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Introduction



Counterfactual Prediction

• Main Topic
– A method to characterize counterfactual predictions in incomplete

information games
• Counterfactual Predictions

– The analyst observes behavior assumed to be rationalized by a
Bayesian model

– What would have been true under different circumstances?
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Comparison to Previous Studies

• Previous works
– Most applied work relies on strong assumptions and undermines

the credibility of the models
• Novelty of this work

– Non-parametric approach to treat latent information structures
– Concise description of counterfactual predictions
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Organization of thesis

• The authors
– proved 2 theorems that characterize counterfactual predictions
– showed examples of counterfactual analysis using the theorems
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Preliminaries



Base game

• 𝜃 ∈ Θ: finite state of the world
• 𝑖 = 1, .., 𝑁 : players
• 𝐴𝑖 : finite set of actions
• 𝑢𝑖 : 𝐴 × Θ → R : utility
• G = (𝐴𝑖 , 𝑢𝑖)𝑁𝑖=1 : base game
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Bayesian game

• 𝜇 ∈ Δ(Θ) : prior distribution over states
• 𝑆𝑖 : measurable set of signals
• 𝜋 : Θ → Δ(𝑆) : distribution of signals
• I =

(
(𝑆𝑖)𝑁𝑖=1 , 𝜋

)
: information structure

• (𝜇,G,I) : Bayesian game
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Nash equilibrium

• 𝜎𝑖 : 𝑆𝑖 → Δ (𝐴𝑖) : strategy
– 𝜎𝑖 (𝑎𝑖 |𝑠𝑖) : probability of 𝑎𝑖 given 𝑠𝑖

• 𝑈𝑖 (𝜎) =
∑
𝜃∈Θ

∫
𝑠∈𝑆

∑
𝑎∈𝐴 𝑢𝑖 (𝑎, 𝜃)𝜎(𝑎 | 𝑠)𝜋(𝑑𝑠 | 𝜃)𝜇(𝜃)

: expected utility under 𝜎

Def. 1: Nash equilibrium

𝜎 is a Nash equilibrium if 𝑈𝑖 (𝜎) ≥ 𝑈𝑖

(
𝜎′
𝑖
, 𝜎−𝑖

)
for all 𝑖 and for all

strategies 𝜎′
𝑖
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Bayes Correlated equilibrium

• 𝜙 ∈ Δ(𝐴 × Θ) : outcome of G
• 𝜙 is induced by (𝜇,I, 𝜎)

𝜙(𝑎, 𝜃) =
∫
𝑠∈𝑆

𝜎(𝑎 | 𝑠)𝜋(𝑑𝑠 | 𝜃)𝜇(𝜃)

Def. 2: Bayes correlated equilibrium(BCE)

𝜙 is BCE if∑︁
𝜃∈Θ

∑︁
𝑎−𝑖∈𝐴−𝑖

(
𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖 , 𝜃) − 𝑢𝑖

(
𝑎′𝑖 , 𝑎−𝑖 , 𝜃

) )
𝜙 (𝑎𝑖 , 𝑎−𝑖 , 𝜃) ≥ 0

for all 𝑖, 𝑎𝑖 , 𝑎′𝑖
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Joint Predictions and
Counterfactuals



Joint Predictions with Fixed Information

• G𝑘 =

(
𝐴𝑘
𝑖
, 𝑢𝑘

𝑖

)𝐾
𝑖=1

• players simultaneously play G1, . . . ,G𝐾

• Information structure is the same in each game

Def. 3: Joint Prediction

an outcome profile(
𝜙1, . . . , 𝜙𝐾

)
∈ Δ

(
𝐴1 × Θ

)
× · · · × Δ

(
𝐴𝐾 × Θ

)
is a joint prediction if there exists a prior 𝜇, an information struc-
ture I, and for each 𝑘 = 1, . . . , 𝐾 an equilibrium 𝜎𝑘 of

(
𝜇,G𝑘 ,I

)
such

that 𝜙𝑘 is induced by
(
𝜇,I, 𝜎𝑘

)
.
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Linked Game

Def. 4: Linked Game

The linked game G =

(
𝐴𝑖 , 𝑢𝑖

)𝑁
𝑖=1

is defined by, for each 𝑖, 𝐴𝑖 = 𝐴1
𝑖
×

· · · × 𝐴𝐾
𝑖

and

𝑢𝑖 (𝑎, 𝜃) =
∑︁

𝑘=1,...,𝐾

𝑢𝑘𝑖

(
𝑎𝑘 , 𝜃

)
where 𝑎𝑖 =

(
𝑎1
𝑖
, . . . , 𝑎𝐾

𝑖

)
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Linked Game

• G𝑘 : a component game of G
• An outcome 𝜙 of G can be identified with a joint distribution in
Δ
(
𝐴1 × . . . × 𝐴𝐾 × Θ

)
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Joint Predictions

Theorem 1

A tuple
(
𝜙1, . . . , 𝜙𝐾

)
is a joint prediction for G1, . . . ,G𝐾 if and only if

there exists a BCE 𝜙 of G for which the marginal of 𝜙 on 𝐴𝑘 × Θ is
𝜙𝑘 for each 𝑘 = 1, . . . , 𝐾.

