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Model
▶ Team project by agents I = {1, . . . , |I|} (I = 2I , I−i = 2I\{i})

▶ Effort level ai ∈ {0, 1}

▶ ci: Agent i’s cost of effort

▶ P : I → [0, 1]

P (S): Success probability when i works if and only if i ∈ S

▶ Assumptions:

▶ Monotonicity: P (S) < P (S′) whenever S ⫋ S′

▶ Increasing returns to scale (IRS):
P (S) + P (S′) ≤ P (S ∪ S′) + P (S ∩ S′) for all S, S ∈ I
(P is a convex game if viewed as a cooperative game.)

▶ For each i ∈ I and S ∈ I−i, denote

∆iP (S) = P (S ∪ {i})− P (S).
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Incentive Contracts

▶ Principal offers private contracts to agents to implement
action profile I (all players exerting effort)

as a smallest—hence unique—equilibrium outcome.

▶ Moral hazard (hidden action):
Only the final outcome of the project is contractible.

Bonus bi ≥ 0 paid to each agent upon success

▶ Ex post payoffs:{
P (S ∪ {i})bi − ci if ai = 1

P (S)bi if ai = 0

▶ Payoff gain function:

di(S) = ∆iP (S)− ci
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Incentive Schemes

Incentive scheme φ = (T , B):

▶ Type space T = ((Ti)i∈I , π):

▶ Ti: countable set of i’s types (T =
∏

i Ti, T−i =
∏

j ̸=i Tj)

▶ π ∈ ∆(T ): common prior

▶ Assume πi(ti) =
∑

t−i
π(ti, t−i) > 0 for all i and ti.

▶ Write πi(t−i|ti) = π(ti,t−i)
πi(ti)

.

▶ Bonus rule Bi : Ti → R+: Bonus paid to agent i of type ti

▶ Payoffs to agent i of type ti:

▶ ∑
t−i

πi(t−i|ti)P (S(σ−i(t−i)) ∪ {i})Bi(ti)− ci if ai = 1

▶ ∑
t−i

πi(t−i|ti)P (S(σ−i(t−i)))Bi(ti) if ai = 0
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Principal’s Objective
▶ Incentive scheme φ = (T , B) uniquely implements work (or

φ is a UIW scheme) if “always work” is the unique equilibrium
of the Bayesian game induced by (T , B + ε) for every ε > 0.

▶ Total bonus minimization problem:

TB∗ = inf
φ:UIW

TB(φ),

where

TB(φ) =
∑
t

π(t)P (I)
∑
i

Bi(ti)

= P (I)
∑
i

∑
ti

∑
t−i

π(t)

Bi(ti)

= P (I)
∑
i

∑
ti

πi(ti)Bi(ti).
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Results

1. Obtain a lower bound of
∑

ti
πi(ti)Bi(ti) for each UIW

scheme (T , B).

We provide a proof similar to that of Theorem 1(1) of MOT.

2. TB∗ is bounded below by
∑

i b
∗
i ,

where b∗ = (b∗i )i∈I is the unique solution to

▶ min
∑

i bi

▶ subject to the constraint that I satisfies sequential obedience
in the complete information game given by the bonus profile b.

3.
∑

i b
∗
i is attained in the limit of some sequence of

ε-elaborations of the complete information game given by
the bonus profile b∗.

Follows from the construction in the proof of Theorem 2 of
OT.
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4. The limit bonus distribution of any optimal sequence of UIW
schemes is the degenerate distribution on b∗.

5. Structure of optimal limit bonus profile

We derive the results using some known results from
cooperative game theory (Shapley 1971; Hokari 2002).

7 / 36



Lower Bound of Expected Bonus Payment
▶ Π: Set of permutations of I

▶ S−i(γ): Set of agents that appear before i in γ ∈ Π

▶ For i ∈ I and ρ ∈ ∆(Π), define

hi(ρ) =
ci∑

γ∈Π ρ(γ)∆iP (S−i(γ))
.

· · · Convex function of ρ

Proposition 1

For any UIW scheme (T , B) there exists ρ ∈ ∆(Π) such that∑
ti

πi(ti)Bi(ti) > hi(ρ)

for all i ∈ I.
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Proof

Similar to the proof of Theorem 1(1) of MOT:

▶ Let (T , B) be a UIW scheme.

