Counterfactuals with Latent Information

Ryosei Okamoto, Hideyuki Sasaki
November 6th, 2023

Introduction

Counterfactual Prediction

- Main Topic
- A method to characterize counterfactual predictions in incomplete information games
- Counterfactual Predictions
- The analyst observes behavior assumed to be rationalized by a Bayesian model
- What would have been true under different circumstances?

Comparison to Previous Studies

- Previous works
- Most applied work relies on strong assumptions and undermines the credibility of the models
- Novelty of this work
- Non-parametric approach to treat latent information structures
- Concise description of counterfactual predictions

Organization of thesis

- The authors
- proved 2 theorems that characterize counterfactual predictions
- showed examples of counterfactual analysis using the theorems

Preliminaries

Base game

- $\theta \in \Theta$: finite state of the world
- $i=1, \ldots, N$: players
- A_{i} : finite set of actions
- $u_{i}: A \times \Theta \rightarrow \mathbb{R}:$ utility
- $\mathcal{G}=\left(A_{i}, u_{i}\right)_{i=1}^{N}$: base game

Bayesian game

- $\mu \in \Delta(\Theta)$: prior distribution over states
- S_{i} : measurable set of signals
- $\pi: \Theta \rightarrow \Delta(S):$ distribution of signals
- $I=\left(\left(S_{i}\right)_{i=1}^{N}, \pi\right)$: information structure
- $(\mu, \mathcal{G}, \mathcal{I})$: Bayesian game

Nash equilibrium

- $\sigma_{i}: S_{i} \rightarrow \Delta\left(A_{i}\right):$ strategy
- $\sigma_{i}\left(a_{i} \mid s_{i}\right)$: probability of a_{i} given s_{i}
- $U_{i}(\sigma)=\sum_{\theta \in \Theta} \int_{s \in S} \sum_{a \in A} u_{i}(a, \theta) \sigma(a \mid s) \pi(d s \mid \theta) \mu(\theta)$
: expected utility under σ

Def. 1: Nash equilibrium

σ is a Nash equilibrium if $U_{i}(\sigma) \geq U_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)$ for all i and for all strategies σ_{i}^{\prime}

Bayes Correlated equilibrium

- $\phi \in \Delta(A \times \Theta)$: outcome of \mathcal{G}
- ϕ is induced by $(\mu, \mathcal{I}, \sigma)$

$$
\phi(a, \theta)=\int_{s \in S} \sigma(a \mid s) \pi(d s \mid \theta) \mu(\theta)
$$

Def. 2: Bayes correlated equilibrium(BCE)

ϕ is BCE if

$$
\sum_{\theta \in \Theta} \sum_{a_{-i} \in A_{-i}}\left(u_{i}\left(a_{i}, a_{-i}, \theta\right)-u_{i}\left(a_{i}^{\prime}, a_{-i}, \theta\right)\right) \phi\left(a_{i}, a_{-i}, \theta\right) \geq 0
$$

for all i, a_{i}, a_{i}^{\prime}

Joint Predictions and
Counterfactuals

Joint Predictions with Fixed Information

- $\mathcal{G}^{k}=\left(A_{i}^{k}, u_{i}^{k}\right)_{i=1}^{K}$
- players simultaneously play $\mathcal{G}^{1}, \ldots, \mathcal{G}^{K}$
- Information structure is the same in each game

Def. 3: Joint Prediction

an outcome profile

$$
\left(\phi^{1}, \ldots, \phi^{K}\right) \in \Delta\left(A^{1} \times \Theta\right) \times \cdots \times \Delta\left(A^{K} \times \Theta\right)
$$

is a joint prediction if there exists a prior μ, an information structure \mathcal{I}, and for each $k=1, \ldots, K$ an equilibrium σ^{k} of $\left(\mu, \mathcal{G}^{k}, \mathcal{I}\right)$ such that ϕ^{k} is induced by $\left(\mu, \mathcal{I}, \sigma^{k}\right)$.

