Counterfactuals with Latent Information

Ryosei Okamoto, Hideyuki Sasaki November 6th, 2023

Introduction

- Main Topic
 - A method to characterize counterfactual predictions in incomplete information games
- Counterfactual Predictions
 - The analyst observes behavior assumed to be rationalized by a Bayesian model
 - What would have been true under different circumstances?

- Previous works
 - Most applied work relies on strong assumptions and undermines the credibility of the models
- Novelty of this work
 - Non-parametric approach to treat latent information structures
 - Concise description of counterfactual predictions

- The authors
 - proved 2 theorems that characterize counterfactual predictions
 - showed examples of counterfactual analysis using the theorems

Preliminaries

- $\theta \in \Theta$: finite state of the world
- *i* = 1, .., *N* : players
- A_i : finite set of actions
- $u_i : A \times \Theta \rightarrow \mathbb{R}$: utility
- $\mathcal{G} = (A_i, u_i)_{i=1}^N$: base game

- $\mu \in \Delta(\Theta)$: prior distribution over states
- S_i : measurable set of signals
- $\pi: \Theta \to \Delta(S)$: distribution of signals
- $\mathcal{I} = \left((S_i)_{i=1}^N, \pi \right)$: information structure
- (μ, \mathcal{G}, I) : Bayesian game

• $\sigma_i : S_i \rightarrow \Delta(A_i)$: strategy

- $\sigma_i(a_i|s_i)$: probability of a_i given s_i

• $U_i(\sigma) = \sum_{\theta \in \Theta} \int_{s \in S} \sum_{a \in A} u_i(a, \theta) \sigma(a \mid s) \pi(ds \mid \theta) \mu(\theta)$: expected utility under σ

Def. 1: Nash equilibrium

 σ is a Nash equilibrium if $U_i(\sigma) \ge U_i(\sigma'_i, \sigma_{-i})$ for all *i* and for all strategies σ'_i

Bayes Correlated equilibrium

- $\phi \in \Delta(A \times \Theta)$: outcome of \mathcal{G}
- ϕ is induced by $(\mu, \mathcal{I}, \sigma)$

$$\phi(a,\theta) = \int_{s \in S} \sigma(a \mid s) \pi(ds \mid \theta) \mu(\theta)$$

Def. 2: Bayes correlated equilibrium(BCE)

 ϕ is BCE if

$$\sum_{\theta \in \Theta} \sum_{a_{-i} \in A_{-i}} \left(u_i\left(a_i, a_{-i}, \theta\right) - u_i\left(a_i', a_{-i}, \theta\right) \right) \phi\left(a_i, a_{-i}, \theta\right) \geq 0$$

for all i, a_i, a'_i

Joint Predictions and Counterfactuals

Joint Predictions with Fixed Information

- $\mathcal{G}^k = \left(A_i^k, u_i^k\right)_{i=1}^K$
- players simultaneously play $\mathcal{G}^1, \ldots, \mathcal{G}^K$
- Information structure is the same in each game

Def. 3: Joint Prediction

an outcome profile

$$\left(\phi^{1},\ldots,\phi^{K}
ight)\in\Delta\left(A^{1} imes\Theta
ight) imes\cdots imes\Delta\left(A^{K} imes\Theta
ight)$$

is a joint prediction if there exists a prior μ , an information structure \mathcal{I} , and for each k = 1, ..., K an equilibrium σ^k of $(\mu, \mathcal{G}^k, \mathcal{I})$ such that ϕ^k is induced by $(\mu, \mathcal{I}, \sigma^k)$.

Def. 4: Linked Game

The linked game
$$\overline{\mathcal{G}} = (\overline{A}_i, \overline{u}_i)_{i=1}^N$$
 is defined by, for each $i, \overline{A}_i = A_i^1 \times \cdots \times A_i^K$ and
 $\overline{u}_i(\overline{a}, \theta) = \sum_{k=1,...,K} u_i^k (a^k, \theta)$
where $\overline{a}_i = (a_i^1, \dots, a_i^K)$

- \mathcal{G}^k : a component game of $\overline{\mathcal{G}}$
- An outcome $\overline{\phi}$ of $\overline{\mathcal{G}}$ can be identified with a joint distribution in $\Delta (A^1 \times \ldots \times A^K \times \Theta)$

Theorem 1

A tuple (ϕ^1, \ldots, ϕ^K) is a joint prediction for $\mathcal{G}^1, \ldots, \mathcal{G}^K$ if and only if there exists a BCE $\overline{\phi}$ of $\overline{\mathcal{G}}$ for which the marginal of $\overline{\phi}$ on $A^k \times \Theta$ is ϕ^k for each $k = 1, \ldots, K$.