Lemma 1

𝜙 is a BCE if and only if there exists a prior 𝜇, an information struc-
ture I, and an equilibrium 𝜎 of (𝜇,G,I) such that 𝜙 is induced by
(𝜇,I, 𝜎) (Prop.1 in BCE)
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Joint Predictions

• Fix a prior 𝜇, an information structure I and strategy profile 𝜎 in
(𝜇,I,G).

• For each 𝑘,𝜎𝑘
𝑖

is the strategy in
(
𝜇,G𝑘 ,I

)
where 𝜎𝑘

𝑖
(· | 𝑠𝑖) is the

marginal of 𝜎 (· | 𝑠𝑖) on 𝐴𝑘
𝑖
.

• Thus, the marginal of 𝜙 on 𝐴𝑘 × Θ is 𝜙𝑘

Lemma 2

𝜎 is an equilibrium of (𝜇,G,I) if and only if 𝜎𝑘 is an equilibrium of(
𝜇,G𝑘 ,I

)
for each 𝑘.
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Proof of Theorem 1

(
𝜙1, . . . , 𝜙𝐾

)
is a joint prediction for (G1, . . . ,G𝐾)

⇔ ∃𝜇, ∃𝐼, ∃𝜎𝑘 of (𝜇,G𝑘 , 𝐼) for each k s.t. 𝜙𝑘 induced by (𝜇,I, 𝜎𝑘)
⇔ ∃𝜇, ∃𝐼, ∃𝜎 of (𝜇,G, 𝐼) for each k

s.t. 𝜙 is induced by (𝜇,I, 𝜎) and the marginal of 𝜙 on 𝐴𝑘 × Θ is 𝜙𝑘

⇔ 𝜙 is BCE of G s.t. the marginal of 𝜙 on 𝐴𝑘 × Θ is 𝜙𝑘

• By Def.3, Lem.2,1
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Proof of Lemma 2

𝑈 𝑖 (𝜎) =
∑︁
𝜃∈Θ

∫
𝑠∈𝑆

∑︁
𝑎∈𝐴

𝑢𝑖 (𝑎, 𝜃)𝜎(𝑎 | 𝑠)𝜋(𝑑𝑠 | 𝜃)𝜇(𝜃)

=
∑︁
𝜃∈Θ

∫
𝑠∈𝑆

∑︁
𝑘=1,...,𝐾

[∑︁
𝑎∈𝐴𝑘

𝑢𝑘𝑖 (𝑎, 𝜃)𝜎
𝑘 (𝑎 | 𝑠)

]
𝜋(𝑑𝑠 | 𝜃)𝜇(𝜃)

=
∑︁

𝑘=1,...,𝐾

∑︁
𝜃∈Θ

∫
𝑠∈𝑆

[∑︁
𝑎∈𝐴𝑘

𝑢𝑘𝑖 (𝑎, 𝜃)𝜎
𝑘 (𝑎 | 𝑠)

]
𝜋(𝑑𝑠 | 𝜃)𝜇(𝜃)

=
∑︁

𝑘=1,...,𝐾

𝑈𝑘
𝑖

(
𝜎𝑘

)
.
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Proof of Lemma 2

• If 𝜎 is not an equilibrium, then there exist 𝑖 and a strategy 𝜏𝑖 such
that ∑︁

𝑘=1,...,𝐾

𝑈𝑘
𝑖

(
𝜎𝑘

)
= 𝑈 𝑖 (𝜎) < 𝑈 𝑖

(
𝜏𝑖 , 𝜎−𝑖

)
=

∑︁
𝑘=1,...,𝐾

𝑈𝑘
𝑖

(
𝜏𝑘𝑖 , 𝜎−𝑖

)
where 𝜏𝑘

𝑖
is the marginal of 𝜏𝑖 on 𝐴𝑘

𝑖
.

