Review on Common Beliefs

Daisuke Oyama

Topics in Economic Theory

September 27, 2018

Papers

- Monderer, D. and D. Samet (1989). "Approximating Common Knowledge with Common Beliefs," Games and Economic Behavior 1, 170-190.
- Kajii, A. and S. Morris (1997a). "The Robustness of Equilibria to Incomplete Information," Econometrica 65, 1283-1309.
- Kajii, A. and S. Morris (1997b). "Refinements and Higher Order Beliefs: A Unified Survey."
- Oyama, D. and S. Takahashi (2015). "Generalized Belief Operator and the Impact of Small Probability Events on Higher Order Beliefs."

Type Spaces

- Type space $(T_i, \pi_i)_{i \in I}$:
 - ▶ *T_i*: set of *i*'s types (countable)
 - $\pi_i \colon T_i \to \Delta(T_{-i}) \colon i$'s belief

•
$$T = \prod_{i \in I} T_i$$
, $T_{-i} = \prod_{j \neq i} T_j$

• If there is a common prior $P \in \Delta(T)$ with $P(t_i) = P(\{t_i\} \times T_{-i}) > 0$ for all i and t_i ,

$$\pi_i(t_i)(E_{-i}) = \frac{P(\{t_i\} \times E_{-i})}{P(t_i)}$$

for $E_{-i} \subset T_{-i}$.

► $\mathcal{T}_i = 2^{T_i}$, $\mathcal{T} = \prod_{i \in I} \mathcal{T}_i$, with a generic element $\mathbf{E} = (E_i)_{i \in I} \in \mathcal{T}$.

p-Belief Operator

•
$$B_i^p : \mathcal{T} \to \mathcal{T}_i$$
:
 $B_i^p(\mathbf{E}) = \{t_i \in T_i \mid t_i \in E_i \text{ and } \pi_i(t_i)(E_{-i}) \ge p\},\$
where $E_{-i} = \prod_{j \ne i} E_j$.

Proposition 1

1.
$$B_i^p(\mathbf{E}) \subset E_i$$
.
2. If $\mathbf{E} \subset \mathbf{F}$, then $B_i^p(\mathbf{E}) \subset B_i^p(\mathbf{F})$.
3. If $\mathbf{E}^0 \supset \mathbf{E}^1 \supset \cdots$, then $B_i^p(\bigcap_{k=0}^{\infty} \mathbf{E}^k) = \bigcap_{k=0}^{\infty} B_i^p(\mathbf{E}^k)$.

(3. If $E_{-i}^0 \supset E_{-i}^1 \supset \cdots$, then $\pi_i(t_i)(\bigcap_{k=0}^{\infty} E_{-i}^k) = \lim_{k \to \infty} \pi_i(t_i)(E_{-i}^k)$.)

Common p-Belief (Iteration)

► For
$$\mathbf{p} \in [0, 1]^I$$
,
 $B^{\mathbf{p}}_*(\mathbf{E}) = (B^{p_i}_i(\mathbf{E}))_{i \in I}$,
 $C^{\mathbf{p}}(\mathbf{E}) = \bigcap_{k=1}^{\infty} (B^{\mathbf{p}}_*)^k(\mathbf{E})$.

Definition 1

 $\mathbf{E} \in \mathcal{T}$ is common p-belief at $t \in T$ if $t_i \in C_i^{\mathbf{p}}(\mathbf{E})$ for all $i \in I$.

Common p-Belief (Fixed Point) Definition 2 $\mathbf{F} \in \mathcal{T}$ is p-evident if

 $F_i \subset B_i^{\mathbf{p}}(\mathbf{F})$ for all $i \in I$.

(Equivalent to the condition with " $F_i = B_i^{\mathbf{p}}(\mathbf{F})$ ".)

Definition 3

 $E \in T$ is common p-belief at $t \in T$ if there exists a p-evident event profile F such that

 $t_i \in F_i \subset B_i^{\mathbf{p}}(\mathbf{E})$ for all $i \in I$.

(Equivalent to the condition with " $t_i \in F_i \subset E_i$ ".)

Equivalence

Proposition 2

 $C^{\mathbf{p}}(\mathbf{E})$ is p-evident, i.e., $C_i^{\mathbf{p}}(\mathbf{E}) \subset B_i^{\mathbf{p}}(C^{\mathbf{p}}(\mathbf{E}))$ for all $i \in I$.

Proof.

 $C^{\mathbf{p}}(\mathbf{E}) = \bigcap_{k=1}^{\infty} B^{\mathbf{p}}_{*}((B^{\mathbf{p}}_{*})^{k-1}(\mathbf{E})) = B^{\mathbf{p}}_{*}(\bigcap_{k=1}^{\infty} (B^{\mathbf{p}}_{*})^{k-1}(\mathbf{E})).$

Proposition 3

 $C^{\mathbf{p}}(\mathbf{E})$ is the largest **p**-evident event profile in **E**, i.e., if $\mathbf{F} \subset \mathbf{E}$ and $\mathbf{F} \subset B^{\mathbf{p}}_{*}(\mathbf{F})$, then $\mathbf{F} \subset C^{\mathbf{p}}(\mathbf{E})$.