Linked Game

Def. 4: Linked Game

The linked game $\overline{\mathcal{G}}=\left(\bar{A}_{i}, \bar{u}_{i}\right)_{i=1}^{N}$ is defined by, for each $i, \bar{A}_{i}=A_{i}^{1} \times$
$\cdots \times A_{i}^{K}$ and

$$
\bar{u}_{i}(\bar{a}, \theta)=\sum_{k=1, \ldots, K} u_{i}^{k}\left(a^{k}, \theta\right)
$$

where $\bar{a}_{i}=\left(a_{i}^{1}, \ldots, a_{i}^{K}\right)$

Linked Game

- \mathcal{G}^{k} : a component game of $\overline{\mathcal{G}}$
- An outcome $\bar{\phi}$ of $\overline{\mathcal{G}}$ can be identified with a joint distribution in $\Delta\left(A^{1} \times \ldots \times A^{K} \times \Theta\right)$

Joint Predictions

Theorem 1

A tuple $\left(\phi^{1}, \ldots, \phi^{K}\right)$ is a joint prediction for $\mathcal{G}^{1}, \ldots, \mathcal{G}^{K}$ if and only if there exists a BCE $\bar{\phi}$ of $\overline{\mathcal{G}}$ for which the marginal of $\bar{\phi}$ on $A^{k} \times \Theta$ is ϕ^{k} for each $k=1, \ldots, K$.

Lemma 1

ϕ is a BCE if and only if there exists a prior μ, an information structure I, and an equilibrium σ of ($\mu, \mathcal{G}, \mathcal{I}$) such that ϕ is induced by (μ, I, σ) (Prop. 1 in BCE)

Joint Predictions

- Fix a prior μ, an information structure I and strategy profile $\bar{\sigma}$ in $(\mu, I, \overline{\mathcal{G}})$.
- For each k, σ_{i}^{k} is the strategy in $\left(\mu, \mathcal{G}^{k}, \mathcal{I}\right)$ where $\sigma_{i}^{k}\left(\cdot \mid s_{i}\right)$ is the marginal of $\bar{\sigma}\left(\cdot \mid s_{i}\right)$ on A_{i}^{k}.
- Thus, the marginal of $\bar{\phi}$ on $A^{k} \times \Theta$ is ϕ^{k}

Lemma 2

$\bar{\sigma}$ is an equilibrium of $(\mu, \overline{\mathcal{G}}, \mathcal{I})$ if and only if σ^{k} is an equilibrium of $\left(\mu, \mathcal{G}^{k}, \mathcal{I}\right)$ for each k.

Proof of Theorem 1

$\left(\phi^{1}, \ldots, \phi^{K}\right)$ is a joint prediction for ($\mathcal{G}^{1}, \ldots, \mathcal{G}^{K}$)
$\Leftrightarrow{ }^{\exists} \mu,{ }^{\exists},{ }^{\exists} \sigma^{k}$ of $\left(\mu, \mathcal{G}^{k}, I\right)$ for each k s.t. ϕ^{k} induced by $\left(\mu, I, \sigma^{k}\right)$
$\Leftrightarrow{ }^{\exists} \mu,{ }^{\exists} I,{ }^{\exists} \bar{\sigma}$ of $(\mu, \overline{\mathcal{G}}, I)$ for each k
s.t. $\bar{\phi}$ is induced by $(\mu, I, \bar{\sigma})$ and the marginal of $\bar{\phi}$ on $A^{k} \times \Theta$ is ϕ^{k}
$\Leftrightarrow \bar{\phi}$ is BCE of $\overline{\mathcal{G}}$ s.t. the marginal of $\bar{\phi}$ on $A^{k} \times \Theta$ is ϕ^{k}