Lemma 1

 ϕ is a BCE if and only if there exists a prior μ , an information structure I, and an equilibrium σ of (μ, \mathcal{G}, I) such that ϕ is induced by (μ, I, σ) (Prop.1 in BCE)

Joint Predictions

- Fix a prior μ , an information structure I and strategy profile $\overline{\sigma}$ in $(\mu, I, \overline{\mathcal{G}})$.
- For each k, σ_i^k is the strategy in $(\mu, \mathcal{G}^k, \mathcal{I})$ where $\sigma_i^k (\cdot | s_i)$ is the marginal of $\overline{\sigma} (\cdot | s_i)$ on A_i^k .
- Thus, the marginal of $\overline{\phi}$ on $A^k \times \Theta$ is ϕ^k

Lemma 2

 $\overline{\sigma}$ is an equilibrium of $(\mu, \overline{\mathcal{G}}, \mathcal{I})$ if and only if σ^k is an equilibrium of $(\mu, \mathcal{G}^k, \mathcal{I})$ for each *k*.

 $\begin{pmatrix} \phi^1, \dots, \phi^K \end{pmatrix} \text{ is a joint prediction for } (\mathcal{G}^1, \dots, \mathcal{G}^K) \\ \Leftrightarrow {}^{\exists}\mu, {}^{\exists}I, {}^{\exists}\sigma^k \text{ of } (\mu, \mathcal{G}^k, I) \text{ for each k s.t. } \phi^k \text{ induced by } (\mu, I, \sigma^k) \\ \Leftrightarrow {}^{\exists}\mu, {}^{\exists}I, {}^{\exists}\overline{\sigma} \text{ of } (\mu, \overline{\mathcal{G}}, I) \text{ for each k} \\ \text{ s.t. } \overline{\phi} \text{ is induced by } (\mu, I, \overline{\sigma}) \text{ and the marginal of } \overline{\phi} \text{ on } A^k \times \Theta \text{ is } \phi^k \\ \Leftrightarrow \overline{\phi} \text{ is BCE of } \overline{\mathcal{G}} \text{ s.t. the marginal of } \overline{\phi} \text{ on } A^k \times \Theta \text{ is } \phi^k$

• By Def.3, Lem.2,1

$$\begin{split} \overline{U}_{i}(\overline{\sigma}) &= \sum_{\theta \in \Theta} \int_{s \in S} \sum_{\overline{a} \in \overline{A}} \overline{u}_{i}(\overline{a}, \theta) \overline{\sigma}(\overline{a} \mid s) \pi(ds \mid \theta) \mu(\theta) \\ &= \sum_{\theta \in \Theta} \int_{s \in S} \sum_{k=1, \dots, K} \left[\sum_{a \in A^{k}} u_{i}^{k}(a, \theta) \sigma^{k}(a \mid s) \right] \pi(ds \mid \theta) \mu(\theta) \\ &= \sum_{k=1, \dots, K} \sum_{\theta \in \Theta} \int_{s \in S} \left[\sum_{a \in A^{k}} u_{i}^{k}(a, \theta) \sigma^{k}(a \mid s) \right] \pi(ds \mid \theta) \mu(\theta) \\ &= \sum_{k=1, \dots, K} U_{i}^{k}\left(\sigma^{k}\right). \end{split}$$

• If $\overline{\sigma}$ is not an equilibrium, then there exist *i* and a strategy $\overline{\tau}_i$ such that

$$\sum_{k=1,\dots,K} U_i^k \left(\sigma^k \right) = \overline{U}_i(\overline{\sigma}) < \overline{U}_i \left(\overline{\tau}_i, \overline{\sigma}_{-i} \right) = \sum_{k=1,\dots,K} U_i^k \left(\tau_i^k, \sigma_{-i} \right)$$

where τ_i^k is the marginal of $\overline{\tau}_i$ on A_i^k .