Proof.

First,
$$\mathbf{F} \subset B_*^{\mathbf{p}}(\mathbf{F}) \subset B_*^{\mathbf{p}}(\mathbf{E})$$
.
Suppose $\mathbf{F} \subset (B_*^{\mathbf{p}})^k(\mathbf{E})$. Then
 $\mathbf{F} \subset B_*^{\mathbf{p}}(\mathbf{F}) \subset B_*^{\mathbf{p}}((B_*^{\mathbf{p}})^k(\mathbf{E})) = (B_*^{\mathbf{p}})^{k+1}(\mathbf{E})$.

Equivalence

Proposition 4

The two definitions are equivalent, i.e.,

 $t_i \in C_i^{\mathbf{p}}(\mathbf{E})$ for all $i \in I$ $\iff \exists \mathbf{F} : \mathbf{p}\text{-evident s.t. } t_i \in F_i \subset B_i^{\mathbf{p}}(\mathbf{E})$ for all $i \in I$.

Proof.

"⇒": C^p(E) is p-evident by Proposition 2, and C^p(E) ⊂ B^p_{*}(E).
"⇐":

 $\mathbf{F} \subset C^{\mathbf{p}}(\mathbf{E})$ by Proposition 3.

Example: Email Game

$$T_1 = T_2 = \{0, 1, 2, \dots\}$$

$$\pi_1 \colon T_1 \to \Delta(T_2) \colon$$

$$\pi_1(t_2|t_1) = \begin{cases} 1 & \text{if } t_1 = 0, \, t_2 = 0 \\ \frac{1}{2-\varepsilon} & \text{if } t_1 \ge 1, \, t_2 = t_1 - 1 \\ \frac{1-\varepsilon}{2-\varepsilon} & \text{if } t_1 \ge 1, \, t_2 = t_1 \\ 0 & \text{otherwise} \end{cases}$$

$$\pi_{2} \colon T_{2} \to \Delta(T_{1}):$$

$$\pi_{2}(t_{1}|t_{2}) = \begin{cases} \frac{1}{2-\varepsilon} & \text{if } t_{2} = 0, \ t_{1} = 0\\ \frac{1}{2-\varepsilon} & \text{if } t_{2} \ge 1, \ t_{1} = t_{2}\\ \frac{1-\varepsilon}{2-\varepsilon} & \text{if } t_{2} \ge 0, \ t_{1} = t_{2} + 1\\ 0 & \text{otherwise} \end{cases}$$

• Let $E_1 = T_1 \setminus \{0\}$ and $E_2 = T_2$, and $p_i \ge \frac{1}{2}$.

Connection to Games 1

- ► Type space (T_i, π_i)_{i∈I}
- Players $I = 1, \ldots, |I|$
- Binary actions A_i = {0, 1}
- ► $\mathbf{F} = (F_i)_{i \in i} \in \mathcal{T}$ is identified with the (pure) strategy profile σ such that $\sigma_i(t_i) = 1$ if and only if $t_i \in F_i$.
- Fix $\mathbf{E} \in \mathcal{T}$.
- Incomplete information game u^p:

If $t_i \in E_i$: for all t_{-i} with $\pi_i(t_i)(t_{-i}) > 0$,

$$\begin{split} u_i^{p_i}(1, a_{-i}, t_i, t_{-i}) &= \begin{cases} 1 - p_i & \text{if } a_{-i} = \mathbf{1}_{-i}, \\ -p_i & \text{otherwise}, \end{cases} \\ u_i^{p_i}(0, a_{-i}, t_i, t_{-i}) &= 0. \end{split}$$

If $t_i \notin E_i$: 0 is a dominant action.

- ▶ B_i^{p_i}(E_i, F_{-i}) is the (largest) best response to F_{-i} (play 1 if indifferent).
- ► C^p_i(E) is the largest strategy that survives the iterated elimination of strictly dominated strategies.
- $\blacktriangleright~{\bf F}$ is an equilibrium if and only if ${\bf F} \subset {\bf E}$ and ${\bf F}$ is ${\bf p}\text{-evident}.$
- $C^{\mathbf{p}}(\mathbf{E})$ is the largest equilibrium.

Connection to Games 2

- Players $I = 1, \ldots, |I|$
- Actions A_i (finite)
- Complete information game g, $g_i \colon A \to \mathbb{R}$

•
$$a^* \in A$$
 is a **p**-dominant equilibrium of **g** if
 $a_i^* \in br_i(\lambda_i)$

for any $\lambda_i \in \Delta(A_{-i})$ such that $\lambda_i(a^*_{-i}) \ge p_i$.

