Global Games I

Daisuke Oyama

Game Theory I

October 12, 2023

Binary Actions, Continuum of Players, Symmetric Payoffs

- Morris, S. and H. S. Shin (2003). "Global Games: Theory and Applications," in M. Dewatripont, L. P. Hansen, and S. J. Turnovsky, eds., Advances in Economics and Econometrics: Theory and Applications: Eighth World Congress, Volume 1, Cambridge University Press: Cambridge, Section 2.2.

General Prior, "Common Values"

Global game $G(\kappa)$:

- Continuum of players
- Actions: $a \in\{0,1\}$
- (Common) payoff function: $u:\{0,1\} \times[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$.
- $u(a, \ell, \theta)$: Payoff to action a when proportion ℓ of opponents play action 1 and the state is θ
- Define $d(\ell, \theta)=u(1, \ell, \theta)-u(0, \ell, \theta)$
- $\theta \in \mathbb{R} \sim$ density p : continuous, interval support
- Each player i observes a private signal $x_{i}=\theta+\kappa \varepsilon_{i}$.
- $\kappa>0$
- $\varepsilon_{i} \sim$ density f : continuous, interval support

Assumptions

1. Action monotonicity: $d(\ell, \theta)$ is nondecreasing in ℓ.
2. State monotonicity: $d(\ell, \theta)$ is nondecreasing in θ.
3. Dominance regions:

There exist $\underline{\theta}, \bar{\theta} \in \mathbb{R}$ such that

- if $\theta \leq \underline{\theta}$, then $d(\ell, \theta)<0$ for all $\ell \in[0,1]$; and
- if $\theta \geq \bar{\theta}$, then $d(\ell, \theta)>0$ for all $\ell \in[0,1]$.

4. Strict Laplacian state monotonicity:

There exists a unique θ^{*} solving $\int_{0}^{1} d(\ell, \theta) d \ell=0$.

Laplacian Actions

Let $d(\ell)$ be a complete information game with a continuum of symmetric players and binary actions.

- Action 1 is a Laplacian action if

$$
\int_{0}^{1} d(\ell) d \ell>0
$$

- Action 0 is a Laplacian action if

$$
\int_{0}^{1} d(\ell) d \ell<0
$$

- That is, action a is a Laplacian action if it is a strict best response to the uniform belief over the proportion of players who play a.
... Generalization of risk-dominance

Potential

- The function

$$
v(\ell)=\int_{0}^{\ell} d\left(\ell^{\prime}\right) d \ell^{\prime}
$$

is called a potential function of the game $d(\ell)$.

- $v^{\prime}(\ell)=d(\ell)$
- Suppose that $d(\ell)$ is nondecreasing.
$\Rightarrow v(\ell)$ is convex, and hence is maximized at $\ell=0$ or $\ell=1$.
- $\ell=1$ (all playing action 1) is a (unique) potential maximizer if

$$
\int_{0}^{1} d(\ell) d \ell>0
$$

- $\ell=0$ (all playing action 0) is a (unique) potential maximizer if

$$
\int_{0}^{1} d(\ell) d \ell<0
$$

Example: Linear Payoffs

- Assume $d(\ell, \theta)=\ell+\theta-1$
- $\underline{\theta}=-\delta$ and $\bar{\theta}=1+\delta$ for $\delta>0$ small
- $\int_{0}^{1} d(\ell, \theta) d \ell=\theta-\frac{1}{2}$
- $\theta^{*}=\frac{1}{2}$

Example: Regime Change Game

- Assume

$$
d(\ell, \theta)= \begin{cases}-c & \text { if } \ell \leq 1-\theta \\ 1-c & \text { if } \ell>1-\theta\end{cases}
$$

where $0<c<1$

- $\underline{\theta}=-\delta$ and $\bar{\theta}=1+\delta$ for $\delta>0$ small
- $\int_{0}^{1} d(\ell, \theta) d \ell=\theta-c$
- $\theta^{*}=c$

Uniform Prior, "Private Values"

- For κ small, $G(\kappa)$ is approximated by the "simplified version" $G^{*}(\kappa)$ where θ follows uniform prior (instead of general prior) and d depends on signal x_{i} (instead of state θ).
- When κ small, x_{i} is close to θ, and
- the prior does not matter.

Simplified global game $G^{*}(\kappa)$:

- $\theta \sim$ Uniform prior on some large interval $[a, b]$
- $d(\ell, x)$: Payoff difference for $a=1$ over $a=0$ when proportion ℓ of opponents play action 1 and the signal is x

Uniqueness

Proposition 1

The essentially unique strategy surviving iterated deletion of strictly dominated strategies in $G^{*}(\kappa)$ satisfies $s(x)=0$ for all $x<\theta^{*}$ and $s(x)=1$ for all $x>\theta^{*}$.