- By Def.3, Lem.2,1

Proof of Lemma 2

$$
\begin{aligned}
\bar{U}_{i}(\bar{\sigma}) & =\sum_{\theta \in \Theta} \int_{s \in S} \sum_{\bar{a} \in \bar{A}} \bar{u}_{i}(\bar{a}, \theta) \bar{\sigma}(\bar{a} \mid s) \pi(d s \mid \theta) \mu(\theta) \\
& =\sum_{\theta \in \Theta} \int_{s \in S} \sum_{k=1, \ldots, K}\left[\sum_{a \in A^{k}} u_{i}^{k}(a, \theta) \sigma^{k}(a \mid s)\right] \pi(d s \mid \theta) \mu(\theta) \\
& =\sum_{k=1, \ldots, K} \sum_{\theta \in \Theta} \int_{s \in S}\left[\sum_{a \in A^{k}} u_{i}^{k}(a, \theta) \sigma^{k}(a \mid s)\right] \pi(d s \mid \theta) \mu(\theta) \\
& =\sum_{k=1, \ldots, K} U_{i}^{k}\left(\sigma^{k}\right) .
\end{aligned}
$$

Proof of Lemma 2

- If $\bar{\sigma}$ is not an equilibrium, then there exist i and a strategy $\bar{\tau}_{i}$ such that

$$
\sum_{k=1, \ldots, K} U_{i}^{k}\left(\sigma^{k}\right)=\bar{U}_{i}(\bar{\sigma})<\bar{U}_{i}\left(\bar{\tau}_{i}, \bar{\sigma}_{-i}\right)=\sum_{k=1, \ldots, K} U_{i}^{k}\left(\tau_{i}^{k}, \sigma_{-i}\right)
$$

where τ_{i}^{k} is the marginal of $\bar{\tau}_{i}$ on A_{i}^{k}.

- Thus, for at least one k, τ_{i}^{k} is a profitable deviation in $\left(\mu, \mathcal{G}^{k}, I\right)$.

Proof of Lemma 2

- Assume there is a profitable deviation in one of the component games, say to τ_{i}^{k} for player i in \mathcal{G}^{k}
- Then, the strategy defined by, for all $\bar{a}_{i} \in \bar{A}_{i}$,

$$
\bar{\tau}_{i}\left(\bar{a}_{i} \mid s_{i}\right)=\tau_{i}\left(\bar{a}_{i}^{k} \mid s_{i}\right) \bar{\sigma}_{i}\left(\bar{a}_{i}^{-k} \mid s_{i}\right)
$$

is a profitable deviation in the linked game.

Counterfactuals when Information is Latent and Fixed

- \mathcal{G} : observed game
- Analyst knows $\Theta, A,\left(u_{i}\right)_{i=1}^{N}$
- Analyst does not know I
- Analyst knows ϕ of \mathcal{G}
- lies in a set $M \subseteq \Delta(A \times \Theta)$
- was generated under some prior μ and information structure I
- was induced by an equilibrium of ($\mu, \mathcal{G}, \mathcal{I}$)
- The analyst wants to make counterfactual predictions for what might happen if the unobserved game $\widehat{\mathcal{G}}$ were played
- Analyst assumes that μ and I are the same in $\widehat{\mathcal{G}}$ as in \mathcal{G}

Counterfactual Predictions

Def. 5: Counterfactual Prediction

An outcome $\widehat{\phi} \in \Delta(\widehat{A} \times \Theta)$ is a counterfactual prediction if there exist μ, I, and equilibria σ and $\widehat{\sigma}$ of $(\mu, \mathcal{G}, \mathcal{I})$ and ($\mu, \widehat{\mathcal{G}}, \mathcal{I}$), respectively, such that the outcome ϕ induced by σ is in M and such that $\widehat{\phi}$ is induced by $\widehat{\sigma}$.

- $\widehat{\Phi}$: Set of counterfactual predictions $\widehat{\phi}$

Counterfactual Predictions

Theorem 2

An outcome $\widehat{\phi} \in \Delta(\widehat{A} \times \Theta)$ is in $\widehat{\Phi}$ if and only if there is a BCE $\bar{\phi}$ of $\overline{\mathcal{G}}$ such that (i) the marginal of $\bar{\phi}$ on $A \times \Theta$ is in M and (ii) $\widehat{\phi}$ is the marginal of $\bar{\phi}$ on $\widehat{A} \times \Theta$.

