Joint Design of Information and Transfers in a Team Production Problem

Daisuke Oyama

Game Theory I

November 2, 2023

Papers

- Halac, M., E. Lipnowski, and D. Rappoport (2021). "Rank Uncertainty in Organizations," American Economic Review 111, 757-86.
- Morris, S., D. Oyama, and S. Takahashi (2022). "On the Joint Design of Information and Transfers."

Model

- Team project by agents $I=\{1, \ldots,|I|\} \quad\left(\mathcal{I}=2^{I}, \mathcal{I}_{-i}=2^{I \backslash\{i\}}\right)$
- Effort level $a_{i} \in\{0,1\}$
- c_{i} : Agent i 's cost of effort
- $P: \mathcal{I} \rightarrow[0,1]$
$P(S)$: Success probability when i works if and only if $i \in S$
- Assumptions:
- Monotonicity: $P(S)<P\left(S^{\prime}\right)$ whenever $S \varsubsetneqq S^{\prime}$
- Increasing returns to scale (IRS):
$P(S)+P\left(S^{\prime}\right) \leq P\left(S \cup S^{\prime}\right)+P\left(S \cap S^{\prime}\right)$ for all $S, S \in \mathcal{I}$ (P is a convex game if viewed as a cooperative game.)
- For each $i \in I$ and $S \in \mathcal{I}_{-i}$, denote

$$
\Delta_{i} P(S)=P(S \cup\{i\})-P(S)
$$

Incentive Contracts

- Principal offers private contracts to agents to implement action profile I (all players exerting effort)
as a smallest-hence unique-equilibrium outcome.
- Moral hazard (hidden action):

Only the final outcome of the project is contractible.
Bonus $b_{i} \geq 0$ paid to each agent upon success

- Ex post payoffs:

$$
\begin{cases}P(S \cup\{i\}) b_{i}-c_{i} & \text { if } a_{i}=1 \\ P(S) b_{i} & \text { if } a_{i}=0\end{cases}
$$

- Payoff gain function:

$$
d_{i}(S)=\Delta_{i} P(S)-c_{i}
$$

Incentive Schemes

Incentive scheme $\varphi=(\mathcal{T}, B)$:

- Type space $\mathcal{T}=\left(\left(T_{i}\right)_{i \in I}, \pi\right)$:
- T_{i} : countable set of i 's types $\quad\left(T=\prod_{i} T_{i}, T_{-i}=\prod_{j \neq i} T_{j}\right)$
- $\pi \in \Delta(T)$: common prior
- Assume $\pi_{i}\left(t_{i}\right)=\sum_{t_{-i}} \pi\left(t_{i}, t_{-i}\right)>0$ for all i and t_{i}.
- Write $\pi_{i}\left(t_{-i} \mid t_{i}\right)=\frac{\pi\left(t_{i}, t_{-i}\right)}{\pi_{i}\left(t_{i}\right)}$.
- Bonus rule $B_{i}: T_{i} \rightarrow \mathbb{R}_{+}$: Bonus paid to agent i of type t_{i}
- Payoffs to agent i of type t_{i} :
- $\sum_{t_{-i}} \pi_{i}\left(t_{-i} \mid t_{i}\right) P\left(S\left(\sigma_{-i}\left(t_{-i}\right)\right) \cup\{i\}\right) B_{i}\left(t_{i}\right)-c_{i}$ if $a_{i}=1$
- $\sum_{t_{-i}} \pi_{i}\left(t_{-i} \mid t_{i}\right) P\left(S\left(\sigma_{-i}\left(t_{-i}\right)\right)\right) B_{i}\left(t_{i}\right)$ if $a_{i}=0$

Principal's Objective

- Incentive scheme $\varphi=(\mathcal{T}, B)$ uniquely implements work (or φ is a UIW scheme) if "always work" is the unique equilibrium of the Bayesian game induced by $(\mathcal{T}, B+\varepsilon)$ for every $\varepsilon>0$.
- Total bonus minimization problem:

$$
T B^{*}=\inf _{\varphi: \text { UIW }} T B(\varphi)
$$

where

$$
\begin{aligned}
T B(\varphi) & =\sum_{t} \pi(t) P(I) \sum_{i} B_{i}\left(t_{i}\right) \\
& =P(I) \sum_{i} \sum_{t_{i}}\left(\sum_{t_{-i}} \pi(t)\right) B_{i}\left(t_{i}\right) \\
& =P(I) \sum_{i} \sum_{t_{i}} \pi_{i}\left(t_{i}\right) B_{i}\left(t_{i}\right) .
\end{aligned}
$$

Results

1. Obtain a lower bound of $\sum_{t_{i}} \pi_{i}\left(t_{i}\right) B_{i}\left(t_{i}\right)$ for each UIW scheme (\mathcal{T}, B).