Uniform Prior

- Suppose that θ follows a uniform distribution p on a large interval $[a, b]: p(\theta)=\frac{1}{b-a}$.
- The conditional density $f(\theta \mid x)$ of θ given signal $x=\theta+\kappa \varepsilon$ (for x away from the boundary):

$$
\begin{aligned}
f(\theta \mid x) & =\frac{\frac{1}{\kappa} f\left(\frac{x-\theta}{\kappa}\right) p(\theta)}{\int \frac{1}{\kappa} f\left(\frac{x-\theta^{\prime}}{\kappa}\right) p\left(\theta^{\prime}\right) d \theta^{\prime}} \\
& =\frac{f\left(\frac{x-\theta}{\kappa}\right)}{\int f\left(\frac{x-\theta^{\prime}}{\kappa}\right) d \theta^{\prime}} \\
& =\frac{f\left(\frac{x-\theta}{\kappa}\right)}{\int \kappa f(z) d z} \\
& =\frac{1}{\kappa} f\left(\frac{x-\theta}{\kappa}\right)
\end{aligned}
$$

Heuristic Argument-Contagion

- By Dominance regions, players observing a signal above some threshold $\bar{\xi}_{1}$ play 1.
- Assuming that players with signals above $\bar{\xi}_{1}$ play 1 , by Action monotonicity and State monotonicity, players observing a signal above some threshold $\bar{\xi}_{2}$ play 1 , where $\bar{\xi}_{2} \leq \bar{\xi}_{1}$.
- We have $\bar{\xi}_{1} \geq \bar{\xi}_{2} \geq \cdots \searrow \bar{\xi}^{*}$.
- Similarly, from below we have $\underline{\xi}_{1} \leq \underline{\xi}_{2} \leq \cdots \nearrow \underline{\xi}^{*}$.
- In the limit, a player with signal $\bar{\xi}^{*}$ when opponents play 1 above $\bar{\xi}^{*}$ and 0 below $\bar{\xi}^{*}$ must be indifferent between playing 1 and 0 .
- A player with signal x when opponents play 1 above x and 0 below x has a uniform belief over the proportion of opponents playing 1.
- By Strict Laplacian state monotonicity, it must be that $\bar{\xi}^{*}=\theta^{*}$.
- The same applies to $\underline{\xi}^{*}$: thus $\underline{\xi}^{*}=\theta^{*}$.
- Hence, uniqueness holds with $\bar{\xi}^{*}=\underline{\xi}^{*}=\theta^{*}$.

Laplacian Belief

- Suppose that players play the k-threshold strategy.
(k-threshold strategy plays action 1 iff $x=\theta+\kappa \varepsilon \geq k$ iff $\varepsilon \geq \frac{k-\theta}{\kappa}$)
- Proportion of players who play 1 given θ :

$$
1-F\left(\frac{k-\theta}{\kappa}\right)
$$

- Distribution of the proportion of players who play 1 conditional on signal $x_{i}=k$:

$$
\begin{aligned}
& P\left(\left.1-F\left(\frac{k-\theta}{\kappa}\right) \leq \ell \right\rvert\, x_{i}=k\right) \\
& =\int_{-\infty}^{k-\kappa F^{-1}(1-\ell)}\left(1-F\left(\frac{k-\theta}{\kappa}\right)\right) \frac{1}{\kappa} f\left(\frac{x-\theta}{\kappa}\right) d \theta \\
& =\int_{-\infty}^{F^{-1}(1-\ell)}(1-F(z)) f(z) d z \\
& =P\left(1-F\left(\varepsilon_{i}\right) \leq \ell\right) \\
& =P\left(\varepsilon_{i} \geq F^{-1}(1-\ell)\right) \\
& =1-F\left(F^{-1}(1-\ell)\right)=\ell
\end{aligned}
$$

... Uniform distribution

Proof of Proposition 1 (under additional assumption)

- Write $D_{\kappa}^{*}(x, k)$ for the expected payoff gain when the player observes signal x and others play the k-threshold strategy:

$$
\begin{aligned}
D_{\kappa}^{*}(x, k) & =\int_{-\infty}^{\infty} d\left(1-F\left(\frac{k-\theta}{\kappa}\right), x\right) \frac{1}{\kappa} f\left(\frac{x-\theta}{\kappa}\right) d \theta \\
& =\int_{-\infty}^{\infty} d\left(1-F\left(z+\frac{k-x}{\kappa}\right), x\right) f(z) d z
\end{aligned}
$$