- M is obtained from data
- $|M|=1$, if the analyst observed ϕ
- M contains all the outcomes whose marginal distribution of actions coincides with the data if the distribution of actions is observed
- (i) and (ii) are described as an intersection of a finite number of linear inequalities

Proof of Theorem 2

$$
\begin{aligned}
\widehat{\phi} \in \widehat{\Phi} \Leftrightarrow & { }^{\exists} \mu,{ }^{\exists} I,{ }^{\exists} \sigma \text { of }(\mu, G, I),{ }^{\exists} \hat{\sigma} \text { of }(\mu, G, I) \\
& \quad \text { s.t. } \phi \text { induced by } \sigma \text { is in } M \text { and } \hat{\phi} \text { induced by } \hat{\sigma} \\
& \Leftrightarrow(\phi, \widehat{\phi}) \text { is a joint prediction for } \mathcal{G}, \widehat{\mathcal{G}} \text { s.t. } \phi \in M \\
& \Leftrightarrow{ }^{\exists} \mathrm{BCE} \widehat{\phi} \text { of } \widehat{\mathcal{G}}
\end{aligned}
$$

s.t. $\bar{\phi}$'s marginals on $A \times \Theta$ and $\widehat{A} \times \Theta$ are $\phi \in M$ and $\widehat{\phi}$
by Def 5,3 and Thm 1

One-Player Games

Model

- Consider the decision-making by a single agent.
- Observed game is given as follows:
- Action: $A=\{0,1\}$
- State: $\Theta=\{-1,1\}$ w.p. $1 / 2$
- Payoff function: $u(a, \theta)=a \theta$
- Counterfactual game is given as follows:
- Action: $\hat{A}=\{0,1\}$
- State: $\Theta=\{-1,1\}$ w.p. $1 / 2$
- Payoff function: $\hat{u}(\hat{a}, \theta)=\hat{a}(\theta+z)$ where $z \in \mathbb{R}$

Model

- Payoff matrix:

$a \backslash \theta$	-1	1
0	0	0
1	$-1+z$	$1+z$

- Observed distribution on (a, θ) is $M=\{\phi\}$ where $\phi: A \times \Theta \rightarrow[0,1]$ satisfies $\alpha \in[1 / 4,1 / 2]$ and

$a \backslash \theta$	-1	1
0	α	$1 / 2-\alpha$
1	$1 / 2-\alpha$	α

Model

- Let $\bar{\phi} \in \Delta(A \times \hat{A} \times \Theta)$ be an outcome in the linked game.
- We want to investigate the maximal and minimal counterfactual welfare; for the maximal welfare, solve

$$
\max _{\bar{\phi} \geq 0} \sum_{(a, \widehat{a}, \theta)} \bar{\phi}(a, \hat{a}, \theta) \hat{a}(\theta+z)
$$

subject to

Model

$$
\sum_{\widehat{a}} \bar{\phi}(a, \hat{a}, \theta)= \begin{cases}\alpha, & \text { if }(a, \theta) \in\{(0,-1),(1,1)\} \\ 1 / 2-\alpha, & \text { otherwise }\end{cases}
$$

and the obedience constraints for the linked game.

Counterfactual Welfare

Counterfactual Welfare

- Let $z \in(-1,1)$ for simplicity.
- Consider the case $\alpha=1 / 2$.
- Observed distribution:

$a \backslash \theta$	-1	1
0	$1 / 2$	0
1	0	$1 / 2$

- Information structure should be "full information".
- $\hat{a}=0$ is taken if $a=0$, and $\hat{a}=1$ is taken if $a=1$. So

$$
\text { welfare }=1 / 2 \cdot 0+1 / 2 \cdot 1 \cdot(1+z)=(1+z) / 2
$$

Counterfactual Welfare

- Consider the case $\alpha=1 / 4$.
- Observed distribution:

