Joint Design of Information and Transfers in a Team Production Problem

Daisuke Oyama

Game Theory I

November 2, 2023

- Halac, M., E. Lipnowski, and D. Rappoport (2021). "Rank Uncertainty in Organizations," American Economic Review 111, 757-86.
- Morris, S., D. Oyama, and S. Takahashi (2022).
 "On the Joint Design of Information and Transfers."

Model

- ▶ Team project by agents $I = \{1, ..., |I|\}$ $(I = 2^{I}, I_{-i} = 2^{I \setminus \{i\}})$
- Effort level $a_i \in \{0, 1\}$
- ▶ c_i: Agent i's cost of effort
- $\blacktriangleright P: \mathcal{I} \to [0,1]$

P(S): Success probability when i works if and only if $i\in S$

- Assumptions:
 - Monotonicity: P(S) < P(S') whenever $S \subsetneqq S'$
 - ▶ Increasing returns to scale (IRS): $P(S) + P(S') \le P(S \cup S') + P(S \cap S')$ for all $S, S \in \mathcal{I}$ (*P* is a *convex game* if viewed as a cooperative game.)
- For each $i \in I$ and $S \in \mathcal{I}_{-i}$, denote

$$\Delta_i P(S) = P(S \cup \{i\}) - P(S).$$

Incentive Contracts

 Principal offers private contracts to agents to implement action profile I (all players exerting effort)

as a smallest-hence unique-equilibrium outcome.

 Moral hazard (hidden action): Only the final outcome of the project is contractible.

Bonus $b_i \ge 0$ paid to each agent upon success

Ex post payoffs:

$$\begin{cases} P(S \cup \{i\})b_i - c_i & \text{if } a_i = 1\\ P(S)b_i & \text{if } a_i = 0 \end{cases}$$

Payoff gain function:

$$d_i(S) = \Delta_i P(S) - c_i$$

Incentive Schemes

Incentive scheme $\varphi = (\mathcal{T}, B)$:

- Type space $\mathcal{T} = ((T_i)_{i \in I}, \pi)$:
 - ▶ T_i : countable set of *i*'s types $(T = \prod_i T_i, T_{-i} = \prod_{i \neq i} T_j)$
 - $\pi \in \Delta(T)$: common prior
 - Assume $\pi_i(t_i) = \sum_{t_{-i}} \pi(t_i, t_{-i}) > 0$ for all i and t_i .

• Write
$$\pi_i(t_{-i}|t_i) = \frac{\pi(t_i,t_{-i})}{\pi_i(t_i)}$$

- ▶ Bonus rule $B_i: T_i \to \mathbb{R}_+$: Bonus paid to agent *i* of type t_i
- Payoffs to agent i of type t_i:

$$\sum_{t_{-i}} \pi_i(t_{-i}|t_i) P(S(\sigma_{-i}(t_{-i})) \cup \{i\}) B_i(t_i) - c_i \text{ if } a_i = 1$$

$$\sum_{t_{-i}} \pi_i(t_{-i}|t_i) P(S(\sigma_{-i}(t_{-i}))) B_i(t_i) \text{ if } a_i = 0$$

Principal's Objective

- Incentive scheme φ = (T, B) uniquely implements work (or φ is a UIW scheme) if "always work" is the unique equilibrium of the Bayesian game induced by (T, B + ε) for every ε > 0.
- Total bonus minimization problem:

$$TB^* = \inf_{\varphi: \mathsf{UIW}} \, TB(\varphi),$$

where

$$TB(\varphi) = \sum_{t} \pi(t)P(I) \sum_{i} B_{i}(t_{i})$$
$$= P(I) \sum_{i} \sum_{t_{i}} \left(\sum_{t_{-i}} \pi(t)\right) B_{i}(t_{i})$$
$$= P(I) \sum_{i} \sum_{t_{i}} \pi_{i}(t_{i})B_{i}(t_{i}).$$

Results

1. Obtain a lower bound of $\sum_{t_i} \pi_i(t_i) B_i(t_i)$ for each UIW scheme (\mathcal{T}, B) .

We provide a proof similar to that of Theorem 1(1) of MOT.

