Correlated Equilibrium

Daisuke Oyama

Game Theory I

October 5, 2023

Complete Information Games

- $ightharpoonup I = \{1, \dots, |I|\}$: set of players
- $ightharpoonup A_i$: finite set of actions for i
- ▶ g_i : $A \to \mathbb{R}$: payoff function for i

We identify the game with $\mathbf{g} = (g_i)$.

Nash Equilibrium

A profile of mixed actions $x = (x_i)_{i \in I} \in \prod_i \Delta(A_i)$ is a Nash equilibrium of g if for all i,

$$\sum_{a} \prod_{j} x_{j}(a_{j})g_{i}(a) \geq \sum_{a} x'_{i}(a_{i}) \prod_{j \neq i} x_{j}(a_{j})g_{i}(a)$$

for all $x_i' \in \Delta(A_i)$, or equivalently, if for all i,

$$x_i(a_i) > 0$$

 $\Rightarrow \sum_{a_{-i}} \prod_{j \neq i} x_j(a_j) g_i(a_i, a_{-i}) \ge \sum_{a_{-i}} \prod_{j \neq i} x_j(a_j) g_i(a'_i, a_{-i})$

for all $a_i, a_i' \in A_i$.

Correlated Equilibrium

Definition 1

An action distribution $\xi \in \Delta(A)$ is a correlated equilibrium of ${\bf g}$ if for all i,

$$\sum_{a_{-i} \in A_{-i}} \xi(a_i, a_{-i}) g_i(a_i, a_{-i}) \ge \sum_{a_{-i} \in A_{-i}} \xi(a_i, a_{-i}) g_i(a_i', a_{-i})$$

for all $a_i, a_i' \in A_i$.

A profile of mixed actions $x=(x_i)_{i\in I}\in \prod_i \Delta(A_i)$ is a Nash equilibrium of ${\bf g}$ if and only if the action distribution $\xi\in\Delta(A)$ defined by $\xi(a)=\prod_i x_i(a_i)$ is a correlated equilibrium of ${\bf g}$.

Information Structures

$$\mathcal{T} = ((T_i)_{i \in I}, \pi)$$

- $ightharpoonup T_i$: Set of types of player i (finite or countably infinite)
- \blacktriangleright $\pi \in \Delta(T)$: Common prior

Incomplete Information Games

- ▶ Payoff functions g and information structure T define an incomplete information game (with no payoff uncertainty).
- Player *i*'s strategy: $\sigma_i \colon T_i \to \Delta(A_i)$ Σ_i : set of *i*'s strategies
- Player *i*'s ex ante payoff for strategy profile $\sigma = (\sigma_j)_{j \in I}$: $\sum_t \pi(t) \sum_a \left(\prod_j \sigma_j(t_j)(a_j) \right) g_i(a)$
- ▶ Type t_i 's interim payoff for a_i and σ_{-i} : $\sum_{t-i} \pi(t_{-i}|t_i) \sum_{a_{-i}} \left(\prod_{j\neq i} \sigma_j(t_j)(a_j)\right) g_i(a_i,a_{-i})$

 - $\pi(t_{-i}|t_i) = \frac{\pi(t_i, t_{-i})}{\pi(t_i)}$

 \blacktriangleright A strategy profile σ induces an action distribution $\xi\in\Delta(A)$ by

$$\xi(a) = \sum_{t} \pi(t) \left(\prod_{j} \sigma_{j}(t_{j})(a_{j}) \right).$$

Bayes-Nash Equilibrium

▶ A strategy profile σ is a Bayes-Nash equilibrium of $(\mathbf{g}, \mathcal{T})$ if for all i,

$$\sum_{t} \pi(t) \sum_{a} \left(\prod_{j} \sigma_{j}(t_{j})(a_{j}) \right) g_{i}(a)$$

$$\geq \sum_{t} \pi(t) \sum_{a} \sigma'_{i}(t_{i})(a_{i}) \left(\prod_{j \neq i} \sigma_{j}(t_{j})(a_{j}) \right) g_{i}(a)$$

for all $\sigma_i' \in \Sigma_i$, or equivalently, if for all i and all $t_i \in T_i$,

$$\sigma_i(t_i)(a_i) > 0$$

$$\Rightarrow \sum_{t=i} \pi(t_{-i}|t_i) \sum_{a=i} \left(\prod_{j \neq i} \sigma_j(t_j)(a_j) \right) g_i(a_i, a_{-i})$$

$$\geq \sum_{t=i} \pi(t_{-i}|t_i) \sum_{a=i} \left(\prod_{j \neq i} \sigma_j(t_j)(a_j) \right) g_i(a'_i, a_{-i})$$

for all $a_i, a'_i \in A_i$.

Characterization of Correlated Equilibrium

- Fix g.
- ► What action distributions are induced by some Bayes-Nash equilibrium of some information structure?
- ► = Correlated equilibria of g

Characterization of Correlated Equilibrium

Proposition 1

For any information structure \mathcal{T} and any Bayes-Nash equilibrium σ of $(\mathbf{g}, \mathcal{T})$, the action distribution ξ induced by (\mathcal{T}, σ) is a correlated equilibrium of \mathbf{g} .