• Thus, for at least one k, τ_i^k is a profitable deviation in $(\mu, \mathcal{G}^k, \mathcal{I})$.

- Assume there is a profitable deviation in one of the component games, say to τ_i^k for player *i* in \mathcal{G}^k
- Then, the strategy defined by, for all $\overline{a}_i \in \overline{A}_i$,

$$\overline{\tau}_{i}\left(\overline{a}_{i} \mid s_{i}\right) = \tau_{i}\left(\overline{a}_{i}^{k} \mid s_{i}\right)\overline{\sigma}_{i}\left(\overline{a}_{i}^{-k} \mid s_{i}\right)$$

is a profitable deviation in the linked game.

Counterfactuals when Information is Latent and Fixed

- *G* : observed game
- Analyst knows Θ , A, $(u_i)_{i=1}^N$
- Analyst does not know I
- Analyst knows ϕ of \mathcal{G}
 - lies in a set $M \subseteq \Delta(A \times \Theta)$
 - was generated under some prior μ and information structure $\mathcal I$
 - was induced by an equilibrium of (μ, \mathcal{G}, I)
- The analyst wants to make counterfactual predictions for what might happen if the unobserved game $\widehat{\mathcal{G}}$ were played
- Analyst assumes that μ and $\mathcal I$ are the same in $\widehat{\mathcal G}$ as in $\mathcal G$

Def. 5: Counterfactual Prediction

An outcome $\widehat{\phi} \in \Delta(\widehat{A} \times \Theta)$ is a counterfactual prediction if there exist μ, I , and equilibria σ and $\widehat{\sigma}$ of (μ, \mathcal{G}, I) and $(\mu, \widehat{\mathcal{G}}, I)$, respectively, such that the outcome ϕ induced by σ is in M and such that $\widehat{\phi}$ is induced by $\widehat{\sigma}$.

• $\widehat{\Phi}$: Set of counterfactual predictions $\widehat{\phi}$

Counterfactual Predictions

Theorem 2

An outcome $\widehat{\phi} \in \Delta(\widehat{A} \times \Theta)$ is in $\widehat{\Phi}$ if and only if there is a BCE $\overline{\phi}$ of $\overline{\mathcal{G}}$ such that (i) the marginal of $\overline{\phi}$ on $A \times \Theta$ is in M and (ii) $\widehat{\phi}$ is the marginal of $\overline{\phi}$ on $\widehat{A} \times \Theta$.

- *M* is obtained from data
 - |M| = 1, if the analyst observed ϕ
 - M contains all the outcomes whose marginal distribution of actions coincides with the data if the distribution of actions is observed
- (i) and (ii) are described as an intersection of a finite number of linear inequalities

 $\widehat{\phi} \in \widehat{\Phi} \Leftrightarrow {}^{\exists}\mu, {}^{\exists}I, {}^{\exists}\sigma \text{ of } (\mu, G, I), {}^{\exists}\widehat{\sigma} \text{ of } (\mu, G, I)$ s.t. ϕ induced by σ is in M and $\widehat{\phi}$ induced by $\widehat{\sigma}$ $\Leftrightarrow (\phi, \widehat{\phi})$ is a joint prediction for $\mathcal{G}, \widehat{\mathcal{G}}$ s.t. $\phi \in M$ $\Leftrightarrow {}^{\exists}\mathsf{BCE} \ \widehat{\phi} \text{ of } \ \widehat{\mathcal{G}}$

s.t. $\overline{\phi}$'s marginals on $A \times \Theta$ and $\widehat{A} \times \Theta$ are $\phi \in M$ and $\widehat{\phi}$

by Def 5,3 and Thm 1

One-Player Games

- Consider the decision-making by a single agent.
- Observed game is given as follows:
 - Action: $A = \{0, 1\}$
 - State: $\Theta = \{-1, 1\}$ w.p. 1/2
 - Payoff function: $u(a, \theta) = a\theta$
- Counterfactual game is given as follows:
 - Action: $\hat{A} = \{0, 1\}$
 - State: $\Theta = \{-1, 1\}$ w.p. 1/2
 - Payoff function: $\hat{u}(\hat{a}, \theta) = \hat{a}(\theta + z)$ where $z \in \mathbb{R}$