2. TB^* is bounded below by $\sum_i b_i^*$, where $b^* = (b_i^*)_{i \in I}$ is the unique solution to

$$\blacktriangleright \min \sum_i b_i$$

- subject to the constraint that I satisfies sequential obedience in the complete information game given by the bonus profile b.
- 3. $\sum_i b_i^*$ is attained in the limit of some sequence of ε -elaborations of the complete information game given by the bonus profile b^* .

Follows from the construction in the proof of Theorem 2 of OT.

- 4. The limit bonus distribution of any optimal sequence of UIW schemes is the degenerate distribution on b^* .
- 5. Structure of optimal limit bonus profile

We derive the results using some known results from cooperative game theory (Shapley 1971; Hokari 2002).

Lower Bound of Expected Bonus Payment

- Π: Set of permutations of I
- $S_{-i}(\gamma)$: Set of agents that appear before i in $\gamma \in \Pi$
- ▶ For $i \in I$ and $\rho \in \Delta(\Pi)$, define

$$h_i(\rho) = \frac{c_i}{\sum_{\gamma \in \Pi} \rho(\gamma) \Delta_i P(S_{-i}(\gamma))}.$$

 $\cdots\,$ Convex function of ρ

Proposition 1

For any UIW scheme (\mathcal{T},B) there exists $\rho \in \Delta(\Pi)$ such that

$$\sum_{t_i} \pi_i(t_i) B_i(t_i) > h_i(\rho)$$

for all $i \in I$.

Proof

Similar to the proof of Theorem 1(1) of MOT:

- Let (\mathcal{T}, B) be a UIW scheme.
- Starting with the smallest strategy $\sigma_i^0(t_i) = 0$ for all i = I and all $t_i \in T_i$, apply sequential best response in the order $1, 2, \ldots, |I|$.
- Let $\{\sigma^n\}$ be the obtained sequence of strategy profiles:

$$\begin{array}{l} \bullet \quad \sigma_i^n(t_i) = 1 \text{ if } i \equiv n \pmod{|I|} \text{ and} \\ \sum_{t_{-i}} \pi_i(t_{-i}|t_i) B_i(t_i) \varDelta_i P(S(\sigma_{-i}^{n-1}(t_{-i}))) > c_i, \end{array}$$

• $\sigma_i^n(t_i) = \sigma_i^{n-1}(t_i)$ otherwise.

▶ By supermodularity, for each $i \in I$ and $t_i \in T_i$, $\{\sigma_i^n(t_i)\}$ is monotone increasing and converges to 1.

• Define $\rho \in \Delta(\Pi)$ and $\rho_i(\cdot|t_i) \in \Delta(\Pi)$ for each $i \in I$ and $t_i \in T_i$ by

$$\rho(\gamma) = \sum_{t \in T(\gamma)} \pi(t),$$

$$\rho_i(\gamma|t_i) = \sum_{t_{-i}: (t_i, t_{-i}) \in T(\gamma)} \pi_i(t_{-i}|t_i).$$

▶ Note that $\rho(\gamma) = \sum_{t_i \in T_i} \pi_i(t_i) \rho_i(\gamma | t_i)$ for any $i \in I$.

For any $i \in I$ and $t_i \in T_i$,

$$c_{i} < \sum_{t_{-i}} \pi_{i}(t_{-i}|t_{i})B_{i}(t_{i})\Delta_{i}P(S(\sigma_{-i}^{n_{i}(t_{i})-1}(t_{-i})))$$

=
$$\sum_{\gamma} \sum_{t_{-i}:(t_{i},t_{-i})\in T(\gamma)} \pi_{i}(t_{-i}|t_{i})B_{i}(t_{i})\Delta_{i}P(S_{-i}(\gamma))$$

=
$$\sum_{\gamma} \rho_{i}(\gamma|t_{i})B_{i}(t_{i})\Delta_{i}P(S_{-i}(\gamma)).$$

