{\mathbf{p}}\left(\bigcap_{k=1}^{\infty}\left(B_{*}^{\mathbf{p}}\right)^{k-1}(\mathbf{E})\right)$.

Proposition 3
$C^{\mathbf{p}}(\mathbf{E})$ is the largest \mathbf{p}-evident event profile in \mathbf{E}, i.e., if $\mathbf{F} \subset \mathbf{E}$ and $\mathbf{F} \subset B_{*}^{\mathbf{p}}(\mathbf{F})$, then $\mathbf{F} \subset C^{\mathbf{p}}(\mathbf{E})$.

Proof.
First, $\mathbf{F} \subset B_{*}^{\mathbf{p}}(\mathbf{F}) \subset B_{*}^{\mathbf{p}}(\mathbf{E})$.
Suppose $\mathbf{F} \subset\left(B_{*}^{\mathbf{p}}\right)^{k}(\mathbf{E})$. Then
$\mathbf{F} \subset B_{*}^{\mathbf{p}}(\mathbf{F}) \subset B_{*}^{\mathbf{p}}\left(\left(B_{*}^{\mathbf{p}}\right)^{k}(\mathbf{E})\right)=\left(B_{*}^{\mathbf{p}}\right)^{k+1}(\mathbf{E})$.

Equivalence

Proposition 4

The two definitions are equivalent, i.e.,

$$
\begin{aligned}
& t_{i} \in C_{i}^{\mathbf{p}}(\mathbf{E}) \text { for all } i \in I \\
& \quad \Longleftrightarrow \exists \mathbf{F}: \mathbf{p} \text {-evident s.t. } t_{i} \in F_{i} \subset B_{i}^{\mathbf{p}}(\mathbf{E}) \text { for all } i \in I
\end{aligned}
$$

Proof.

- " \Rightarrow ":
$C^{\mathbf{p}}(\mathbf{E})$ is p-evident by Proposition 2, and $C^{\mathbf{p}}(\mathbf{E}) \subset B_{*}^{\mathbf{p}}(\mathbf{E})$.
- " \Leftarrow ":
$\mathbf{F} \subset C^{\mathbf{p}}(\mathbf{E})$ by Proposition 3.

Example: Email Game

- $T_{1}=T_{2}=\{0,1,2, \ldots\}$
- $\pi_{1}: T_{1} \rightarrow \Delta\left(T_{2}\right):$

$$
\pi_{1}\left(t_{2} \mid t_{1}\right)= \begin{cases}1 & \text { if } t_{1}=0, t_{2}=0 \\ \frac{1}{2-\varepsilon} & \text { if } t_{1} \geq 1, t_{2}=t_{1}-1 \\ \frac{1-\varepsilon}{2-\varepsilon} & \text { if } t_{1} \geq 1, t_{2}=t_{1} \\ 0 & \text { otherwise }\end{cases}
$$

$\pi_{2}: T_{2} \rightarrow \Delta\left(T_{1}\right):$

$$
\pi_{2}\left(t_{1} \mid t_{2}\right)= \begin{cases}\frac{1}{2-\varepsilon} & \text { if } t_{2}=0, t_{1}=0 \\ \frac{1}{2-\varepsilon} & \text { if } t_{2} \geq 1, t_{1}=t_{2} \\ \frac{1-\varepsilon}{2-\varepsilon} & \text { if } t_{2} \geq 0, t_{1}=t_{2}+1 \\ 0 & \text { otherwise }\end{cases}
$$

- Let $E_{1}=T_{1} \backslash\{0\}$ and $E_{2}=T_{2}$, and $p_{i} \geq \frac{1}{2}$.