We provide a proof similar to that of Theorem $1(1)$ of MOT.
2. $T B^{*}$ is bounded below by $\sum_{i} b_{i}^{*}$,
where $b^{*}=\left(b_{i}^{*}\right)_{i \in I}$ is the unique solution to
$\checkmark \min \sum_{i} b_{i}$

- subject to the constraint that I satisfies sequential obedience in the complete information game given by the bonus profile b.

3. $\sum_{i} b_{i}^{*}$ is attained in the limit of some sequence of ε-elaborations of the complete information game given by the bonus profile b^{*}.

Follows from the construction in the proof of Theorem 2 of OT.
4. The limit bonus distribution of any optimal sequence of UIW schemes is the degenerate distribution on b^{*}.
5. Structure of optimal limit bonus profile

We derive the results using some known results from cooperative game theory (Shapley 1971; Hokari 2002).

Lower Bound of Expected Bonus Payment

- Π : Set of permutations of I
- $S_{-i}(\gamma)$: Set of agents that appear before i in $\gamma \in \Pi$
- For $i \in I$ and $\rho \in \Delta(\Pi)$, define

$$
h_{i}(\rho)=\frac{c_{i}}{\sum_{\gamma \in \Pi} \rho(\gamma) \Delta_{i} P\left(S_{-i}(\gamma)\right)} .
$$

... Convex function of ρ
Proposition 1
For any UIW scheme (\mathcal{T}, B) there exists $\rho \in \Delta(\Pi)$ such that

$$
\sum_{t_{i}} \pi_{i}\left(t_{i}\right) B_{i}\left(t_{i}\right)>h_{i}(\rho)
$$

for all $i \in I$.

Proof

Similar to the proof of Theorem 1(1) of MOT:

- Let (\mathcal{T}, B) be a UIW scheme.
- Starting with the smallest strategy $\sigma_{i}^{0}\left(t_{i}\right)=0$ for all $i=I$ and all $t_{i} \in T_{i}$, apply sequential best response in the order $1,2, \ldots,|I|$.
- Let $\left\{\sigma^{n}\right\}$ be the obtained sequence of strategy profiles:
- $\sigma_{i}^{n}\left(t_{i}\right)=1$ if $i \equiv n(\bmod |I|)$ and

$$
\sum_{t_{-i}} \pi_{i}\left(t_{-i} \mid t_{i}\right) B_{i}\left(t_{i}\right) \Delta_{i} P\left(S\left(\sigma_{-i}^{n-1}\left(t_{-i}\right)\right)\right)>c_{i}
$$

- $\sigma_{i}^{n}\left(t_{i}\right)=\sigma_{i}^{n-1}\left(t_{i}\right)$ otherwise.
- By supermodularity, for each $i \in I$ and $t_{i} \in T_{i},\left\{\sigma_{i}^{n}\left(t_{i}\right)\right\}$ is monotone increasing and converges to 1 .
- Let $n_{i}\left(t_{i}\right)=n$ if $\sigma_{i}^{n-1}\left(t_{i}\right)=0$ and $\sigma_{i}^{n}\left(t_{i}\right)=1$.

Write $n(t)=\left(n_{1}\left(t_{1}\right), \ldots, n_{|I|}\left(t_{|I|}\right)\right)$.

- For $\gamma=\left(i_{1}, \ldots, i_{|I|}\right) \in \Pi$, let

$$
T(\gamma)=\left\{t \in T \mid n_{i_{1}}\left(t_{i_{1}}\right)<\cdots<n_{i_{|I|}}\left(t_{|I|}\right)\right\}
$$

- Define $\rho \in \Delta(\Pi)$ and $\rho_{i}\left(\cdot \mid t_{i}\right) \in \Delta(\Pi)$ for each $i \in I$ and $t_{i} \in T_{i}$ by

$$
\begin{aligned}
& \rho(\gamma)=\sum_{t \in T(\gamma)} \pi(t) \\
& \rho_{i}\left(\gamma \mid t_{i}\right)=\sum_{t_{-i}:\left(t_{i}, t_{-i}\right) \in T(\gamma)} \pi_{i}\left(t_{-i} \mid t_{i}\right) .
\end{aligned}
$$