• Therefore, for any
$$i \in I$$
 and $t_i \in T_i$,

 $B_i(t_i) > h_i(\rho_i(\cdot|t_i)),$

where

$$h_i(\rho') = \frac{c_i}{\sum_{\gamma} \rho'(\gamma) \Delta_i P(S_{-i}(\gamma))},$$

which is a convex function of $\rho' \in \Delta(\Pi)$.

$$\sum_{t_i} \pi_i(t_i) B_i(t_i) > \sum_{t_i} \pi_i(t_i) h_i(\rho_i(\cdot|t_i)).$$

• But by the convexity of h_i , we have

$$\sum_{t_i} \pi_i(t_i) h_i(\rho_i(\cdot|t_i)) \ge h_i\left(\sum_{t_i} \pi_i(t_i) \rho_i(\cdot|t_i)\right) = h_i(\rho)$$

by Jensen's inequality.

► Therefore, we have

$$\sum_{t_i} \pi_i(t_i) B_i(t_i) > h_i(\rho).$$

Lower Bound of TB^*

Since

$$TB((\mathcal{T}, B)) = \sum_{t} \pi(t)P(I)\sum_{i} B_{i}(t_{i})$$
$$= P(I)\sum_{i}\sum_{t_{i}} \left(\sum_{t_{-i}} \pi(t)\right)B_{i}(t_{i})$$
$$= P(I)\sum_{i}\sum_{t_{i}} \pi_{i}(t_{i})B_{i}(t_{i}),$$

we have

$$TB((\mathcal{T}, B)) > P(I) \sum_{i \in I} h_i(\rho)$$

by Proposition 1.

Consider the optimization problem

$$\min_{b \in \mathbb{R}_{++}^I} \sum_{i \in I} b_i$$

subject to the condition that there exists $\rho \in \Delta(\Pi)$ such that $b_i \ge h_i(\rho)$ for all $i \in I$, or

$$\sum_{\gamma} \rho(\gamma) \Delta_i P(S_{-i}(\gamma)) - \frac{c_i}{b_i} \ge 0 \text{ for all } i \in I.$$
 (*)

▶ By the strict convexity, this problem has a unique solution *b*^{*}.

▶ Since $b = (h_i(\rho))_{i \in I}$ trivially satisfies the constraint $b_i \ge h_i(\rho)$, we have $\sum_{i \in I} h_i(\rho) \ge \sum_{i \in I} b_i^*$.

Therefore,

$$\inf TB((\mathcal{T}, B)) \ge P(I) \sum_{i \in I} b_i^*.$$

Sequential Obedience, Coalitional Obedience

Condition (*) is equivalent to sequential obedience of action profile 1 in the complete information BAS game defined by

$$d_i(a_{-i};b_i) = \Delta_i P(S(a_{-i})) - \frac{c_i}{b_i}.$$

This game is a potential game with a potential

$$\Phi(a;b) = P(S(a)) - \sum_{i \in S(a)} \frac{c_i}{b_i}.$$

Therefore, by MOT, condition (*) is equivalent to coalitional obedience of 1: Φ(1; b) ≥ Φ(a; b) for all a ∈ A, or

$$\sum_{i \in I \setminus S} \frac{c_i}{b_i} \le P(I) - P(S) \text{ for all } S \in \mathcal{I}.$$
(**)

Proposition 2

$$\begin{split} \inf_{(\mathcal{T},B)} TB((\mathcal{T},B)) &= P(I) \sum_{i \in I} b_i^*.\\ \text{In particular, for any } \varepsilon > 0 \text{, there exists an } \varepsilon'\text{-elaboration } (\mathcal{T},B) \text{ of } \\ (d_i(\cdot;b_i^* + \varepsilon/[2|I|P(I)]))_{i \in I} \text{ such that} \\ TB((\mathcal{T},B)) &\leq P(I) \sum_{i \in I} b_i^* + \varepsilon. \end{split}$$

► Follows from the construction in Theorem 2 of OT.

Proof

• Let b^* , ρ^* be the solution.

► For each
$$i \in I$$
, let $\overline{b}_i > \frac{c_i}{\Delta_i P(\emptyset)}$.