Model

• Payoff matrix:

a ackslash heta	-1	1
0	0	0
1	-1 + z	1 + z

• Observed distribution on (a, θ) is $M = \{\phi\}$ where $\phi : A \times \Theta \rightarrow [0, 1]$ satisfies $\alpha \in [1/4, 1/2]$ and

$$egin{array}{cccc} a ackslash heta & -1 & 1 \ 0 & lpha & 1/2 - lpha \ 1 & 1/2 - lpha & lpha \end{array}$$

- Let $\overline{\phi} \in \Delta(A \times \hat{A} \times \Theta)$ be an outcome in the linked game.
- We want to investigate the maximal and minimal counterfactual welfare; for the maximal welfare, solve

$$\max_{\overline{\phi}\geq 0}\sum_{(a,\widehat{a},\theta)}\overline{\phi}(a,\hat{a},\theta)\hat{a}(\theta+z),$$

subject to

$$\sum_{\widehat{a}} \overline{\phi}(a, \widehat{a}, \theta) = \begin{cases} \alpha, & \text{if } (a, \theta) \in \{(0, -1), (1, 1)\}, \\ 1/2 - \alpha, & \text{otherwise,} \end{cases}$$

and the obedience constraints for the linked game.

- Let $z \in (-1, 1)$ for simplicity.
- Consider the case $\alpha = 1/2$.
 - Observed distribution:

$$\begin{array}{c|cccc} a \backslash \theta & -1 & 1 \\ \hline 0 & 1/2 & 0 \\ 1 & 0 & 1/2 \end{array}$$

- Information structure should be "full information".
- $\hat{a} = 0$ is taken if a = 0, and $\hat{a} = 1$ is taken if a = 1. So

welfare =
$$1/2 \cdot 0 + 1/2 \cdot 1 \cdot (1+z) = (1+z)/2$$
.

- Consider the case $\alpha = 1/4$.
 - Observed distribution:

a ackslash heta	-1	1
0	1/4	1/4
1	1/4	1/4

- Information structure should be "no information".
- $\hat{a} = 0$ is taken if $-1 < z \le 0$, and $\hat{a} = 1$ is taken if $0 \le z < 1$. So the welfare is 0 if $-1 < z \le 0$, and

welfare =
$$1/2 \cdot 1 \cdot (-1+z) + 1/2 \cdot 1 \cdot (1+z) = z$$

if $0 \le z < 1$.

- Consider the case $\alpha = 3/8$.
 - Observed distribution:

a ackslash heta	-1	1
0	3/8	1/8
1	1/8	3/8

- There may be multiple candidates for information structure, so the maximal and minimal counterfactual welfare may differ.
- We first derive the maximal welfare.

- By the payoff function u_i , a = 0 is chosen only if the agent's posterior belief satisfies $Pr(\theta = 1 | s, a = 0) \in [0, 1/2]$ for all $s \in S$.
- Also, since $Pr(\theta = 1|a = 0) = 1/4$, a family of posterior beliefs $\{Pr(\theta = 1|s, a = 0)\}_{s \in S}$ satisfies $E[Pr(\theta = 1|s, a = 0)] = 1/4$.
- The most (Blackwell) informative signal should induce the posterior beliefs $Pr(\theta = 1|s, a = 0) = 0$ and $Pr(\theta = 1|s, a = 0) = 1/2$.
- Actually, a more informative signal leads to higher expected utility in a single agent's decision problem.

- For a = 1, by the similar argument, $Pr(\theta = 1 | s, a = 1) \in [1/2, 1]$ for all $s \in S$.
- Also, since $Pr(\theta = 1|a = 1) = 3/4$, a family of posterior beliefs $\{Pr(\theta = 1|s, a = 0)\}_{s \in S}$ satisfies $E[Pr(\theta = 1|s, a = 0)] = 3/4$.
- The most informative signal splits the posterior belief $Pr(\theta = 1|s, a = 0)$ into 1/2 and 1.
- Hereafter, we derive the information structure.
- Let (S, π) be the most informative signal and define $S = A \times \hat{A}$ and $\pi \in \Delta(A \times \hat{A} \times \Theta)$.