▶ Starting with the smallest strategy σ0
i (ti) = 0 for all i = I and

all ti ∈ Ti, apply sequential best response in the order
1, 2, . . . , |I|.

▶ Let {σn} be the obtained sequence of strategy profiles:

▶ σn
i (ti) = 1 if i ≡ n (mod |I|) and∑
t−i

πi(t−i|ti)Bi(ti)∆iP (S(σn−1
−i (t−i))) > ci,

▶ σn
i (ti) = σn−1

i (ti) otherwise.

▶ By supermodularity, for each i ∈ I and ti ∈ Ti, {σn
i (ti)} is

monotone increasing and converges to 1.
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▶ Let ni(ti) = n if σn−1
i (ti) = 0 and σn

i (ti) = 1.

Write n(t) = (n1(t1), . . . , n|I|(t|I|)).

▶ For γ = (i1, . . . , i|I|) ∈ Π, let

T (γ) = {t ∈ T | ni1(ti1) < · · · < ni|I|(t|I|)}.

▶ Define ρ ∈ ∆(Π) and ρi(·|ti) ∈ ∆(Π) for each i ∈ I and
ti ∈ Ti by

ρ(γ) =
∑

t∈T (γ)

π(t),

ρi(γ|ti) =
∑

t−i:(ti,t−i)∈T (γ)

πi(t−i|ti).

▶ Note that ρ(γ) =
∑

ti∈Ti
πi(ti)ρi(γ|ti) for any i ∈ I.
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▶ For any i ∈ I and ti ∈ Ti,

ci <
∑
t−i

πi(t−i|ti)Bi(ti)∆iP (S(σ
ni(ti)−1
−i (t−i)))

=
∑
γ

∑
t−i:(ti,t−i)∈T (γ)

πi(t−i|ti)Bi(ti)∆iP (S−i(γ))

=
∑
γ

ρi(γ|ti)Bi(ti)∆iP (S−i(γ)).

▶ Therefore, for any i ∈ I and ti ∈ Ti,

Bi(ti) > hi(ρi(·|ti)),

where

hi(ρ
′) =

ci∑
γ ρ

′(γ)∆iP (S−i(γ))
,

which is a convex function of ρ′ ∈ ∆(Π).
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▶ Therefore,∑
ti

πi(ti)Bi(ti) >
∑
ti

πi(ti)hi(ρi(·|ti)).

▶ But by the convexity of hi, we have

∑
ti

πi(ti)hi(ρi(·|ti)) ≥ hi

(∑
ti

πi(ti)ρi(·|ti)

)
= hi(ρ)

by Jensen’s inequality.

▶ Therefore, we have∑
ti

πi(ti)Bi(ti) > hi(ρ).
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Lower Bound of TB∗

▶ Since

TB((T , B)) =
∑
t

π(t)P (I)
∑
i

Bi(ti)

= P (I)
∑
i

∑
ti

∑
t−i

π(t)

Bi(ti)

= P (I)
∑
i

∑
ti

πi(ti)Bi(ti),

we have

TB((T , B)) > P (I)
∑
i∈I

hi(ρ)

by Proposition 1.

13 / 36



▶ Consider the optimization problem

min
b∈RI

++

∑
i∈I

bi

subject to the condition that there exists ρ ∈ ∆(Π)
such that bi ≥ hi(ρ) for all i ∈ I, or∑

γ

ρ(γ)∆iP (S−i(γ))−
ci
bi

≥ 0 for all i ∈ I. (∗)

▶ By the strict convexity, this problem has a unique solution b∗.

▶ Since b = (hi(ρ))i∈I trivially satisfies the constraint
bi ≥ hi(ρ), we have

∑
i∈I hi(ρ) ≥

∑
i∈I b

∗
i .

▶ Therefore,

inf TB((T , B)) ≥ P (I)
∑
i∈I

b∗i .
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Sequential Obedience, Coalitional Obedience

▶ Condition (∗) is equivalent to sequential obedience of action
profile 1 in the complete information BAS game defined by

di(a−i; bi) = ∆iP (S(a−i))−
ci
bi
.

▶ This game is a potential game with a potential

Φ(a; b) = P (S(a))−
∑

i∈S(a)

ci
bi
.