Fix any
$$\varepsilon > 0$$
.

$$\sum_{S \in \mathcal{I}_{-i}} (1 - \eta)^{|S|} \rho^* (\{\gamma \in \Pi \mid S_{-i}(\gamma) = S\}) \Delta_i P(S) - \frac{c_i}{b_i^* + \frac{\varepsilon}{2|I|P(I)}} > 0 \quad (1)$$

and

$$1 - (1 - \eta)^{|I| - 1} \le \frac{\varepsilon}{2P(I)\left(\sum_{i \in I} \bar{b}_i - \sum_{i \in I} b_i^*\right)}.$$
 (2)

• Write $\varepsilon' = 1 - (1 - \eta)^{|I| - 1}$.

Construct the information structure T as follows:

$$T_i = \{1, 2, \ldots\}$$

• m drawn from \mathbb{Z}_+ according to the distribution $\eta(1-\eta)^m$.

• γ drawn from Π according to ρ^* .

• Player *i* receives signal t_i given by

 $t_i = m + (\text{ranking of } i \text{ in } \gamma).$

Define the bonus rule B by

$$B_i(t_i) = \begin{cases} \bar{b}_i & \text{if } t_i \leq |I| - 1, \\ b_i^* + \frac{\varepsilon}{2|I|P(I)} & \text{if } t_i \geq |I|. \end{cases}$$

• (\mathcal{T}, B) is an ε' -elaboration of $(d_i(\cdot; b_i^* + \varepsilon/[2|I|P(I)]))_{i \in I}$, where $\eta = 1 - (1 - \varepsilon')^{1/(|I|-1)}$.

- In this elaboration, in any strategy surviving iterative dominance, all types t_i play action 1:
 - By construction, types $t_i \leq |I| 1$ play the dominant action 1.
 - If types t_j < τ play action 1, then the payoff for type t_i = τ is at least

$$\begin{split} \sum_{S \in \mathcal{I}_{-i}} (1-\eta)^{|S|} \rho^* (\{\gamma \in \Pi \mid S_{-i}(\gamma) = S\}) \\ & \times d_i \left(a(S); b_i^* + \frac{\varepsilon}{2|I|P(I)} \right) \times (\text{constant}) > 0. \end{split}$$

Therefore,

$$TB((\mathcal{T},B)) \leq \varepsilon' P(I) \sum_{i \in I} \bar{b}_i + (1-\varepsilon') P(I) \sum_{i \in I} \left(b_i^* + \frac{\varepsilon}{2|I|P(I)} \right)$$
$$\leq P(I) \sum_{i \in I} b_i^* + \varepsilon.$$

Limit Bonus Distribution

▶ Let $\{(\mathcal{T}^k, B^k)\}$ be an optimal sequence of UIW schemes: i.e., a sequence of UIW schemes such that $TB((\mathcal{T}^k, B^k)) \rightarrow P(I) \sum_{i \in I} b_i^*$ as $k \rightarrow \infty$.

Proposition 3

For each $i \in I$, B_i^k converges to b_i^* weakly (or, in distribution) as $k \to \infty$.

• I.e., for all
$$\delta > 0$$
,

$$\pi_i^k(\{t_i \mid |B_i^k(t_i) - b_i^*| < \delta\}) \to 1$$
as $k \to \infty$.

Lemma 1

For any $i \in I$ and any distribution τ on $\Delta(\Pi)$,

$$\int h_i(\rho) d\tau(\rho) \ge h_i\left(\int \rho d\tau(\rho)\right),$$

with equality only if the τ -distribution of h_i is degenerate.

•
$$x \mapsto \frac{1}{x}$$
 is strictly convex, and $\frac{1}{h_i(\rho)}$ is linear in ρ .

Therefore, by Jensen's inequality,

$$\int h_i(\rho) d\tau(\rho) = \int \frac{1}{\frac{1}{h_i(\rho)}} d\tau(\rho) \ge \frac{1}{\int \frac{1}{h_i(\rho)} d\tau(\rho)}$$
$$= \frac{1}{\frac{1}{h_i(\int \rho d\tau(\rho))}} = h_i\left(\int \rho d\tau(\rho)\right),$$

with equality only if the τ -distribution of $\frac{1}{h_i}$, hence of h_i , is degenerate.

