Email Game

Daisuke Oyama

Game Theory I

October 12, 2023

 2×2 Coordination Games of Complete Information

I = {1,2}
A₁ = A₂ = {NI, I}
Payoffs g = (g_i)_{i \in I}:
NI I
I
0
0
I
$$\theta^* - 1$$
 θ^*

▶ (I, I): Risk-dominant equilibrium
 i.e., I is a strict best response to ¹/₂[NI] + ¹/₂[I].

 $\frac{1}{2} < \theta^* < 1$

• (NI, NI): Risk-dominated equilibrium

Email Game Incomplete Information Perturbations

$$T_1 = T_2 = \{1, 2, \ldots\}$$

$$\blacktriangleright P \in \Delta(T):$$

$t_1 \setminus t_2$	1	2	3	4	• • •
1	ε				
2	$\varepsilon(1-\varepsilon)$	$\varepsilon(1-\varepsilon)^2$			
3		$\varepsilon(1-\varepsilon)^3$	$\varepsilon(1-\varepsilon)^4$		
4			$\varepsilon(1-\varepsilon)^5$	$\varepsilon(1-\varepsilon)^6$	
5				$\varepsilon(1-\varepsilon)^7$	
:					•

 $0<\varepsilon<1$

$$u_i((a_i, a_j), (t_i, t_j)) = \begin{cases} 0 & \text{if } i = 1, \ t_i = 1, \ \text{and} \ a_i = NI \\ 1 & \text{if } i = 1, \ t_i = 1, \ \text{and} \ a_i = I \\ g_i(a_i, a_j) & \text{otherwise} \end{cases}$$

Other types: "normal" type

Contagion

$t_1 \setminus t_2$	1	2	3	4	
1	ε				
2	$\varepsilon(1-\varepsilon)$	$\varepsilon(1-\varepsilon)^2$			
3		$\varepsilon(1-\varepsilon)^3$	$\varepsilon(1-\varepsilon)^4$		
4			$\varepsilon(1-\varepsilon)^5$	$\varepsilon(1-\varepsilon)^6$	
5				$\varepsilon(1-\varepsilon)^7$	
÷					·

• By construction, $t_1 = 1$ plays I as a dominant action.

► For
$$t_2 = 1$$
,
 $(P(t_1 = 1 | t_2 = 1), P(t_1 = 2 | t_2 = 1)) = \left(\frac{1}{2-\varepsilon}, \frac{1-\varepsilon}{2-\varepsilon}\right).$
 $t_2 = 1$ believes that player 1 plays I with probability at least
 $\frac{1}{2-\varepsilon} > \frac{1}{2}.$
 $\Rightarrow t_2 = 1$ plays I as a unique rationalizable action.

$t_1 \setminus t_2$	1	2	3	4	
1	ε				
2	$\varepsilon(1-\varepsilon)$	$\varepsilon(1-\varepsilon)^2$			
3		$\varepsilon(1-\varepsilon)^3$	$\varepsilon(1-\varepsilon)^4$		
4			$\varepsilon(1-\varepsilon)^5$	$\varepsilon(1-\varepsilon)^6$	
5				$\varepsilon(1-\varepsilon)^7$	
•					·

For $\tau \geq 1$, assume that both players of all types $t_i \leq \tau$ play I.

For
$$t_1 = \tau + 1$$
,
 $(P(t_2 = \tau | t_1 = \tau + 1), P(t_2 = \tau + 1 | t_1 = \tau + 1)) = \left(\frac{1}{2-\varepsilon}, \frac{1-\varepsilon}{2-\varepsilon}\right).$

By the induction hypothesis, $t_1 = \tau + 1$ believes that player 2 plays I with probability at least $\frac{1}{2-\varepsilon} > \frac{1}{2}$.

 $\Rightarrow t_1 = \tau + 1$ plays I as a unique rationalizable action.

Similarly, $t_2 = \tau + 1$ plays I as a unique rationalizable action.

By induction, both players of all types play I as a unique rationalizable action.

Symmetric Version

$t_1 \setminus t_2$	1	2	3	4	5	• • •
1		$\varepsilon \frac{1}{2}$				
2	$\varepsilon \frac{1}{2}$		$\varepsilon(1-\varepsilon)\frac{1}{2}$			
3		$\varepsilon(1-\varepsilon)\frac{1}{2}$		$\varepsilon(1-\varepsilon)^2\frac{1}{2}$		
4			$\varepsilon(1-\varepsilon)^2 \frac{1}{2}$		$\varepsilon(1-\varepsilon)^3 \frac{1}{2}$	
5				$\varepsilon (1-\varepsilon)^3 \frac{1}{2}$		•••
÷					· .	

• $t_1 = 1$, $t_2 = 1$: Crazy types

Generated by the following signal structure:

• *m* drawn from \mathbb{Z}_+ according to the distribution $\varepsilon(1-\varepsilon)^m$;

• noise $(\xi_1, \xi_2) = (1, 2), (2, 1)$ with probability $\frac{1}{2}$ each;

• player *i* receives signal $t_i = m + \xi_i$.

Discussion

1. Discontinuity of strategic behavior at complete information limit

In the email game incomplete information perturbation,

P(every player i knows that)his payoffs are given by the original game) = $1 - \varepsilon$.

 \cdots " ε -elaboration" of g

- For ε > 0, the game has a unique equilibrium, which plays I everywhere.
- For ε = 0, the game (of complete information) has two strict equilibria (and one totally mixed equilibrium).
- Failure of lower semi-continuity of the equilibrium correspondence at ε = 0.

2. Full implementation with payoff perturbations

- Say that an action profile a* in a complete information game g is *fully implementable with payoff perturbations* if for any sufficiently small ε > 0, there exists an ε-elaboration of g such that playing a* everywhere is a unique Bayes Nash equilibrium.
- The Email game demonstrates that a risk-dominant equilibrium in 2 × 2 coordination games is fully implementable with payoff perturbations.
- Extensions:
 - ► Strict p-dominant equilibrium with ∑_{i∈I} p_i ≤ 1 (Kajii and Morris 1997)
 - Monotone potential maximizer in supermodular monotone potential games (Frankel, Morris, and Pauzner 2003)
 - Oyama and Takahashi (2020)

- 3. Robustness to incomplete information (Kajii and Morris 1997)
 - The risk-dominated equilibrium of g is not robust to incomplete information,

i.e., for any $\varepsilon > 0$, there is an ε -elaboration of g such that the risk-dominated equilibrium is never played.

• $\nu \in \Delta(A)$ is *robust* to incomplete information if

for any $\delta > 0$, there exists $\bar{\varepsilon} > 0$ such that any ε -elaboration with $\varepsilon \leq \bar{\varepsilon}$ has an equilibrium σ such that $\|\nu_{\sigma} - \nu\| \leq \delta$

(where $\nu_{\sigma} \in \Delta(A)$ is the outcome induced by σ).

 By definition, if an outcome is fully implementable, then no other outcome is robust;

if an outcome is robust, then no other outcome is fully implementable.

A risk-dominant equilibrium in 2 × 2 coordination games is robust.

More generally, a p-dominant equilibrium with $\sum_{i \in I} p_i < 1$ is robust (Kajii and Morris 1997).

Monotone potential maximizer in supermodular monotone potential games is robust (Morris and Ui 2005).