Connection to Games 1

- Type space $\left(T_{i}, \pi_{i}\right)_{i \in I}$
- Players $I=1, \ldots,|I|$
- Binary actions $A_{i}=\{0,1\}$
- $\mathbf{F}=\left(F_{i}\right)_{i \in i} \in \mathcal{T}$ is identified with the (pure) strategy profile σ such that $\sigma_{i}\left(t_{i}\right)=1$ if and only if $t_{i} \in F_{i}$.
- $\operatorname{Fix} \mathbf{E} \in \mathcal{T}$.
- Incomplete information game $\mathbf{u}^{\mathbf{p}}$:

If $t_{i} \in E_{i}$: for all t_{-i} with $\pi_{i}\left(t_{i}\right)\left(t_{-i}\right)>0$,

$$
\begin{aligned}
u_{i}^{p_{i}}\left(1, a_{-i}, t_{i}, t_{-i}\right) & = \begin{cases}1-p_{i} & \text { if } a_{-i}=\mathbf{1}_{-i} \\
-p_{i} & \text { otherwise }\end{cases} \\
u_{i}^{p_{i}}\left(0, a_{-i}, t_{i}, t_{-i}\right) & =0
\end{aligned}
$$

If $t_{i} \notin E_{i}: 0$ is a dominant action.

- $B_{i}^{p_{i}}\left(E_{i}, \mathbf{F}_{-i}\right)$ is the (largest) best response to \mathbf{F}_{-i} (play 1 if indifferent).
- $C_{i}^{\mathbf{p}}(\mathbf{E})$ is the largest strategy that survives the iterated elimination of strictly dominated strategies.
- \mathbf{F} is an equilibrium if and only if $\mathbf{F} \subset \mathbf{E}$ and \mathbf{F} is p-evident.
- $C^{\mathbf{p}}(\mathbf{E})$ is the largest equilibrium.

Connection to Games 2

- Players $I=1, \ldots,|I|$
- Actions A_{i} (finite)
- Complete information game $\mathbf{g}, g_{i}: A \rightarrow \mathbb{R}$
- $a^{*} \in A$ is a \mathbf{p}-dominant equilibrium of \mathbf{g} if

$$
a_{i}^{*} \in b r_{i}\left(\lambda_{i}\right)
$$

for any $\lambda_{i} \in \Delta\left(A_{-i}\right)$ such that $\lambda_{i}\left(a_{-i}^{*}\right) \geq p_{i}$.

- Incomplete information game $\mathbf{u}, u_{i}: A \times T \rightarrow \mathbb{R}$
- Let

$$
\begin{aligned}
T_{i}^{g_{i}}=\left\{t_{i} \in T_{i} \mid\right. & u_{i}\left(a, t_{i}, t_{-i}\right)=g_{i}(a) \text { for all } a \in A \text { and } \\
& \text { for all } \left.t_{-i} \in T_{-i} \text { with } \pi_{i}\left(t_{i}\right)\left(t_{-i}\right)>0\right\},
\end{aligned}
$$

and $\mathbf{T}^{\mathbf{g}}=\left(T_{i}^{g_{i}}\right)_{i \in I} \in \mathcal{T}$.

Lemma 5

Suppose that a^{*} is a \mathbf{p}-dominant equilibrium of \mathbf{g}.
Then \mathbf{u} has an equilibrium σ such that $\sigma\left(a^{*} \mid t\right)=1$ for all $t \in C^{\mathbf{p}}\left(T^{\mathbf{g}}\right)$.

Proof

- Σ_{i}^{*} : set of all strategies σ_{i} such that $\sigma_{i}\left(a_{i}^{*} \mid t_{i}\right)=1$ for all $t_{i} \in C_{i}^{\mathbf{p}}\left(T^{\mathbf{g}}\right)$

$$
\Sigma^{*}=\prod_{i \in I} \Sigma_{i}^{*}, \Sigma_{-i}^{*} \prod_{j \in I} \Sigma_{j}^{*}
$$

- Σ^{*} is nonempty, convex, and compact (in appropriate topology).
- Define the correspondence $\beta_{i}^{*}: \Sigma_{-i}^{*} \rightarrow \Sigma_{i}^{*}$ by

$$
\beta_{i}^{*}\left(\sigma_{-i}\right)=\left\{\sigma_{i} \in \Sigma_{i}^{*} \mid \sigma_{i}\left(a_{i} \mid t_{i}\right)>0 \Rightarrow a_{i} \in B R_{i}\left(\sigma_{-i}\right)\left(t_{i}\right)\right\}
$$

$$
\text { and } \beta^{*}: \Sigma^{*} \rightarrow \Sigma^{*} \text { by } \beta^{*}(\sigma)=\prod_{i \in I} \beta_{i}^{*}\left(\sigma_{-i}\right)
$$

- β^{*} is convex- and compact-valued and upper semi-continuous.