Proof of Proposition 3

► Take any sequence $\{(\mathcal{T}^k, B^k)\}$ such that $TB^k = TB((\mathcal{T}^k, B^k)) \rightarrow TB^* = P(I) \sum_{i \in I} b_i^*.$

• Let ρ^k and ρ^k_i , $i \in I$, be as in the proof of Proposition 1.

 $\begin{array}{l} \text{Claim 1} \\ \text{For all } i \in I \text{, } \sum_{t_i} \pi_i^k(t_i) |B_i^k(t_i) - h_i(\rho_i^k(\cdot|t_i))| \rightarrow 0 \text{ as } k \rightarrow 0. \end{array}$

We have

$$\sum_{i} \sum_{t_{i}} \pi_{i}^{k}(t_{i}) |B_{i}^{k}(t_{i}) - h_{i}(\rho_{i}^{k}(\cdot|t_{i}))|$$

$$= \sum_{i} \sum_{t_{i}} \pi_{i}^{k}(t_{i}) (B_{i}^{k}(t_{i}) - h_{i}(\rho_{i}^{k}(\cdot|t_{i})))$$

$$\leq \sum_{i} \sum_{t_{i}} \pi_{i}^{k}(t_{i}) B_{i}^{k}(t_{i}) - \sum_{i} h_{i}(\rho^{k})$$

$$\leq \sum_{i} \sum_{t_{i}} \pi_{i}^{k}(t_{i}) B_{i}^{k}(t_{i}) - \sum_{i} b_{i}^{*} \to 0$$

as $k \to 0$.

• Take any subsequence of $\{(\mathcal{T}^k, B^k)\}$ (again denoted by $\{(\mathcal{T}^k, B^k)\}$).

We want to show that it has a subsequence (again denoted by $\{(\mathcal{T}^k, B^k)\}$) such that for each $i \in I$, B_i^k converges to b_i^* weakly.

- For each $i \in I$, write τ_i^k for the distribution of ρ_i^k on $\Delta(\Pi)$.
- Since the support of τ_i^k is contained in the compact set $\Delta(\Pi)$, we can take a subsequence such that for each $i \in I$, τ_i^k converges to some τ_i^* weakly as $k \to \infty$ (by Prokhorov's Theorem).

Claim 2
For all
$$i \in I$$
, $h_i(
ho_i^k) o b_i^*$ weakly as $k o \infty$.

For all
$$i \in I$$
,

$$\int \rho d\tau_i^k = \sum_{t_i} \pi_i^k(t_i) \rho_i^k(\cdot|t_i) = \rho^k.$$

 \blacktriangleright By the boundedness of $\Delta(\Pi),$ letting $k \to \infty$ we have

$$\int \rho d\tau_i^* = \rho^*$$

for all $i \in I$, where $\rho^* = \lim_{k \to \infty} \rho^k$.

$$\begin{split} &\sum_{i} \left| \int h_{i}(\rho) d\tau_{i}^{k} - h_{i} \left(\int \rho d\tau_{i}^{k} \right) \right| \\ &= \sum_{i} \left(\int h_{i}(\rho) d\tau_{i}^{k} - h_{i} \left(\int \rho d\tau_{i}^{k} \right) \right) \\ &= \frac{TB^{k}}{P(I)} - \sum_{i} h_{i}(\rho^{k}) \leq \frac{TB^{k}}{P(I)} - \sum_{i} b_{i}^{*} \to 0 \text{ as } k \to \infty. \end{split}$$

• Therefore, for all $i \in I$,

$$\int h_i(\rho) d\tau_i^* = h_i\left(\int \rho d\tau_i^*\right) = h_i(\rho^*),$$

and $\sum_i h_i(\rho^*) = \sum_i b_i^*$, and hence $h_i(\rho^*) = b_i^*$ by the uniqueness of the solution.

