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General Prior, “Common Values”

Global game G(k):
» Continuum of players
» Actions: a € {0,1}
» (Common) payoff function: u: {0,1} x [0,1] x R — R.

> wu(a, ¥, 6): Payoff to action a when proportion ¢ of opponents
play action 1 and the state is 6

» Define d(¢,6) = u(1,¢,0) — u(0,4,0)

v

f € R ~ density p: continuous, interval support

v

Each player i observes a private signal x; = 0 + ke;.

> k>0

» ¢, ~ density f: continuous, interval support
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Assumptions

1. Action monotonicity:

d(¢,0) is nondecreasing in £.
2. State monotonicity:

d(¢,0) is nondecreasing in 6.

3. Dominance regions:
There exist #,6 € R such that
> if § <@, then d(¢,0) < 0 for all £ € [0,1]; and
> if >0, then d(¢,0) > 0 for all £ € [0,1].
4. Strict Laplacian state monotonicity:

There exists a unique 6* solving fol d(¢,0)dl = 0.
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Laplacian Actions

Let d(¢) be a complete information game with a continuum of
symmetric players and binary actions.

» Action 1 is a Laplacian action if
1
/ d(0)de > 0.
0
» Action O is a Laplacian action if
1
/ d(0)de < 0.
0

» That is, action a is a Laplacian action if it is a strict best
response to the uniform belief over the proportion of players
who play a.

--- Generalization of risk-dominance
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Potential
» The function

¢
u(l) = / d(e)de'
0
is called a potential function of the game d(¢).
> o/(0) = d(0)
» Suppose that d(¢) is nondecreasing.
= v(¥) is convex, and hence is maximized at £ =0 or { = 1.

» ¢ =1 (all playing action 1) is a (unique) potential maximizer if
1
/ d(¢)de > 0.
0
» ¢ =0 (all playing action 0) is a (unique) potential maximizer if

/ 1 d(¢)de < 0.
0
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Example: Linear Payoffs

» Assume d(£,0) =(+60 —1
» 0=—5and § =1+ for § > 0 small
’fo 0)dl =0 — 3

*
» g* = 5
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Example: Regime Change Game

» Assume

a0 =4 ifr<1-0
T 1 ifl>1-0

where 0 < c< 1
» §=—6and 0 =1+ for § > 0 small
> [hd(,0)d =6 —c

> 0 =c¢
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Uniform Prior, “Private Values”

» For k small, G(k) is approximated by the “simplified version”
G*(k) where 6 follows uniform prior (instead of general prior)
and d depends on signal z; (instead of state 6).

» When k small, z; is close to #, and

» the prior does not matter.

Simplified global game G*(k):
» 0 ~ Uniform prior on some large interval [a, b]

» d(¢,x): Payoff difference for a = 1 over a = 0 when
proportion £ of opponents play action 1 and the signal is x
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Uniqueness

Proposition 1
The essentially unique strategy s surviving iterated deletion of
strictly dominated strategies in G* (k) satisfies s(x) = 0 for all
x < 0" and s(x) =1 for all x > 6*.
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Uniform Prior

» Suppose that 6 follows a uniform distribution p on a large
interval [a,b]: p(6) = 3.

» The conditional density f(0|x) of 6 given signal © = 0 + ke
(for x away from the boundary):

lf(:vfa) ( )
S (555) p(0)aor
_ =Y
70
_ (=Y
[ kf(z)dz

()
K K

fOz) =
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Heuristic Argument—Contagion

» By Dominance regions, players observing a signal above some
threshold &, play 1.

» Assuming that players with signals above &; play 1,

by Action monotonicity and State monotonicity, players
observing a signal above some threshold &, play 1, where

£ <&

» We have & ZEQZ~--\(E*.

> Similarly, from below we have { <¢, <--- 7 &
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In the limit, a player with signal E* when opponents play 1
above 5* and 0 below 5* must be indifferent between playing
1 and 0.

A player with signal © when opponents play 1 above x and 0
below x has a uniform belief over the proportion of opponents

playing 1.

By Strict Laplacian state monotonicity, it must be that
=%
& =0

The same applies to £*: thus £ = 0.

Hence, uniqueness holds with £ = £* = 6*.
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Laplacian Belief

» Suppose that players play the k-threshold strategy.
(k-threshold strategy plays action 1 iff . = 0 + ke > k iff ¢ > k—;e)

» Proportion of players who play 1 given 6:

1_F<’“59>
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» Distribution of the proportion of players who play 1
conditional on signal z; = k:

P(l—F(k;9>§€‘xi:k)
k—xF~1(1-£) _ _
A (R G I K

- Uniform distribution
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Proof of Proposition 1 (under additional assumption)

» Write D} (x, k) for the expected payoff gain when the player
observes signal x and others play the k-threshold strategy:

D;;(x,k)z/oo d<1—F<k;9> x) %f <$;9> df

—00

:/md<1—F(z+k;x),ar>f(2)d2‘

—00

(k-threshold strategy plays action 1 iff . = 0 + ke > k iff ¢ > k—;e)
» By Action monotonicity and State monotonicity, D} (z, k) is
nondecreasing in x and nonincreasing in k.
» We assume that D} (x, k) is continuous in (z, k).
> Satisfied if d(¢, z) is continuous in (¢, x).

» Satisfied in the regime change game.
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» Define §0’§1’§2’ ... by §0 = —o0 and
§n+1 = inf{x | D:(asjén) =0}.
By continuity, D:(§n+1,§n) =0.

> Then we have { < ¢{ <§ <--:

> §, = —00 <8 <¢ by Dominance regions.

» Suppose that §n_1 < én.
If o <& then Di(z,§ ) < Di(z,§ ) < Di(€ ,§, ) =0
since D (x, k) is nonincreasing in k and nondecreasmg in z.
But by the definition of { , we must have Dy (z,§ ) <0
By D:(§n+1,§ ) =0, we have { i >¢ .
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Symmetrically, define £y, &,,&,,... by £, = oo and

gn—i—l = Sup{x | D:(xvgn) = O}
By continuity, D} (,41,&,) = 0.
Then we have £, > & > &, > -+,

Then a strategy s survives n rounds of iterated deletion of
strictly dominated strategies if and only if

(2) = 0 ifm<§n,
A PR

Now let n — oo.
Then §  converges to some £ (> 0) and &, converges to

some &, (< 0).

By continuity, D} (£ ,€ ) =0 and D} (E,,€,) = 0.
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» For any z and k, we have

D;(x,x):/_2d<1—F<x;9> :c> %f <x;0> do
:/Old(e,x)cw

(by change of variables £ = 1 — F (£-9)).

K

» Therefore, by Strict Laplacian state monotonicity,

Di(§,,€,) =0 and D*(€,,€,) = 0 imply that §, = [N
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