Proof

- ► Take any information structure \mathcal{T} and any Bayes-Nash equilibrium σ of $(\mathbf{g}, \mathcal{T})$.
- ightharpoonup Fix $i \in I$ and $a_i, a_i' \in A_i$.
- ▶ By optimality, for all $t_i \in T_i$, if $\sigma_i(t_i)(a_i) > 0$, then

$$\sum_{t_{-i}} \pi(t_{-i}|t_i) \sum_{a_{-i}} \left(\prod_{j \neq i} \sigma_j(t_j)(a_j) \right) g_i(a_i, a_{-i})$$

$$\geq \sum_{t_{-i}} \pi(t_{-i}|t_i) \sum_{a_{-i}} \left(\prod_{j \neq i} \sigma_j(t_j)(a_j) \right) g_i(a'_i, a_{-i}).$$

▶ Multiply both sides by $\pi(t_i)\sigma_i(t_i)(a_i)$ and sum them over t_i :

$$\sum_{a_{-i}} \sum_{t} \pi(t) \left(\prod_{j} \sigma_{j}(t_{j})(a_{j}) \right) g_{i}(a_{i}, a_{-i})$$

$$\geq \sum_{a_{-i}} \sum_{t} \pi(t) \left(\prod_{j} \sigma_{j}(t_{j})(a_{j}) \right) g_{i}(a'_{i}, a_{-i}).$$

▶ Let $\xi \in \Delta(A)$ be induced by (\mathcal{T}, σ) :

$$\xi(a) = \sum_{i} \pi(t) \left(\prod_{j} \sigma_{j}(t_{j})(a_{j}) \right).$$

► Thus, we have

$$\sum_{a_{-i}} \xi(a_i, a_{-i}) g_i(a_i, a_{-i}) \ge \sum_{a_{-i}} \xi(a_i, a_{-i}) g_i(a_i', a_{-i}).$$

This means that ξ is a correlated equilibrium of g.

Characterization of Correlated Equilibrium

Proposition 2

For any correlated equilibrium $\xi \in \Delta(A)$ of \mathbf{g} , there exist an information structure $\mathcal T$ and a Bayes-Nash equilibrium σ of $(\mathbf{g},\mathcal T)$ that induce ξ .

Proof

- ▶ Take any correlated equilibrium $\xi \in \Delta(A)$ of \mathbf{g} .
- ▶ Define the information structure $\mathcal{T} = ((T_i)_{i \in I}, \pi)$ by
 - $ightharpoonup T_i = \{a_i \in A_i \mid \sum_{a=i} \xi(a_i, a_{-i}) > 0\}$ for each $i \in I$, and
 - $\pi = \xi$.
- ▶ Define σ by $\sigma_i(t_i)(a_i) = 1$ if $t_i = a_i$, and $\sigma_i(t_i)(a_i) = 0$ otherwise.
- ▶ Clearly, σ induces ξ :

For all a,

$$\sum_{i} \pi(t) \prod_{j} \sigma_{j}(t_{j})(a_{j}) = \pi(a) = \xi(a).$$

It remains to show that σ is a Bayes-Nash equilibrium of $(\mathbf{g}, \mathcal{T})$.

For any i, $t_i = a_i$, and a_i' , the interim payoff (multiplied by $\pi(t_i)$) is

$$\sum_{t-i} \pi(t_i, t_{-i}) \sum_{a_{-i}} \left(\prod_{j \neq i} \sigma_j(t_j)(a_j) \right) g_i(a_i', a_{-i})$$

$$= \sum_{a_{-i}} \pi(t_i, a_{-i}) g_i(a_i', a_{-i}) = \sum_{a_{-i}} \xi(a_i, a_{-i}) g_i(a_i', a_{-i}).$$

ightharpoonup For all a_i, a'_i ,

since
$$\xi$$
 is a correlated equilibrium and hence
$$\sum_{a_{-i}} \xi(a_i,a_{-i})g_i(a_i,a_{-i}) \geq \sum_{a_{-i}} \xi(a_i,a_{-i})g_i(a_i',a_{-i}),$$
 if $\sigma_i(t_i)(a_i) > 0$ and hence $t_i = a_i$, then
$$\sum_{t_{-i}} \pi(t_i,t_{-i}) \sum_{a_{-i}} \left(\prod_{j \neq i} \sigma_j(t_j)(a_j)\right) g_i(a_i,a_{-i}) \geq \sum_{t_{-i}} \pi(t_i,t_{-i}) \sum_{a_{-i}} \left(\prod_{j \neq i} \sigma_j(t_j)(a_j)\right) g_i(a_i',a_{-i}).$$

"Revelation Principle"

▶ $T_i = \{a_i \in A_i \mid \sum_{a_{-i}} \xi(a_i, a_{-i}) > 0\}$ in the information structure constructed in the proof:

Types, or signals, are interpreted as "action recommendations".

- ··· "Direct mechanism"
- The condition in the definition of correlated equilibrium: $\sum_{n=0}^{\infty} \frac{g(n,n)g(n,n)}{g(n,n)} = \sum_{n=0}^{\infty} \frac{g(n,n)g(n,n)}{g(n,n)} = \sum_{n=0}^{$
 - $\sum_{a_{-i}} \xi(a_i, a_{-i}) g_i(a_i, a_{-i}) \ge \sum_{a_{-i}} \xi(a_i, a_{-i}) g_i(a_i', a_{-i})$
 - · · · Incentive to follow, or obey, the action recommendation
 - ··· "Obedience" condition