- ▶ Incomplete information game $\mathbf{u}, u_i \colon A \times T \to \mathbb{R}$
- Let

$$\begin{split} T_i^{g_i} &= \{t_i \in T_i \mid u_i(a, t_i, t_{-i}) = g_i(a) \text{ for all } a \in A \text{ and} \\ &\text{ for all } t_{-i} \in T_{-i} \text{ with } \pi_i(t_i)(t_{-i}) > 0\}, \end{split}$$

and $\mathbf{T}^{\mathbf{g}} = (T_i^{g_i})_{i \in I} \in \mathcal{T}.$

Lemma 5

Suppose that a^* is a p-dominant equilibrium of g. Then u has an equilibrium σ such that $\sigma(a^*|t) = 1$ for all $t \in C^p(T^g)$.

Proof

• Σ_i^* : set of all strategies σ_i such that $\sigma_i(a_i^*|t_i) = 1$ for all $t_i \in C_i^{\mathbf{p}}(T^{\mathbf{g}})$

$$\Sigma^* = \prod_{i \in I} \Sigma_i^*$$
, $\Sigma_{-i}^* \prod_{j \in I} \Sigma_j^*$

• Σ^* is nonempty, convex, and compact (in appropriate topology).

 \blacktriangleright Define the correspondence $\beta_i^*\colon \Sigma_{-i}^*\to \Sigma_i^*$ by

$$\beta_i^*(\sigma_{-i}) = \{ \sigma_i \in \Sigma_i^* \mid \sigma_i(a_i | t_i) > 0 \Rightarrow a_i \in BR_i(\sigma_{-i})(t_i) \},\$$

and $\beta^* \colon \Sigma^* \to \Sigma^*$ by $\beta^*(\sigma) = \prod_{i \in I} \beta^*_i(\sigma_{-i})$.

• β^* is convex- and compact-valued and upper semi-continuous.

Proof

- ▶ It remains to show that $\beta_i^*(\sigma_{-i}) \neq \emptyset$ for all $i \in I$ and all $\sigma_{-i} \in \Sigma_{-i}^*$.
- Let $t_i \in C_i^{\mathbf{p}}(T^{\mathbf{g}}) \ (\subset T_i^{g_i})$ and $\sigma_{-i} \in \Sigma_{-i}^*$. We want to show that $a_i^* \in BR_i(\sigma_{-i})(t_i)$.
- ► $C^{\mathbf{p}}(T^{\mathbf{g}})$ is **p**-evident by Proposition 3, so that $C_i^{\mathbf{p}}(T^{\mathbf{g}}) \subset B_i^{\mathbf{p}}(C^{\mathbf{p}}(T^{\mathbf{g}})).$

Hence,

$$\pi_i(t_i)(\{t_{-i} \mid \sigma_{-i}(a^*_{-i}|t_{-i}) = 1\}) \ge \pi_i(t_i)(C^{\mathbf{p}}_{-i}(T^{\mathbf{g}})) \ge p_i,$$

where the last inequality follows from $t_i \in B_i^{\mathbf{p}}(C^{\mathbf{p}}(T^{\mathbf{g}}))$.

Since a^* is **p**-dominant, this implies that $a_i^* \in BR_i(\sigma_{-i})(t_i)$.

Proof

Therefore, by Kakutani's Fixed Point Theorem,
 β* has a fixed point in Σ*, which is an equilibrium of u.

Proposition 6

Suppose that a^* is a strict equilibrium of g.

For any $\delta > 0$, there exists $\varepsilon > 0$ such that for any $P \in \Delta(T)$ such that $P(C^{\mathbf{p}}(T^{\mathbf{g}})) \ge 1 - \varepsilon$ for any $\mathbf{p} \ll \mathbf{1}$, there exists an equilibrium σ of (T, P, \mathbf{u}) such that $P(\{t \in T \mid \sigma(a^*|t) = 1\}) \ge 1 - \delta.$

- A strict equilibrium is p-dominant for some $\mathbf{p} \ll \mathbf{1}$.
- The proposition holds even with non common priors P_i .

Critical Path Theorem (Kajii and Morris 1997a)

• $P \in \Delta(T)$: common prior

Theorem 1

For $\mathbf{p} \in [0, 1]^I$, suppose that $\sum_{i \in I} p_i < 1$, and let $\kappa(\mathbf{p}) = (1 - \min_{i \in I} p_i)/(1 - \sum_{i \in I} p_i)$.

Then for any type space $((T_i)_{i\in I}, P)$ and any $\mathbf{E} \in \mathcal{T}$,

$$P\left(\prod_{i\in I} C_i^{\mathbf{p}}(\mathbf{E})\right) \ge 1 - \kappa(\mathbf{p}) \left(1 - P\left(\prod_{i\in I} E_i\right)\right).$$

• If
$$\sum_{i \in I} p_i < 1$$
,
 $P\left(\prod_{i \in I} C_i^{\mathbf{p}}(\mathbf{E})\right) \to 1$ as $P\left(\prod_{i \in I} E_i\right) \to 1$.

▶ In the Email game example where $p_1, p_2 \ge 1/2$, we have $C_i^{\mathbf{p}}(\mathbf{E}) = \emptyset$ while $P\left(\prod_{i \in I} E_i\right) = 1 - \varepsilon$.