Smallest Equilibrium Implementation by Global Games

Daisuke Oyama

Game Theory I

October 30, 2023

Papers

[MOT20] Morris, S., D. Oyama, and S. Takahashi (2020). "Implementation via Information Design in Binary-Action Supermodular Games."

[MOT22] Morris, S., D. Oyama, and S. Takahashi (2022). "Implementation via Information Design using Global Games."

Continuum Players, Continuous States

- Continuum of players
- Actions: $a \in \{0, 1\}$
- States: $\Theta \subset \mathbb{R}$ (closed interval)
- (Common) payoff function: $u: \{0,1\} \times [0,1] \times \Theta \to \mathbb{R}$.
 - u(a, ℓ, θ): Payoff to action a when proportion ℓ of opponents play action 1 and the state is θ
 - Define $d(\ell, \theta) = u(1, \ell, \theta) u(0, \ell, \theta)$
- $\blacktriangleright \ \theta \in \Theta \sim \text{distribution function } P$

Assumptions

A1. Action monotonicity:

 $d(\ell, \theta)$ is nondecreasing in ℓ .

A2. State monotonicity:

 $d(\ell, \theta)$ is nondecreasing in θ .

A3. Upper dominance region:

There exists $\overline{\theta} \in \operatorname{Int} \Theta$ such that $d(0, \theta) > 0$ for all $\theta \geq \overline{\theta}$.

Laplacian Threshold

Laplacian payoff gain:

$$\bar{\Phi}(\theta) = \int_0^1 d(\ell,\theta) d\ell$$

Laplacian threshold:

$$\theta^{\sharp} = \sup\{\theta \in \Theta \mid \bar{\Phi}(\theta) \le 0\}$$

Expected Laplacian Threshold

A4 Integrability:

 $\int_{\Theta} \max_{\ell \in \{0,1\}} |d(\ell,\theta)| dP(\theta) < \infty.$

- ▶ Assume $\int_{\theta > \theta^*} \bar{\Phi}(\theta) dP(\theta) < 0$ and that P is continuous.
- Expected Laplacian threshold:

Unique $\theta^* \in \operatorname{Int} \Theta$ that solves

$$\int_{\theta > \theta^*} \bar{\Phi}(\theta) dP(\theta) = 0$$

Target Outcome

• An outcome is a mapping $\nu \colon \Theta \to \Delta([0,1])$:

▶ $\nu_{\theta} \in \Delta([0,1])$: Distribution of the proportion of action-1 players at state θ

ν*: Continuous analogue of the optimal outcome identified in MOT20 ("target outcome"):

$$\nu_{\theta}^{*} = \begin{cases} \delta_{1} & \text{if } \theta > \theta^{*} \\ \delta_{0} & \text{if } \theta \le \theta^{*} \end{cases}$$

• $\delta_{\ell} \in \Delta([0,1])$: Dirac measure on $\ell \in [0,1]$

S-Implementation of the Target Outcome

For
$$\varepsilon > 0$$
, define ν^{ε} by
 $\nu_{\theta}^{*} = \begin{cases} \delta_{1} & \text{if } \theta \geq \theta^{*} + \varepsilon \\ \delta_{0} & \text{if } \theta < \theta^{*} + \varepsilon. \end{cases}$

Let \$\overline{\theta}'\$ ∈ Int \$\Overline{\theta}\$ be sufficiently large that
\$\int_{\theta^*+\varepsilon}\$ \$\overline{\Phi}\$ (\$\theta\$) dP(\$\theta\$) > 0, and
\$d(0,\$\theta\$) > 0 for all \$\theta\$ ≥ \$\overline{\theta}'\$.

Denote

$$\underline{P} = P(\theta^* + \varepsilon),$$
$$\overline{P} = P(\overline{\theta}').$$

Construction:

Conditional on the realization of θ , a signal x_i is sent to each player *i* according to the following law:

• If
$$\theta < \theta^* + \varepsilon$$
, then $x_i = -\infty$ for all players *i*.

• If $\theta \ge \theta^* + \varepsilon$, then $x_i = \omega + \kappa \zeta_i$ for each player *i*, where

$$\omega \sim \begin{cases} \mathsf{Unif}[\underline{P},\overline{P}] & \text{if } \theta^* + \varepsilon \leq \theta < \overline{\theta}' \\ \mathsf{Unif}[\overline{P},1] & \text{otherwise;} \end{cases}$$

$$\zeta_i \sim \text{any } F \text{ on } [-\frac{1}{2},\frac{1}{2}] \text{ (iid) with log-concave density.} \end{cases}$$

• If $\theta < \theta^* + \varepsilon$, then all players play action 0.

▶ If $\theta \ge \theta^* + \varepsilon$, then the game is equivalent to the global game with uniform prior and

$$\hat{d}(\ell,\omega) = \begin{cases} \frac{1}{\overline{P} - \underline{P}} \int_{\theta^* + \varepsilon}^{\overline{\theta}'} d(\ell,\theta) dP(\theta) & \text{if } \omega < \overline{P} \\ \frac{1}{1 - \overline{P}} \int_{\theta \geq \overline{\theta}'} d(\ell,\theta) dP(\theta) & \text{if } \omega \geq \overline{P}. \end{cases}$$