• Thus, for at least one 𝑘, 𝜏𝑘
𝑖

is a profitable deviation in
(
𝜇,G𝑘 ,I

)
.
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Proof of Lemma 2

• Assume there is a profitable deviation in one of the component
games, say to 𝜏𝑘

𝑖
for player 𝑖 in G𝑘

• Then, the strategy defined by, for all 𝑎𝑖 ∈ 𝐴𝑖,

𝜏𝑖
(
𝑎𝑖 | 𝑠𝑖

)
= 𝜏𝑖

(
𝑎𝑘𝑖 | 𝑠𝑖

)
𝜎𝑖

(
𝑎−𝑘𝑖 | 𝑠𝑖

)
is a profitable deviation in the linked game.
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Counterfactuals when Information is Latent and Fixed

• G : observed game
• Analyst knows Θ, 𝐴, (𝑢𝑖)𝑁𝑖=1
• Analyst does not know I
• Analyst knows 𝜙 of G

– lies in a set 𝑀 ⊆ Δ(𝐴 × Θ)
– was generated under some prior 𝜇 and information structure I
– was induced by an equilibrium of (𝜇,G,I)

• The analyst wants to make counterfactual predictions for what
might happen if the unobserved game Ĝ were played

• Analyst assumes that 𝜇 and I are the same in Ĝ as in G
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Counterfactual Predictions

Def. 5: Counterfactual Prediction

An outcome 𝜙 ∈ Δ(𝐴×Θ) is a counterfactual prediction if there exist
𝜇,I, and equilibria 𝜎 and 𝜎̂ of (𝜇,G,I) and (𝜇, Ĝ,I), respectively,
such that the outcome 𝜙 induced by 𝜎 is in 𝑀 and such that 𝜙 is
induced by 𝜎̂.

• Φ̂ : Set of counterfactual predictions 𝜙
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Counterfactual Predictions

Theorem 2

An outcome 𝜙 ∈ Δ(𝐴 × Θ) is in Φ̂ if and only if there is a BCE 𝜙 of
G such that (i) the marginal of 𝜙 on 𝐴 × Θ is in 𝑀 and (ii) 𝜙 is the
marginal of 𝜙 on 𝐴 × Θ.

• 𝑀 is obtained from data
– |𝑀 | = 1, if the analyst observed 𝜙

– 𝑀 contains all the outcomes whose marginal distribution of actions
coincides with the data if the distribution of actions is observed

• (i) and (ii) are described as an intersection of a finite number of
linear inequalities
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Proof of Theorem 2

𝜙 ∈ Φ̂ ⇔ ∃𝜇, ∃𝐼, ∃𝜎 of (𝜇, 𝐺, 𝐼), ∃𝜎̂ of (𝜇, 𝐺, 𝐼)
s.t. 𝜙 induced by 𝜎 is in 𝑀 and 𝜙̂ induced by 𝜎̂

⇔ (𝜙, 𝜙) is a joint prediction for G, Ĝ s.t. 𝜙 ∈ 𝑀
⇔ ∃BCE 𝜙 of Ĝ

s.t. 𝜙’s marginals on 𝐴 × Θ and 𝐴 × Θ are 𝜙 ∈ 𝑀 and 𝜙

by Def 5,3 and Thm 1
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One-Player Games



Model

• Consider the decision-making by a single agent.
• Observed game is given as follows:

– Action: 𝐴 = {0, 1}
– State: Θ = {−1, 1} w.p. 1/2
– Payoff function: 𝑢(𝑎, 𝜃) = 𝑎𝜃

• Counterfactual game is given as follows:
– Action: 𝐴̂ = {0, 1}
– State: Θ = {−1, 1} w.p. 1/2
– Payoff function: 𝑢̂(𝑎̂, 𝜃) = 𝑎̂(𝜃 + 𝑧) where 𝑧 ∈ R
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Model

• Payoff matrix:
𝑎\𝜃 −1 1
0 0 0
1 −1 + 𝑧 1 + 𝑧

• Observed distribution on (𝑎, 𝜃) is 𝑀 = {𝜙} where 𝜙 : 𝐴 × Θ → [0, 1]
satisfies 𝛼 ∈ [1/4, 1/2] and

𝑎\𝜃 −1 1
0 𝛼 1/2 − 𝛼
1 1/2 − 𝛼 𝛼
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Model

• Let 𝜙 ∈ Δ
(
𝐴 × 𝐴̂ × Θ

)
be an outcome in the linked game.

• We want to investigate the maximal and minimal counterfactual
welfare; for the maximal welfare, solve

max
𝜙≥0

∑︁
(𝑎,𝑎̂,𝜃)

𝜙(𝑎, 𝑎̂, 𝜃)𝑎̂(𝜃 + 𝑧),

subject to
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Model

∑︁
𝑎̂

𝜙(𝑎, 𝑎̂, 𝜃) =
{
𝛼, if (𝑎, 𝜃) ∈ {(0,−1), (1, 1)},
1/2 − 𝛼, otherwise,

and the obedience constraints for the linked game.
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Counterfactual Welfare
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Counterfactual Welfare

• Let 𝑧 ∈ (−1, 1) for simplicity.
• Consider the case 𝛼 = 1/2.