• By the obedience condition, $\overline{\phi}(a, \hat{a}, \theta) = \pi(a, \hat{a}, \theta)$. So π should satisfy

$$\begin{aligned} \pi(a,1,1) + \pi(a,0,1) &= \phi(a,1) \quad \forall a \in \{0,1\}, \\ \pi(a,1,-1) + \pi(a,0,-1) &= \phi(a,-1) \quad \forall a \in \{0,1\}. \end{aligned}$$

• Also, by the argument above, π should satisfy the requirement for posterior belief:

$$\Pr(\theta = 1 | a, 1) = \frac{\pi(a, 1, 1)}{\pi(a, 1, 1) + \pi(a, 1, -1)} = \begin{cases} 1/2 & \text{if } a = 0, \\ 1 & \text{if } a = 1, \end{cases}$$
$$\Pr(\theta = 1 | a, 0) = \frac{\pi(a, 0, 1)}{\pi(a, 0, 1) + \pi(a, 0, -1)} = \begin{cases} 0 & \text{if } a = 0, \\ 1/2 & \text{if } a = 1. \end{cases}$$

• By tedious calculation, we have

• Actually, *s* = (0, 1) and *s* = (1, 0) are mutually redundant, so we also have

$$\begin{array}{cccccccc} \theta \backslash s & 0 & 1/2 & 1 \\ \hline -1 & 1/4 & 1/4 & 0 \\ 1 & 0 & 1/4 & 1/4 \end{array}$$

- In the second information structure,
 - s = 0 or $1 \Rightarrow$ full information (same as in the case $\alpha = 1/2$)
 - $s = 1/2 \Rightarrow$ no information (same as in the case $\alpha = 1/4$)
- So the welfare can be calculated by **taking the expectation of full information case and no information case**.

- Next, we derive the minimal welfare.
- Consider the following information structure:

$\theta \backslash s$	0	1
-1	3/8	1/8
1	1/8	3/8

where a = 1 if s = 1 and a = 0 if s = 0.

• In the least informative case, the chosen *a* itself is a signal, so there is no more information except for the information obtained from *a*.

- Then, derive the counterfactual Welfare.
- Given a, then $\hat{a} = a$ holds if

$$\begin{split} 0 &\geq \sum_{\theta} \pi(-1,\theta)(\theta+z) = 3/8(-1+z) + 1/8(1+z) \iff z \leq 1/2, \\ 0 &\leq \sum_{\theta} \pi(1,\theta)(\theta+z) = 1/8(-1+z) + 3/8(1+z) \iff z \geq -1/2. \end{split}$$

• So if $z \in [-1/2, 1/2]$, the welfare is

$$1/8(-1+z) + 3/8(1+z) = 1/4 + z/2.$$

- If z < -1/2, $\hat{a} = 0$ is always optimal. Then the welfare is 0.
- If z > 1/2, $\hat{a} = 1$ is always optimal. Then the welfare is

$$1/2(-1+z) + 1/2(1+z) = z.$$

Counterfactual Welfare with Partially Observed Outcome

- In many cases, the data is censored.
- Here, the distribution of the state is observed when a = 1 but unobserved when a = 0:

$$a \ \theta \ -1 \ 1$$

0 ? ?
1 $1/2 - \alpha \ \alpha$

• Then, the constraints on the outcome are relaxed.

Counterfactual Welfare with Partially Observed Outcome

Two-Player Games

- Consider a simple entry game with probabilistic entry costs.
- The Game is given as follows:
 - Action: $A = \hat{A} = \{N, E\} \times \{N, E\}$
 - State: $\theta = (c_1, c_2), \Theta = \{(0, 0), (0, 2), (2, 0), (2, 2)\}$
 - Payoff matrix (z = 0 for the observed game):

$a_1 \setminus a_2$	N	Ε
N	0,0	$0, 3 - c_2 + z$
Ε	$3 - c_1 + z, 0$	$1 - c_1 + z, 1 - c_2 + z$

• Observed outcome is

 $\phi(a_1, a_2, c_1, c_2) = 1/4$

if $(a_i, c_i) \in \{(E, 0), (N, 2)\}$ for all $i \in \{1, 2\}$, and 0 otherwise.

• We want to predict the counterfactual producer surplus for each *z*.

Counterfactual Surplus

44/45

- Suppose that we want to predict the outcome of counterfactual games using the data of an observed game in hand.
- Under the assumption that there is a common information structure among the observed game and the counterfactual games, we can obtain the prediction of the counterfactual games by the statements of Theorem 1 and Theorem 2.
- The outcomes are characterized using the BCE of the linked game.