$a \backslash \theta$	-1	1
0	$1 / 4$	$1 / 4$
1	$1 / 4$	$1 / 4$

- Information structure should be "no information".
- $\hat{a}=0$ is taken if $-1<z \leq 0$, and $\hat{a}=1$ is taken if $0 \leq z<1$. So the welfare is 0 if $-1<z \leq 0$, and

$$
\text { welfare }=1 / 2 \cdot 1 \cdot(-1+z)+1 / 2 \cdot 1 \cdot(1+z)=z
$$

$$
\text { if } 0 \leq z<1 \text {. }
$$

Counterfactual Welfare

- Consider the case $\alpha=3 / 8$.
- Observed distribution:

$a \backslash \theta$	-1	1
0	$3 / 8$	$1 / 8$
1	$1 / 8$	$3 / 8$

- There may be multiple candidates for information structure, so the maximal and minimal counterfactual welfare may differ.
- We first derive the maximal welfare.

Counterfactual Welfare

- By the payoff function $u_{i}, a=0$ is chosen only if the agent's posterior belief satisfies $\operatorname{Pr}(\theta=1 \mid s, a=0) \in[0,1 / 2]$ for all $s \in S$.
- Also, since $\operatorname{Pr}(\theta=1 \mid a=0)=1 / 4$, a family of posterior beliefs $\{\operatorname{Pr}(\theta=1 \mid s, a=0)\}_{s \in S}$ satisfies $\mathrm{E}[\operatorname{Pr}(\theta=1 \mid s, a=0)]=1 / 4$.
- The most (Blackwell) informative signal should induce the posterior beliefs $\operatorname{Pr}(\theta=1 \mid s, a=0)=0$ and $\operatorname{Pr}(\theta=1 \mid s, a=0)=1 / 2$.
- Actually, a more informative signal leads to higher expected utility in a single agent's decision problem.

Counterfactual Welfare

- For $a=1$, by the similar argument, $\operatorname{Pr}(\theta=1 \mid s, a=1) \in[1 / 2,1]$ for all $s \in S$.
- Also, since $\operatorname{Pr}(\theta=1 \mid a=1)=3 / 4$, a family of posterior beliefs $\{\operatorname{Pr}(\theta=1 \mid s, a=0)\}_{s \in S}$ satisfies $\mathrm{E}[\operatorname{Pr}(\theta=1 \mid s, a=0)]=3 / 4$.
- The most informative signal splits the posterior belief $\operatorname{Pr}(\theta=1 \mid s, a=0)$ into $1 / 2$ and 1 .
- Hereafter, we derive the information structure.
- Let (S, π) be the most informative signal and define $S=A \times \hat{A}$ and $\pi \in \Delta(A \times \hat{A} \times \Theta)$.

Counterfactual Welfare

- By the obedience condition, $\bar{\phi}(a, \hat{a}, \theta)=\pi(a, \hat{a}, \theta)$. So π should satisfy

$$
\begin{aligned}
& \pi(a, 1,1)+\pi(a, 0,1)=\phi(a, 1) \quad \forall a \in\{0,1\} \\
& \pi(a, 1,-1)+\pi(a, 0,-1)=\phi(a,-1) \quad \forall a \in\{0,1\}
\end{aligned}
$$

- Also, by the argument above, π should satisfy the requirement for posterior belief:

$$
\begin{aligned}
& \operatorname{Pr}(\theta=1 \mid a, 1)=\frac{\pi(a, 1,1)}{\pi(a, 1,1)+\pi(a, 1,-1)}= \begin{cases}1 / 2 & \text { if } a=0 \\
1 & \text { if } a=1\end{cases} \\
& \operatorname{Pr}(\theta=1 \mid a, 0)=\frac{\pi(a, 0,1)}{\pi(a, 0,1)+\pi(a, 0,-1)}= \begin{cases}0 & \text { if } a=0 \\
1 / 2 & \text { if } a=1\end{cases}
\end{aligned}
$$