– Observed distribution:

𝑎\𝜃 −1 1
0 1/2 0
1 0 1/2

• Information structure should be "full information".
• 𝑎̂ = 0 is taken if 𝑎 = 0, and 𝑎̂ = 1 is taken if 𝑎 = 1. So

welfare = 1/2 · 0 + 1/2 · 1 · (1 + 𝑧) = (1 + 𝑧)/2.
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Counterfactual Welfare

• Consider the case 𝛼 = 1/4.
– Observed distribution:

𝑎\𝜃 −1 1
0 1/4 1/4
1 1/4 1/4

• Information structure should be "no information".
• 𝑎̂ = 0 is taken if −1 < 𝑧 ≤ 0, and 𝑎̂ = 1 is taken if 0 ≤ 𝑧 < 1. So the

welfare is 0 if −1 < 𝑧 ≤ 0, and

welfare = 1/2 · 1 · (−1 + 𝑧) + 1/2 · 1 · (1 + 𝑧) = 𝑧

if 0 ≤ 𝑧 < 1. 28 / 45



Counterfactual Welfare

• Consider the case 𝛼 = 3/8.
– Observed distribution:

𝑎\𝜃 −1 1
0 3/8 1/8
1 1/8 3/8

• There may be multiple candidates for information structure, so the
maximal and minimal counterfactual welfare may differ.

• We first derive the maximal welfare.
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Counterfactual Welfare

• By the payoff function 𝑢𝑖, 𝑎 = 0 is chosen only if the agent’s
posterior belief satisfies Pr(𝜃 = 1|𝑠, 𝑎 = 0) ∈ [0, 1/2] for all 𝑠 ∈ 𝑆.

• Also, since Pr(𝜃 = 1|𝑎 = 0) = 1/4, a family of posterior beliefs
{Pr(𝜃 = 1|𝑠, 𝑎 = 0)}𝑠∈𝑆 satisfies E[Pr(𝜃 = 1|𝑠, 𝑎 = 0)] = 1/4.

• The most (Blackwell) informative signal should induce the
posterior beliefs Pr(𝜃 = 1|𝑠, 𝑎 = 0) = 0 and Pr(𝜃 = 1|𝑠, 𝑎 = 0) = 1/2.

• Actually, a more informative signal leads to higher expected utility
in a single agent’s decision problem.
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Counterfactual Welfare

• For 𝑎 = 1, by the similar argument, Pr(𝜃 = 1|𝑠, 𝑎 = 1) ∈ [1/2, 1] for all
𝑠 ∈ 𝑆.

• Also, since Pr(𝜃 = 1|𝑎 = 1) = 3/4, a family of posterior beliefs
{Pr(𝜃 = 1|𝑠, 𝑎 = 0)}𝑠∈𝑆 satisfies E[Pr(𝜃 = 1|𝑠, 𝑎 = 0)] = 3/4.

• The most informative signal splits the posterior belief
Pr(𝜃 = 1|𝑠, 𝑎 = 0) into 1/2 and 1.

• Hereafter, we derive the information structure.
• Let (𝑆, 𝜋) be the most informative signal and define 𝑆 = 𝐴 × 𝐴̂ and
𝜋 ∈ Δ(𝐴 × 𝐴̂ × Θ).
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Counterfactual Welfare

• By the obedience condition, 𝜙(𝑎, 𝑎̂, 𝜃) = 𝜋(𝑎, 𝑎̂, 𝜃). So 𝜋 should satisfy

𝜋(𝑎, 1, 1) + 𝜋(𝑎, 0, 1) = 𝜙(𝑎, 1) ∀𝑎 ∈ {0, 1},
𝜋(𝑎, 1,−1) + 𝜋(𝑎, 0,−1) = 𝜙(𝑎,−1) ∀𝑎 ∈ {0, 1}.