▶ Therefore, by MOT, condition (∗) is equivalent to coalitional
obedience of 1: Φ(1; b) ≥ Φ(a; b) for all a ∈ A, or∑

i∈I\S

ci
bi

≤ P (I)− P (S) for all S ∈ I. (∗∗)
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Proposition 2

inf(T ,B)TB((T , B)) = P (I)
∑

i∈I b
∗
i .

In particular, for any ε > 0, there exists an ε′-elaboration (T , B) of
(di(·; b∗i + ε/[2|I|P (I)]))i∈I such that
TB((T , B)) ≤ P (I)

∑
i∈I b

∗
i + ε.

▶ Follows from the construction in Theorem 2 of OT.
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Proof
▶ Let b∗, ρ∗ be the solution.

▶ For each i ∈ I, let b̄i >
ci

∆iP (∅)
.

▶ Fix any ε > 0.

▶ Let η > 0 be such that∑
S∈I−i

(1− η)|S|ρ∗({γ ∈ Π | S−i(γ) = S})∆iP (S)

− ci
b∗i +

ε
2|I|P (I)

> 0 (1)

and

1− (1− η)|I|−1 ≤ ε

2P (I)
(∑

i∈I b̄i −
∑

i∈I b
∗
i

) . (2)

▶ Write ε′ = 1− (1− η)|I|−1.
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▶ Construct the information structure T as follows:

▶ Ti = {1, 2, . . .}
▶ m drawn from Z+ according to the distribution η(1− η)m.

▶ γ drawn from Π according to ρ∗.

▶ Player i receives signal ti given by

ti = m+ (ranking of i in γ).

▶ Define the bonus rule B by

Bi(ti) =

{
b̄i if ti ≤ |I| − 1,

b∗i +
ε

2|I|P (I) if ti ≥ |I|.

▶ (T , B) is an ε′-elaboration of (di(·; b∗i + ε/[2|I|P (I)]))i∈I ,

where η = 1− (1− ε′)1/(|I|−1).
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▶ In this elaboration, in any strategy surviving iterative
dominance, all types ti play action 1:

▶ By construction, types ti ≤ |I| − 1 play the dominant action 1.

▶ If types tj < τ play action 1,
then the payoff for type ti = τ is at least∑

S∈I−i

(1− η)|S|ρ∗({γ ∈ Π | S−i(γ) = S})

× di

(
a(S); b∗i +

ε
2|I|P (I)

)
× (constant) > 0.

▶ Therefore,

TB((T , B)) ≤ ε′P (I)
∑
i∈I

b̄i + (1− ε′)P (I)
∑
i∈I

(
b∗i +

ε
2|I|P (I)

)
≤ P (I)

∑
i∈I

b∗i + ε.
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Limit Bonus Distribution

▶ Let {(T k, Bk)} be an optimal sequence of UIW schemes:

i.e., a sequence of UIW schemes such that
TB((T k, Bk)) → P (I)

∑
i∈I b

∗
i as k → ∞.

Proposition 3

For each i ∈ I, Bk
i converges to b∗i weakly (or, in distribution) as

k → ∞.

▶ I.e., for all δ > 0,

πk
i ({ti | |Bk

i (ti)− b∗i | < δ}) → 1

as k → ∞.
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Lemma 1
For any i ∈ I and any distribution τ on ∆(Π),∫

hi(ρ)dτ(ρ) ≥ hi

(∫
ρdτ(ρ)

)
,

with equality only if the τ -distribution of hi is degenerate.

▶ x 7→ 1
x is strictly convex, and 1

hi(ρ)
is linear in ρ.

▶ Therefore, by Jensen’s inequality,∫
hi(ρ)dτ(ρ) =

∫
1
1

hi(ρ)

dτ(ρ) ≥ 1∫
1

hi(ρ)
dτ(ρ)

=
1
1

hi(
∫
ρdτ(ρ))

= hi

(∫
ρdτ(ρ)

)
,

with equality only if the τ -distribution of 1
hi
, hence of hi, is

degenerate.
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Proof of Proposition 3

▶ Take any sequence {(T k, Bk)} such that
TBk = TB((T k, Bk)) → TB∗ = P (I)

∑
i∈I b

∗
i .

▶ Let ρk and ρki , i ∈ I, be as in the proof of Proposition 1.
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Claim 1
For all i ∈ I,

∑
ti
πk
i (ti)|Bk

i (ti)− hi(ρ
k
i (·|ti))| → 0 as k → 0.