Therefore, by Lemma 1, the τ^{*}_i-distribution of h_i is degenerate on b^{*}_i.

 $\blacktriangleright \text{ Now fix any } \delta > 0.$

► Since
$$|B_i^k - b_i^*| \ge \delta$$
 implies $|B_i^k - h_i(\rho_i^k)| \ge \delta/2$ or
 $|h_i(\rho_i^k) - b_i^*| \ge \delta/2$,
 $\pi_i^k(|B_i^k - b_i^*| \ge \delta)$
 $\le \pi_i^k(|B_i^k - h_i(\rho_i^k)| \ge \delta/2) + \pi_i^k(|h_i(\rho_i^k) - b_i^*| \ge \delta/2)$.

• Let $k \to \infty$. Then, by Claim 1,

$$\pi_i^k(|B_i^k - h_i(\rho_i^k)| \ge \delta/2)\delta/2$$

$$\le \sum_{t_i} \pi_i^k(t_i)|B_i^k(t_i) - h_i(\rho_i^k(\cdot|t_i))| \to 0,$$

while by Claim 2,

$$\pi_i^k(|h_i(\rho_i^k) - b_i^*| \ge \delta/2) \to 0.$$

Comparative Statics

• Without loss, we assume that $P(\emptyset) = 0$.

▶ Let b^* be the optimal limit bonus profile, and $\rho^* \in \Delta(\Pi)$ an associated ordered outcome.

Write
$$x_i^* = \frac{c_i}{b_i^*}$$

• $x^* = (x_1^*, \dots, x_{|I|}^*)$ satisfies the sequential obedience condition with equality:

$$x_i^* = \sum_{\gamma} \rho^*(\gamma) \Delta_i P(S_{-i}(\gamma)) \text{ for all } i \in I.$$
 (*)

• $x^* = (x_1^*, \dots, x_{|I|}^*)$ satisfies the sequential obedience condition with equality:

$$x_i^* = \sum_{\gamma} \rho^*(\gamma) \Delta_i P(S_{-i}(\gamma)) \text{ for all } i \in I.$$
 (*)

For each $\gamma \in \Pi$, define $\alpha^{\gamma} = (\alpha_1^{\gamma}, \dots, \alpha_{|I|}^{\gamma})$ by

$$\alpha_i^{\gamma} = \Delta_i P(S_{-i}(\gamma)).$$

► (*) says:

 x^* is written as a convex combination of $(\alpha^\gamma)_{\gamma\in\Pi}$, where coefficients are given by $\rho^*.$

Some Facts from Cooperative Game Theory

From Shapley (1971), "Cores of Convex Games," IJGT.

P viewed as a cooperative game, the core of P is the set

 $C = \{ x \in \mathbb{R}^I \mid x(I) = P(I), \ x(S) \ge P(S) \text{ for all } S \in \mathcal{I} \},$

where $x(S) = \sum_{i \in S} x_i$.

►
$$C \neq \emptyset$$
 by the convexity of P .
In fact, $\alpha^{\gamma} \in C$ for all $\gamma \in \Pi$.

•
$$(\alpha^{\gamma})_{\gamma \in \Pi}$$
 are precisely the *vertices* of C.

These are all distinct by the strict convexity of P.

• Thus, x satisfies (\star) if and only if $x \in C$.

For
$$S \in \mathcal{I}$$
, let

$$C_S = \{ x \in C \mid x(S) = P(S) \}.$$

(Define $C_{\emptyset} = C$.)

These are the *faces* of C.

The vertices of C_S are precisely the points α^γ such that agents in S are ranked higher in γ.

For
$$x \in C$$
, let $S_x = \{S \in \mathcal{I} \mid x \in C_S\}$.

The members of S_x are nested: If $S, S' \in S_x$, then $S \subset S'$ or $S' \subset S$.

Structure of Optimal Bonus Profile and Associated Ordered Outcomes

Let b^{*} be the optimal limit bonus profile, and ρ^{*} an associated ordered outcome.