- Note that $\rho(\gamma)=\sum_{t_{i} \in T_{i}} \pi_{i}\left(t_{i}\right) \rho_{i}\left(\gamma \mid t_{i}\right)$ for any $i \in I$.
- For any $i \in I$ and $t_{i} \in T_{i}$,

$$
\begin{aligned}
c_{i} & <\sum_{t_{-i}} \pi_{i}\left(t_{-i} \mid t_{i}\right) B_{i}\left(t_{i}\right) \Delta_{i} P\left(S\left(\sigma_{-i}^{n_{i}\left(t_{i}\right)-1}\left(t_{-i}\right)\right)\right) \\
& =\sum_{\gamma} \sum_{t_{-i}:\left(t_{i}, t_{-i}\right) \in T(\gamma)} \pi_{i}\left(t_{-i} \mid t_{i}\right) B_{i}\left(t_{i}\right) \Delta_{i} P\left(S_{-i}(\gamma)\right) \\
& =\sum_{\gamma} \rho_{i}\left(\gamma \mid t_{i}\right) B_{i}\left(t_{i}\right) \Delta_{i} P\left(S_{-i}(\gamma)\right) .
\end{aligned}
$$

- Therefore, for any $i \in I$ and $t_{i} \in T_{i}$,

$$
B_{i}\left(t_{i}\right)>h_{i}\left(\rho_{i}\left(\cdot \mid t_{i}\right)\right),
$$

where

$$
h_{i}\left(\rho^{\prime}\right)=\frac{c_{i}}{\sum_{\gamma} \rho^{\prime}(\gamma) \Delta_{i} P\left(S_{-i}(\gamma)\right)},
$$

which is a convex function of $\rho^{\prime} \in \Delta(\Pi)$.

- Therefore,

$$
\sum_{t_{i}} \pi_{i}\left(t_{i}\right) B_{i}\left(t_{i}\right)>\sum_{t_{i}} \pi_{i}\left(t_{i}\right) h_{i}\left(\rho_{i}\left(\cdot \mid t_{i}\right)\right)
$$

- But by the convexity of h_{i}, we have

$$
\sum_{t_{i}} \pi_{i}\left(t_{i}\right) h_{i}\left(\rho_{i}\left(\cdot \mid t_{i}\right)\right) \geq h_{i}\left(\sum_{t_{i}} \pi_{i}\left(t_{i}\right) \rho_{i}\left(\cdot \mid t_{i}\right)\right)=h_{i}(\rho)
$$

by Jensen's inequality.

- Therefore, we have

$$
\sum_{t_{i}} \pi_{i}\left(t_{i}\right) B_{i}\left(t_{i}\right)>h_{i}(\rho)
$$

Lower Bound of TB*

- Since

$$
\begin{aligned}
T B((\mathcal{T}, B)) & =\sum_{t} \pi(t) P(I) \sum_{i} B_{i}\left(t_{i}\right) \\
& =P(I) \sum_{i} \sum_{t_{i}}\left(\sum_{t_{-i}} \pi(t)\right) B_{i}\left(t_{i}\right) \\
& =P(I) \sum_{i} \sum_{t_{i}} \pi_{i}\left(t_{i}\right) B_{i}\left(t_{i}\right)
\end{aligned}
$$

we have

$$
T B((\mathcal{T}, B))>P(I) \sum_{i \in I} h_{i}(\rho)
$$

by Proposition 1 .

- Consider the optimization problem

$$
\min _{b \in \mathbb{R}_{++}^{I}} \sum_{i \in I} b_{i}
$$

subject to the condition that there exists $\rho \in \Delta(\Pi)$
such that $b_{i} \geq h_{i}(\rho)$ for all $i \in I$, or

$$
\begin{equation*}
\sum_{\gamma} \rho(\gamma) \Delta_{i} P\left(S_{-i}(\gamma)\right)-\frac{c_{i}}{b_{i}} \geq 0 \text { for all } i \in I . \tag{*}
\end{equation*}
$$

- By the strict convexity, this problem has a unique solution b^{*}.
- Since $b=\left(h_{i}(\rho)\right)_{i \in I}$ trivially satisfies the constraint $b_{i} \geq h_{i}(\rho)$, we have $\sum_{i \in I} h_{i}(\rho) \geq \sum_{i \in I} b_{i}^{*}$.
- Therefore,

$$
\inf T B((\mathcal{T}, B)) \geq P(I) \sum_{i \in I} b_{i}^{*}
$$

Sequential Obedience, Coalitional Obedience

- Condition $(*)$ is equivalent to sequential obedience of action profile $\mathbf{1}$ in the complete information BAS game defined by

$$
d_{i}\left(a_{-i} ; b_{i}\right)=\Delta_{i} P\left(S\left(a_{-i}\right)\right)-\frac{c_{i}}{b_{i}}
$$