▶ We have∑
i

∑
ti

πk
i (ti)|Bk

i (ti)− hi(ρ
k
i (·|ti))|

=
∑
i

∑
ti

πk
i (ti)(B

k
i (ti)− hi(ρ

k
i (·|ti)))

≤
∑
i

∑
ti

πk
i (ti)B

k
i (ti)−

∑
i

hi(ρ
k)

≤
∑
i

∑
ti

πk
i (ti)B

k
i (ti)−

∑
i

b∗i → 0

as k → 0.
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▶ Take any subsequence of {(T k, Bk)} (again denoted by
{(T k, Bk)}).

We want to show that it has a subsequence (again denoted by
{(T k, Bk)}) such that for each i ∈ I, Bk

i converges to b∗i
weakly.

▶ For each i ∈ I, write τki for the distribution of ρki on ∆(Π).

▶ Since the support of τki is contained in the compact set ∆(Π),
we can take a subsequence such that for each i ∈ I,
τki converges to some τ∗i weakly as k → ∞
(by Prokhorov’s Theorem).
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Claim 2
For all i ∈ I, hi(ρ

k
i ) → b∗i weakly as k → ∞.

▶ For all i ∈ I,∫
ρdτki =

∑
ti

πk
i (ti)ρ

k
i (·|ti) = ρk.

▶ By the boundedness of ∆(Π), letting k → ∞ we have∫
ρdτ∗i = ρ∗

for all i ∈ I, where ρ∗ = limk→∞ ρk.
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▶ Then we have∑
i

∣∣∣∣∫ hi(ρ)dτ
k
i − hi

(∫
ρdτki

)∣∣∣∣
=
∑
i

(∫
hi(ρ)dτ

k
i − hi

(∫
ρdτki

))
=

TBk

P (I)
−
∑
i

hi(ρ
k) ≤ TBk

P (I)
−
∑
i

b∗i → 0 as k → ∞.

▶ Therefore, for all i ∈ I,∫
hi(ρ)dτ

∗
i = hi

(∫
ρdτ∗i

)
= hi(ρ

∗),

and
∑

i hi(ρ
∗) =

∑
i b

∗
i , and hence hi(ρ

∗) = b∗i by the
uniqueness of the solution.

▶ Therefore, by Lemma 1, the τ∗i -distribution of hi is
degenerate on b∗i .
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▶ Now fix any δ > 0.

▶ Since |Bk
i − b∗i | ≥ δ implies |Bk

i − hi(ρ
k
i )| ≥ δ/2 or

|hi(ρki )− b∗i | ≥ δ/2,

πk
i (|Bk

i − b∗i | ≥ δ)

≤ πk
i (|Bk

i − hi(ρ
k
i )| ≥ δ/2) + πk

i (|hi(ρki )− b∗i | ≥ δ/2).

▶ Let k → ∞. Then, by Claim 1,

πk
i (|Bk

i − hi(ρ
k
i )| ≥ δ/2)δ/2

≤
∑
ti

πk
i (ti)|Bk

i (ti)− hi(ρ
k
i (·|ti))| → 0,

while by Claim 2,

πk
i (|hi(ρki )− b∗i | ≥ δ/2) → 0.
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Comparative Statics

▶ Without loss, we assume that P (∅) = 0.

▶ Let b∗ be the optimal limit bonus profile, and ρ∗ ∈ ∆(Π)
an associated ordered outcome.

Write x∗i =
ci
b∗i
.

▶ x∗ = (x∗1, . . . , x
∗
|I|) satisfies the sequential obedience condition

with equality:

x∗i =
∑
γ

ρ∗(γ)∆iP (S−i(γ)) for all i ∈ I. (⋆)
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▶ x∗ = (x∗1, . . . , x
∗
|I|) satisfies the sequential obedience condition

with equality:

x∗i =
∑
γ

ρ∗(γ)∆iP (S−i(γ)) for all i ∈ I. (⋆)

▶ For each γ ∈ Π, define αγ = (αγ
1 , . . . , α

γ
|I|) by

αγ
i = ∆iP (S−i(γ)).

▶ (⋆) says:

x∗ is written as a convex combination of (αγ)γ∈Π, where
coefficients are given by ρ∗.
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Some Facts from Cooperative Game Theory

From Shapley (1971), “Cores of Convex Games,” IJGT.