Let $x^* = (c_i/b_i^*)_{i \in I}$ as before: $x^* = \sum_{\gamma \in \Pi} \rho^*(\gamma) \alpha^{\gamma}$.

► *x*^{*} is the unique solution to the problem:

$$\min\sum_{i\in I}\frac{c_i}{x_i}$$

subject to

$$x \in C$$

 $(\star\star)$

that is,

$$\begin{aligned} x(I) &= P(I), \\ x(S) &\geq P(S) \quad (S \in \mathcal{I}). \end{aligned}$$

- Suppose we know that $S_{x^*} = \{S_0^*, S_1^*, \dots, S_L^*\}$ where $\emptyset = S_0^* \subset S_1^* \subset \dots \subset S_L^* = I$.
- ▶ In the optimization problem, the constraints $x(S_{\ell}^*) = P(S_{\ell}^*)$, $\ell = 1, \ldots, L$, are precisely the binding constraints.

For any
$$\gamma$$
 such that $\rho^*(\gamma) > 0$,

$$\gamma = (S_1^*, S_2^* \setminus S_1^*, \dots, S_L^* \setminus S_{L-1}^*).$$

• Define the weak order \succeq on I by

• $i \succ i'$ if and only if $i \in S^*_{\ell} \setminus S^*_{\ell-1}$ and $i' \in S^*_{\ell'} \setminus S^*_{\ell'-1}$ for some $\ell < \ell'$; and

•
$$i \sim i'$$
 if and only if $i, i' \in S^*_{\ell} \setminus S^*_{\ell-1}$ for some ℓ .

Extreme Cases

$$\label{eq:interm} \bullet \ i \sim i' \ \text{for all} \ i, i' \in I \ \text{(i.e., } L = 1 \text{) if and only if} \\ \frac{P(I)}{\sum_{i \in I} \sqrt{c_i}} > \frac{P(S)}{\sum_{i \in S} \sqrt{c_i}}$$

for all $S \neq I$.

▶ $i \succ i'$ or $i' \succ i$ whenever $i \neq i'$ (i.e., L = |I|, or $x^* = \alpha^{\gamma}$ for some $\gamma \in \Pi$) if and only if there exists $\gamma = (i_1, \ldots, i_{|I|}) \in \Pi$ such that

$$\frac{\Delta_{i_{k+1}} P(S_{-i_{k+1}}(\gamma))}{\sqrt{c_{i_{k+1}}}} \le \frac{\Delta_{i_k} P(S_{-i_k}(\gamma))}{\sqrt{c_{i_k}}}$$

for all k = 1, ..., |I| - 1.

Connection to Cooperative Game Theory

Recall the problem:

$$\min \sum_{i \in I} \frac{c_i}{x_i} \qquad \text{subject to} \quad x \in C$$

This is a well-studied problem in cooperative game theory.

- When c₁ = ··· = c_{|I|}, the solution x* coincides with the "constrained egalitarian allocation" of Dutta and Ray (1989), or the "Dutta-Ray solution".
- For general c_i's, x^{*} is a special case of a generalized Dutta-Ray solution (e.g., Hokari (2002)).

• By Hokari (2002), the solution x^* is explicitly written as

$$x_i^* = \max_{S \subset I, S \ni i} \min_{T \subset S \setminus \{i\}} \frac{\sqrt{c_i}(P(S) - P(T))}{\sum_{j \in S \setminus T} \sqrt{c_j}}$$

Proposition 4

The unique limit optimal bonus profile $b^* = (b_i^*)_{i \in I}$ is given by

$$b_i^* = \min_{S \subset I, S \ni i} \max_{T \subset S \setminus \{i\}} \frac{\sqrt{c_i} \sum_{j \in S \setminus T} \sqrt{c_j}}{P(S) - P(T)}.$$

Proposition 5

- \blacktriangleright b_i^* is strictly increasing in c_i .
- ▶ b_i^* is increasing in c_j , $j \neq i$.
- $\blacktriangleright \ \frac{b_i^*}{c_i} \text{ is decreasing in } c_i.$
- $\frac{b_i^*}{c_i}$ is increasing in c_j , $j \neq i$.