Counterfactual Welfare

- By tedious calculation, we have

$\theta \backslash s$	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
-1	$1 / 4$	$1 / 8$	$1 / 8$	0
1	0	$1 / 8$	$1 / 8$	$1 / 4$

- Actually, $s=(0,1)$ and $s=(1,0)$ are mutually redundant, so we also have

$\theta \backslash s$	0	$1 / 2$	1
-1	$1 / 4$	$1 / 4$	0
1	0	$1 / 4$	$1 / 4$

Counterfactual Welfare

- In the second information structure,
- $s=0$ or $1 \Rightarrow$ full information (same as in the case $\alpha=1 / 2$)
- $s=1 / 2 \Rightarrow$ no information (same as in the case $\alpha=1 / 4$)
- So the welfare can be calculated by taking the expectation of full information case and no information case.

Counterfactual Welfare

Counterfactual Welfare

- Next, we derive the minimal welfare.
- Consider the following information structure:

$\theta \backslash s$	0	1
-1	$3 / 8$	$1 / 8$
1	$1 / 8$	$3 / 8$

where $a=1$ if $s=1$ and $a=0$ if $s=0$.

- In the least informative case, the chosen a itself is a signal, so there is no more information except for the information obtained from a.

Counterfactual Welfare

- Then, derive the counterfactual Welfare.
- Given a, then $\hat{a}=a$ holds if

$$
\begin{aligned}
& 0 \geq \sum_{\theta} \pi(-1, \theta)(\theta+z)=3 / 8(-1+z)+1 / 8(1+z) \Longleftrightarrow z \leq 1 / 2, \\
& 0 \leq \sum_{\theta} \pi(1, \theta)(\theta+z)=1 / 8(-1+z)+3 / 8(1+z) \Longleftrightarrow z \geq-1 / 2 .
\end{aligned}
$$

- So if $z \in[-1 / 2,1 / 2]$, the welfare is

$$
1 / 8(-1+z)+3 / 8(1+z)=1 / 4+z / 2
$$

Counterfactual Welfare

- If $z<-1 / 2, \hat{a}=0$ is always optimal. Then the welfare is 0 .
- If $z>1 / 2, \hat{a}=1$ is always optimal. Then the welfare is

$$
1 / 2(-1+z)+1 / 2(1+z)=z .
$$

Counterfactual Welfare

Counterfactual Welfare with Partially Observed Outcome

- In many cases, the data is censored.
- Here, the distribution of the state is observed when $a=1$ but unobserved when $a=0$:

$a \backslash \theta$	-1	1
0	$?$	$?$
1	$1 / 2-\alpha$	α

- Then, the constraints on the outcome are relaxed.

Counterfactual Welfare with Partially Observed Outcome

Two-Player Games

Model

- Consider a simple entry game with probabilistic entry costs.
- The Game is given as follows:
- Action: $A=\hat{A}=\{N, E\} \times\{N, E\}$
- State: $\theta=\left(c_{1}, c_{2}\right), \Theta=\{(0,0),(0,2),(2,0),(2,2)\}$
- Payoff matrix ($z=0$ for the observed game):

$a_{1} \backslash a_{2}$	N	E
N	0,0	$0,3-c_{2}+z$
E	$3-c_{1}+z, 0$	$1-c_{1}+z, 1-c_{2}+z$

Model

- Observed outcome is

$$
\phi\left(a_{1}, a_{2}, c_{1}, c_{2}\right)=1 / 4
$$

if $\left(a_{i}, c_{i}\right) \in\{(E, 0),(N, 2)\}$ for all $i \in\{1,2\}$, and 0 otherwise.

- We want to predict the counterfactual producer surplus for each z.

Counterfactual Surplus

Conclusion

- Suppose that we want to predict the outcome of counterfactual games using the data of an observed game in hand.
- Under the assumption that there is a common information structure among the observed game and the counterfactual games, we can obtain the prediction of the counterfactual games by the statements of Theorem 1 and Theorem 2.
- The outcomes are characterized using the BCE of the linked game.