▶ P viewed as a cooperative game, the core of P is the set

C = {x ∈ RI | x(I) = P (I), x(S) ≥ P (S) for all S ∈ I},

where x(S) =
∑

i∈S xi.

▶ C is a polytope (intersection of finitely many half spaces,
bounded).

▶ C 6= ∅ by the convexity of P .

In fact, αγ ∈ C for all γ ∈ Π.

▶ (αγ)γ∈Π are precisely the vertices of C.

These are all distinct by the strict convexity of P .

▶ Thus, x satisfies (⋆) if and only if x ∈ C.
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▶ For S ∈ I, let

CS = {x ∈ C | x(S) = P (S)}.

(Define C∅ = C.)

These are the faces of C.

▶ The vertices of CS are precisely the points αγ such that
agents in S are ranked higher in γ.

▶ For x ∈ C, let Sx = {S ∈ I | x ∈ CS}.

The members of Sx are nested:
If S, S′ ∈ Sx, then S ⊂ S′ or S′ ⊂ S.
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Structure of Optimal Bonus Profile and Associated
Ordered Outcomes

▶ Let b∗ be the optimal limit bonus profile, and ρ∗ an associated
ordered outcome.

Let x∗ = (ci/b
∗
i )i∈I as before: x∗ =

∑
γ∈Π ρ∗(γ)αγ .

▶ x∗ is the unique solution to the problem:

min
∑
i∈I

ci
xi

subject to

x ∈ C, (⋆⋆)

that is,

x(I) = P (I),

x(S) ≥ P (S) (S ∈ I).

32 / 36



▶ Suppose we know that Sx∗ = {S∗
0 , S

∗
1 , . . . , S

∗
L} where

∅ = S∗
0 ⊂ S∗

1 ⊂ · · · ⊂ S∗
L = I.

▶ In the optimization problem, the constraints x(S∗
ℓ ) = P (S∗

ℓ ),
ℓ = 1, . . . , L, are precisely the binding constraints.

▶ For any γ such that ρ∗(γ) > 0,

γ = (S∗
1 , S

∗
2 \ S∗

1 , . . . , S
∗
L \ S∗

L−1).

▶ Define the weak order ≿ on I by

▶ i � i′ if and only if i ∈ S∗
ℓ \ S∗

ℓ−1 and i′ ∈ S∗
ℓ′ \ S∗

ℓ′−1 for some
ℓ < ℓ′; and

▶ i ∼ i′ if and only if i, i′ ∈ S∗
ℓ \ S∗

ℓ−1 for some ℓ.
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Extreme Cases

▶ i ∼ i′ for all i, i′ ∈ I (i.e., L = 1) if and only if

P (I)∑
i∈I

√
ci

>
P (S)∑
i∈S

√
ci

for all S 6= I.

▶ i � i′ or i′ � i whenever i 6= i′ (i.e., L = |I|, or x∗ = αγ for
some γ ∈ Π) if and only if there exists γ = (i1, . . . , i|I|) ∈ Π
such that

∆ik+1
P (S−ik+1

(γ))
√
cik+1

≤ ∆ikP (S−ik(γ))√
cik

for all k = 1, . . . , |I| − 1.
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Connection to Cooperative Game Theory
▶ Recall the problem:

min
∑
i∈I

ci
xi

subject to x ∈ C

▶ This is a well-studied problem in cooperative game theory.

▶ When c1 = · · · = c|I|, the solution x∗ coincides with
the “constrained egalitarian allocation” of Dutta and Ray
(1989), or the “Dutta-Ray solution”.

▶ For general ci’s, x
∗ is a special case of a generalized

Dutta-Ray solution (e.g., Hokari (2002)).

▶ By Hokari (2002), the solution x∗ is explicitly written as

x∗i = max
S⊂I,S∋i

min
T⊂S\{i}

√
ci(P (S)− P (T ))∑

j∈S\T
√
cj

.
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Proposition 4

The unique limit optimal bonus profile b∗ = (b∗i )i∈I is given by

b∗i = min
S⊂I,S∋i

max
T⊂S\{i}

√
ci
∑

j∈S\T
√
cj

P (S)− P (T )
.

Proposition 5

▶ b∗i is strictly increasing in ci.

▶ b∗i is increasing in cj , j 6= i.

▶ b∗i
ci

is decreasing in ci.

▶ b∗i
ci

is increasing in cj , j 6= i.
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