(k-threshold strategy plays action 1 iff $x=\theta+\kappa \varepsilon \geq k$ iff $\varepsilon \geq \frac{k-\theta}{\kappa}$)

- By Action monotonicity and State monotonicity, $D_{\kappa}^{*}(x, k)$ is nondecreasing in x and nonincreasing in k.
- We assume that $D_{\kappa}^{*}(x, k)$ is continuous in (x, k).
- Satisfied if $d(\ell, x)$ is continuous in (ℓ, x).
- Satisfied in the regime change game.
- Define $\underline{\xi}_{0}, \underline{\xi}_{1}, \underline{\xi}_{2}, \ldots$ by $\underline{\xi}_{0}=-\infty$ and

$$
\underline{\xi}_{n+1}=\inf \left\{x \mid D_{\kappa}^{*}\left(x, \underline{\xi}_{n}\right)=0\right\}
$$

By continuity, $D_{\kappa}^{*}\left(\underline{\xi}_{n+1}, \underline{\xi}_{n}\right)=0$.

- Then we have $\underline{\xi}_{0} \leq \underline{\xi}_{1} \leq \underline{\xi}_{2} \leq \cdots$:
- $\underline{\xi}_{0}=-\infty<\underline{\theta} \leq \underline{\xi}_{1}$ by Dominance regions.
- Suppose that $\underline{\xi}_{n-1} \leq \underline{\xi}_{n}$.

If $x<\underline{\xi}_{n}$, then $D_{\kappa}^{*}\left(x, \underline{\xi}_{n}\right) \leq D_{\kappa}^{*}\left(x, \underline{\xi}_{n-1}\right) \leq D_{\kappa}^{*}\left(\underline{\xi}_{n}, \underline{\xi}_{n-1}\right)=0$ since $D_{\kappa}^{*}(x, k)$ is nonincreasing in k and nondecreasing in x.

But by the definition of $\underline{\xi}_{n}$, we must have $D_{\kappa}^{*}\left(x, \underline{\xi}_{n}\right)<0$.
By $D_{\kappa}^{*}\left(\underline{\xi}_{n+1}, \underline{\xi}_{n}\right)=0$, we have $\underline{\xi}_{n+1} \geq \underline{\xi}_{n}$.

- Symmetrically, define $\bar{\xi}_{0}, \bar{\xi}_{1}, \bar{\xi}_{2}, \ldots$ by $\bar{\xi}_{0}=\infty$ and

$$
\bar{\xi}_{n+1}=\sup \left\{x \mid D_{\kappa}^{*}\left(x, \bar{\xi}_{n}\right)=0\right\} .
$$

By continuity, $D_{\kappa}^{*}\left(\bar{\xi}_{n+1}, \bar{\xi}_{n}\right)=0$.

- Then we have $\bar{\xi}_{0} \geq \bar{\xi}_{1} \geq \bar{\xi}_{2} \geq \cdots$.
- Then a strategy s survives n rounds of iterated deletion of strictly dominated strategies if and only if

$$
s(x)= \begin{cases}0 & \text { if } x<\underline{\xi}_{n} \\ 1 & \text { if } x>\bar{\xi}_{n}\end{cases}
$$

- Now let $n \rightarrow \infty$.

Then $\underline{\xi}_{n}$ converges to some $\underline{\xi}_{*}(>\underline{\theta})$ and $\bar{\xi}_{n}$ converges to some $\bar{\xi}_{*}(<\bar{\theta})$.

- By continuity, $D_{\kappa}^{*}\left(\underline{\xi}_{*}, \underline{\xi}_{*}\right)=0$ and $D_{\kappa}^{*}\left(\bar{\xi}_{*}, \bar{\xi}_{*}\right)=0$.
- For any x and κ, we have

$$
\begin{aligned}
D_{\kappa}^{*}(x, x) & =\int_{-\infty}^{\infty} d\left(1-F\left(\frac{x-\theta}{\kappa}\right), x\right) \frac{1}{\kappa} f\left(\frac{x-\theta}{\kappa}\right) d \theta \\
& =\int_{0}^{1} d(\ell, x) d \ell
\end{aligned}
$$

(by change of variables $\ell=1-F\left(\frac{x-\theta}{\kappa}\right)$).

- Therefore, by Strict Laplacian state monotonicity, $D_{\kappa}^{*}\left(\underline{\xi}_{*}, \underline{\xi}_{*}\right)=0$ and $D_{\kappa}^{*}\left(\bar{\xi}_{*}, \bar{\xi}_{*}\right)=0$ imply that $\underline{\xi}_{*}=\bar{\xi}_{*}=\theta^{*}$.