Laplacian payoff gain in this game:

$$\begin{split} \hat{\bar{\Phi}}(\omega) &= \int_0^1 \hat{d}(\ell, \omega) d\ell = \begin{cases} \frac{1}{\overline{P} - \underline{P}} \int_{\theta^* + \varepsilon}^{\overline{\theta}'} \bar{\Phi}(\theta) dP(\theta) & \text{if } \omega < \overline{P} \\ \frac{1}{1 - \overline{P}} \int_{\theta \geq \overline{\theta}'} \bar{\Phi}(\theta) dP(\theta) & \text{if } \omega \geq \overline{P} \\ > 0 & \text{for all } \omega \in \Omega. \end{cases} \end{split}$$

9/17

- In this global game, there is a unique equilibrium, in which all players play action 1:
 - \blacktriangleright The payoff gain function $\hat{d}(\ell,\omega)$ is not continuous, but
 - the expected payoff gain when the player observes signal x and others play the k-threshold strategy

$$D_{\kappa}(x,k) = \int_{\Theta} \hat{d}\left(1 - F\left(\frac{k-\theta}{\kappa}\right),\omega\right) dF_{\kappa}(\omega|x)$$

turns out to be continuous in (x, k),

by the monotonicity assumption (monotone likelihood ratio) on the noise distribution ${\cal F}$

(Lemma 1 in MOT22, Appendix A).

Optimality of the Target Outcome

• Objective function $V \colon [0,1] \times \Theta \to \mathbb{R}$

A7. Objective Action Monotonicity:

For each θ , $V(\ell, \theta)$ is nondecreasing in ℓ .

A8. Restricted Convexity:

 $V(\ell, \theta) \leq \ell V(1, \theta)$ whenever $\Phi(\ell, \theta) > \Phi(1, \theta)$.

A9. Objective State Monotonicity:

For each ℓ , $V(\ell, \theta)$ is nondecreasing in θ .

- Limit of optimal outcomes of finite approximations (N players, N states)
 For each N, apply MOT20.
 (MOT22, Appendix B)
- Solution of an optimal information design problem with continuum players and continuous states (with a heuristic "law of large numbers" assumption) (MOT22, Appendix C)

Optimal Information Design with Continuum Players

A15. Action Continuity:

For each θ , $d(\ell, \theta)$ is lower semi-continuous in ℓ .

▶ An information structure is a pair $(X, (\pi_{\theta})_{\theta \in \Theta})$ such that

X is a Polish space of signals;

•
$$\pi_{\theta} \in \Delta(\Delta(X))$$
 for each $\theta \in \Theta$;

• for each $Q \in \mathcal{B}(\Delta(X))$, $\pi_{\theta}(Q)$ is measurable in θ .

(If Z is Polish, i.e., separable and completely metrizable, then $\Delta(Z)$ is again Polish with respect to the weak topology.)

Interpretation:

- 1. Designer commits to $(X, (\pi_{\theta})_{\theta \in \Theta})$.
- **2**. $\theta \in \Theta$
- 3. $q \in \Delta(X) \sim \pi_{\theta}$
- 4. Signals sent according to q "independently" across players Empirical distribution of signal realizations = q("law of large numbers")
- 5. Interim belief conditional on signal $x \in X$: $\pi(\cdot|x) \in \Delta(\Delta(X) \times \Theta)$

 $X = \{-\infty\} \cup \left(\Omega + \kappa \left[-\frac{1}{2}, \frac{1}{2}\right]\right) \quad \left(\Omega = [\underline{P}, 1]\right)$

• $\pi_{\theta} \in \Delta(\Delta(X))$: Dirac measure on $\bar{q}_{\theta} \in \Delta(X)$ defined as follows:

• If
$$\theta < \theta^* + \varepsilon$$
, then $\bar{q}_{\theta} = \delta_{-\infty}$

▶ If $\theta^* + \varepsilon \leq \theta < \overline{\theta}'$ (resp. $\theta \geq \overline{\theta}'$), then \overline{q}_{θ} is the distribution of $x = \omega + \kappa \zeta$ where ω follows the uniform distribution over $[\underline{P}, \overline{P}]$ (resp. $[\overline{P}, 1]$) and ζ follows log-concave F over $[-\frac{1}{2}, \frac{1}{2}]$.

- Strategy: measurable function s: X → {0,1} (also symmetric strategy profile)
- Identify strategy s with set $S = \{x \in X \mid s(x) = 1\}$

 Σ : set of all strategies (= $\mathcal{B}(X)$)

- Outcome: $\nu : \Theta \to \Delta([0,1])$
 - For any $E \in \mathcal{B}([0,1])$, $\nu_{\theta}(E)$ is measurable in θ .
 - \triangleright ν_{θ} : probability distribution of the proportion of action-1 players
 - O: set of all outcomes

 $\blacktriangleright \ S \in \Sigma \text{ induces } \nu \in O \text{ by }$

 $\nu_{\theta}(E) = \pi_{\theta}(\{q \in \Delta(X) \mid q(S) \in E\}).$

Expected payoff again against $S \in \Sigma$ conditional on $x \in X$:

$$D(S|x) = \int_{\Delta(X) \times \Theta} d(q(S), \theta) d\pi(q, \theta|x)$$

- $S \in \Sigma$ is an equilibrium if $D(S|x) \ge 0$ for all $x \in S$ and $D(S|x) \le 0$ for all $x \in X \setminus S$.
- By A1 (Action Monotonicity) and A15 (Action Continuity), there is a smallest equilibrium <u>S</u>, and sequential best response from the smallest strategy Ø ∈ Σ converges to <u>S</u>.
- *ν* ∈ *O* is S-implementable if there exists an information structure whose smallest equilibrium induces *ν*.
- SI ⊂ O: set of S-implementable outcomes