- This game is a potential game with a potential

$$
\Phi(a ; b)=P(S(a))-\sum_{i \in S(a)} \frac{c_{i}}{b_{i}}
$$

- Therefore, by MOT, condition $(*)$ is equivalent to coalitional obedience of $\mathbf{1}$: $\Phi(\mathbf{1} ; b) \geq \Phi(a ; b)$ for all $a \in A$, or

$$
\begin{equation*}
\sum_{i \in I \backslash S} \frac{c_{i}}{b_{i}} \leq P(I)-P(S) \text { for all } S \in \mathcal{I} \tag{**}
\end{equation*}
$$

Proposition 2
$\inf _{(\mathcal{T}, B)} T B((\mathcal{T}, B))=P(I) \sum_{i \in I} b_{i}^{*}$.
In particular, for any $\varepsilon>0$, there exists an ε^{\prime}-elaboration (\mathcal{T}, B) of
$\left(d_{i}\left(\cdot ; b_{i}^{*}+\varepsilon /[2|I| P(I)]\right)\right)_{i \in I}$ such that
$T B((\mathcal{T}, B)) \leq P(I) \sum_{i \in I} b_{i}^{*}+\varepsilon$.

- Follows from the construction in Theorem 2 of OT.

Proof

- Let b^{*}, ρ^{*} be the solution.
- For each $i \in I$, let $\bar{b}_{i}>\frac{c_{i}}{\Delta_{i} P(\emptyset)}$.
- Fix any $\varepsilon>0$.
- Let $\eta>0$ be such that

$$
\begin{align*}
\sum_{S \in \mathcal{I}_{-i}}(1-\eta)^{|S|} \rho^{*}\left(\left\{\gamma \in \Pi \mid S_{-i}(\gamma)=\right.\right. & S\}) \Delta_{i} P(S) \\
& -\frac{c_{i}}{b_{i}^{*}+\frac{\varepsilon}{2|I| P(I)}}>0 \tag{1}
\end{align*}
$$

and

$$
\begin{equation*}
1-(1-\eta)^{|I|-1} \leq \frac{\varepsilon}{2 P(I)\left(\sum_{i \in I} \bar{b}_{i}-\sum_{i \in I} b_{i}^{*}\right)} \tag{2}
\end{equation*}
$$

-Write $\varepsilon^{\prime}=1-(1-\eta)^{|I|-1}$.

- Construct the information structure \mathcal{T} as follows:
- $T_{i}=\{1,2, \ldots\}$
- m drawn from \mathbb{Z}_{+}according to the distribution $\eta(1-\eta)^{m}$.
- γ drawn from Π according to ρ^{*}.
- Player i receives signal t_{i} given by

$$
t_{i}=m+(\text { ranking of } i \text { in } \gamma) .
$$

- Define the bonus rule B by

$$
B_{i}\left(t_{i}\right)= \begin{cases}\bar{b}_{i} & \text { if } t_{i} \leq|I|-1, \\ b_{i}^{*}+\frac{\varepsilon}{2|I| P(I)} & \text { if } t_{i} \geq|I| .\end{cases}
$$

- (\mathcal{T}, B) is an ε^{\prime}-elaboration of $\left(d_{i}\left(\cdot ; b_{i}^{*}+\varepsilon /[2|I| P(I)]\right)\right)_{i \in I}$, where $\eta=1-\left(1-\varepsilon^{\prime}\right)^{1 /(|I|-1)}$.
- In this elaboration, in any strategy surviving iterative dominance, all types t_{i} play action 1 :
- By construction, types $t_{i} \leq|I|-1$ play the dominant action 1 .
- If types $t_{j}<\tau$ play action 1 , then the payoff for type $t_{i}=\tau$ is at least

$$
\begin{aligned}
\sum_{S \in \mathcal{I}_{-i}}(1- & \eta)^{|S|} \rho^{*}\left(\left\{\gamma \in \Pi \mid S_{-i}(\gamma)=S\right\}\right) \\
& \times d_{i}\left(a(S) ; b_{i}^{*}+\frac{\varepsilon}{2|I| P(I)}\right) \times(\text { constant })>0
\end{aligned}
$$