Proof

- It remains to show that $\beta_{i}^{*}\left(\sigma_{-i}\right) \neq \emptyset$ for all $i \in I$ and all $\sigma_{-i} \in \Sigma_{-i}^{*}$.
- Let $t_{i} \in C_{i}^{\mathbf{p}}\left(T^{\mathbf{g}}\right)\left(\subset T_{i}^{g_{i}}\right)$ and $\sigma_{-i} \in \Sigma_{-i}^{*}$.

We want to show that $a_{i}^{*} \in B R_{i}\left(\sigma_{-i}\right)\left(t_{i}\right)$.

- $C^{\mathbf{p}}\left(T^{\mathbf{g}}\right)$ is p-evident by Proposition 3, so that $C_{i}^{\mathbf{p}}\left(T^{\mathbf{g}}\right) \subset B_{i}^{\mathbf{p}}\left(C^{\mathbf{p}}\left(T^{\mathbf{g}}\right)\right)$.
- Hence,

$$
\pi_{i}\left(t_{i}\right)\left(\left\{t_{-i} \mid \sigma_{-i}\left(a_{-i}^{*} \mid t_{-i}\right)=1\right\}\right) \geq \pi_{i}\left(t_{i}\right)\left(C_{-i}^{\mathbf{p}}\left(T^{\mathbf{g}}\right)\right) \geq p_{i}
$$

where the last inequality follows from $t_{i} \in B_{i}^{\mathbf{p}}\left(C^{\mathbf{p}}\left(T^{\mathbf{g}}\right)\right)$.

- Since a^{*} is p-dominant, this implies that $a_{i}^{*} \in B R_{i}\left(\sigma_{-i}\right)\left(t_{i}\right)$.

Proof

- Therefore, by Kakutani's Fixed Point Theorem, β^{*} has a fixed point in Σ^{*}, which is an equilibrium of \mathbf{u}.

Proposition 6

Suppose that a^{*} is a strict equilibrium of \mathbf{g}.
For any $\delta>0$, there exists $\varepsilon>0$ such that for any $P \in \Delta(T)$ such that $P\left(C^{\mathbf{p}}\left(T^{\mathbf{g}}\right)\right) \geq 1-\varepsilon$ for any $\mathbf{p} \ll \mathbf{1}$, there exists an equilibrium σ of (T, P, \mathbf{u}) such that $P\left(\left\{t \in T \mid \sigma\left(a^{*} \mid t\right)=1\right\}\right) \geq 1-\delta$.

- A strict equilibrium is \mathbf{p}-dominant for some $\mathbf{p} \ll \mathbf{1}$.
- The proposition holds even with non common priors P_{i}.

Critical Path Theorem (Kajii and Morris 1997a)

- $P \in \Delta(T)$: common prior

Theorem 1
For $\mathbf{p} \in[0,1]^{I}$, suppose that $\sum_{i \in I} p_{i}<1$, and let $\kappa(\mathbf{p})=\left(1-\min _{i \in I} p_{i}\right) /\left(1-\sum_{i \in I} p_{i}\right)$.
Then for any type space $\left(\left(T_{i}\right)_{i \in I}, P\right)$ and any $\mathbf{E} \in \mathcal{T}$,

$$
P\left(\prod_{i \in I} C_{i}^{\mathbf{p}}(\mathbf{E})\right) \geq 1-\kappa(\mathbf{p})\left(1-P\left(\prod_{i \in I} E_{i}\right)\right)
$$

- If $\sum_{i \in I} p_{i}<1$, $P\left(\prod_{i \in I} C_{i}^{\mathbf{p}}(\mathbf{E})\right) \rightarrow 1$ as $P\left(\prod_{i \in I} E_{i}\right) \rightarrow 1$.
- In the Email game example where $p_{1}, p_{2} \geq 1 / 2$, we have $C_{i}^{\mathbf{p}}(\mathbf{E})=\emptyset$ while $P\left(\prod_{i \in I} E_{i}\right)=1-\varepsilon$.