• Also, by the argument above, 𝜋 should satisfy the requirement for
posterior belief:

Pr(𝜃 = 1|𝑎, 1) = 𝜋(𝑎, 1, 1)
𝜋(𝑎, 1, 1) + 𝜋(𝑎, 1,−1) =

{
1/2 if 𝑎 = 0,

1 if 𝑎 = 1,

Pr(𝜃 = 1|𝑎, 0) = 𝜋(𝑎, 0, 1)
𝜋(𝑎, 0, 1) + 𝜋(𝑎, 0,−1) =

{
0 if 𝑎 = 0,

1/2 if 𝑎 = 1. 32 / 45



Counterfactual Welfare

• By tedious calculation, we have

𝜃\𝑠 (0, 0) (0, 1) (1, 0) (1, 1)
−1 1/4 1/8 1/8 0
1 0 1/8 1/8 1/4

• Actually, 𝑠 = (0, 1) and 𝑠 = (1, 0) are mutually redundant, so we also
have

𝜃\𝑠 0 1/2 1
−1 1/4 1/4 0
1 0 1/4 1/4
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Counterfactual Welfare

• In the second information structure,
– 𝑠 = 0 or 1 ⇒ full information (same as in the case 𝛼 = 1/2)
– 𝑠 = 1/2 ⇒ no information (same as in the case 𝛼 = 1/4)

• So the welfare can be calculated by taking the expectation of full
information case and no information case.
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Counterfactual Welfare
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Counterfactual Welfare

• Next, we derive the minimal welfare.
• Consider the following information structure:

𝜃\𝑠 0 1
−1 3/8 1/8
1 1/8 3/8

where 𝑎 = 1 if 𝑠 = 1 and 𝑎 = 0 if 𝑠 = 0.
• In the least informative case, the chosen 𝑎 itself is a signal, so there

is no more information except for the information obtained from 𝑎.
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Counterfactual Welfare

• Then, derive the counterfactual Welfare.
• Given 𝑎, then 𝑎̂ = 𝑎 holds if

0 ≥
∑︁
𝜃

𝜋(−1, 𝜃) (𝜃 + 𝑧) = 3/8(−1 + 𝑧) + 1/8(1 + 𝑧) ⇐⇒ 𝑧 ≤ 1/2,

0 ≤
∑︁
𝜃

𝜋(1, 𝜃) (𝜃 + 𝑧) = 1/8(−1 + 𝑧) + 3/8(1 + 𝑧) ⇐⇒ 𝑧 ≥ −1/2.

• So if 𝑧 ∈ [−1/2, 1/2], the welfare is

1/8(−1 + 𝑧) + 3/8(1 + 𝑧) = 1/4 + 𝑧/2.
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Counterfactual Welfare

• If 𝑧 < −1/2, 𝑎̂ = 0 is always optimal. Then the welfare is 0.
• If 𝑧 > 1/2, 𝑎̂ = 1 is always optimal. Then the welfare is

1/2(−1 + 𝑧) + 1/2(1 + 𝑧) = 𝑧.
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Counterfactual Welfare
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Counterfactual Welfare with Partially Observed Outcome

• In many cases, the data is censored.
• Here, the distribution of the state is observed when 𝑎 = 1 but

unobserved when 𝑎 = 0:

𝑎\𝜃 −1 1
0 ? ?
1 1/2 − 𝛼 𝛼

• Then, the constraints on the outcome are relaxed.
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Counterfactual Welfare with Partially Observed Outcome
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Two-Player Games



Model

• Consider a simple entry game with probabilistic entry costs.
• The Game is given as follows:

– Action: 𝐴 = 𝐴̂ = {𝑁, 𝐸} × {𝑁, 𝐸}
– State: 𝜃 = (𝑐1, 𝑐2),Θ = {(0, 0), (0, 2), (2, 0), (2, 2)}
– Payoff matrix (𝑧 = 0 for the observed game):

𝑎1\𝑎2 𝑁 𝐸

𝑁 0, 0 0, 3 − 𝑐2 + 𝑧
𝐸 3 − 𝑐1 + 𝑧, 0 1 − 𝑐1 + 𝑧, 1 − 𝑐2 + 𝑧
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Model

• Observed outcome is

𝜙(𝑎1, 𝑎2, 𝑐1, 𝑐2) = 1/4

if (𝑎𝑖 , 𝑐𝑖) ∈ {(𝐸, 0), (𝑁, 2)} for all 𝑖 ∈ {1, 2}, and 0 otherwise.
• We want to predict the counterfactual producer surplus for each 𝑧.
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Counterfactual Surplus
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Conclusion

• Suppose that we want to predict the outcome of counterfactual
games using the data of an observed game in hand.

• Under the assumption that there is a common information
structure among the observed game and the counterfactual
games, we can obtain the prediction of the counterfactual
games by the statements of Theorem 1 and Theorem 2.

• The outcomes are characterized using the BCE of the linked game.

45 / 45


	Introduction
	 Preliminaries
	Joint Predictions and Counterfactuals
	One-Player Games
	Two-Player Games