- Therefore,

$$
\begin{aligned}
T B((\mathcal{T}, B)) & \leq \varepsilon^{\prime} P(I) \sum_{i \in I} \bar{b}_{i}+\left(1-\varepsilon^{\prime}\right) P(I) \sum_{i \in I}\left(b_{i}^{*}+\frac{\varepsilon}{2|I| P(I)}\right) \\
& \leq P(I) \sum_{i \in I} b_{i}^{*}+\varepsilon
\end{aligned}
$$

Limit Bonus Distribution

- Let $\left\{\left(\mathcal{T}^{k}, B^{k}\right)\right\}$ be an optimal sequence of UIW schemes:
i.e., a sequence of UIW schemes such that $T B\left(\left(\mathcal{T}^{k}, B^{k}\right)\right) \rightarrow P(I) \sum_{i \in I} b_{i}^{*}$ as $k \rightarrow \infty$.

Proposition 3
For each $i \in I, B_{i}^{k}$ converges to b_{i}^{*} weakly (or, in distribution) as $k \rightarrow \infty$.

- I.e., for all $\delta>0$,

$$
\pi_{i}^{k}\left(\left\{t_{i}| | B_{i}^{k}\left(t_{i}\right)-b_{i}^{*} \mid<\delta\right\}\right) \rightarrow 1
$$

as $k \rightarrow \infty$.

Lemma 1
For any $i \in I$ and any distribution τ on $\Delta(\Pi)$,

$$
\int h_{i}(\rho) d \tau(\rho) \geq h_{i}\left(\int \rho d \tau(\rho)\right)
$$

with equality only if the τ-distribution of h_{i} is degenerate.

- $x \mapsto \frac{1}{x}$ is strictly convex, and $\frac{1}{h_{i}(\rho)}$ is linear in ρ.
- Therefore, by Jensen's inequality,

$$
\begin{aligned}
\int h_{i}(\rho) d \tau(\rho) & =\int \frac{1}{\frac{1}{h_{i}(\rho)}} d \tau(\rho) \geq \frac{1}{\int \frac{1}{h_{i}(\rho)} d \tau(\rho)} \\
& =\frac{1}{\frac{1}{h_{i}\left(\int \rho d \tau(\rho)\right)}}=h_{i}\left(\int \rho d \tau(\rho)\right),
\end{aligned}
$$

with equality only if the τ-distribution of $\frac{1}{h_{i}}$, hence of h_{i}, is degenerate.

Proof of Proposition 3

- Take any sequence $\left\{\left(\mathcal{T}^{k}, B^{k}\right)\right\}$ such that $T B^{k}=T B\left(\left(\mathcal{T}^{k}, B^{k}\right)\right) \rightarrow T B^{*}=P(I) \sum_{i \in I} b_{i}^{*}$.
- Let ρ^{k} and $\rho_{i}^{k}, i \in I$, be as in the proof of Proposition 1.

Claim 1
For all $i \in I, \sum_{t_{i}} \pi_{i}^{k}\left(t_{i}\right)\left|B_{i}^{k}\left(t_{i}\right)-h_{i}\left(\rho_{i}^{k}\left(\cdot \mid t_{i}\right)\right)\right| \rightarrow 0$ as $k \rightarrow 0$.

- We have

$$
\begin{aligned}
& \sum_{i} \sum_{t_{i}} \pi_{i}^{k}\left(t_{i}\right)\left|B_{i}^{k}\left(t_{i}\right)-h_{i}\left(\rho_{i}^{k}\left(\cdot \mid t_{i}\right)\right)\right| \\
& =\sum_{i} \sum_{t_{i}} \pi_{i}^{k}\left(t_{i}\right)\left(B_{i}^{k}\left(t_{i}\right)-h_{i}\left(\rho_{i}^{k}\left(\cdot \mid t_{i}\right)\right)\right) \\
& \leq \sum_{i} \sum_{t_{i}} \pi_{i}^{k}\left(t_{i}\right) B_{i}^{k}\left(t_{i}\right)-\sum_{i} h_{i}\left(\rho^{k}\right) \\
& \leq \sum_{i} \sum_{t_{i}} \pi_{i}^{k}\left(t_{i}\right) B_{i}^{k}\left(t_{i}\right)-\sum_{i} b_{i}^{*} \rightarrow 0
\end{aligned}
$$

as $k \rightarrow 0$.

- Take any subsequence of $\left\{\left(\mathcal{T}^{k}, B^{k}\right)\right\}$ (again denoted by $\left.\left\{\left(\mathcal{T}^{k}, B^{k}\right)\right\}\right)$.

We want to show that it has a subsequence (again denoted by $\left.\left\{\left(\mathcal{T}^{k}, B^{k}\right)\right\}\right)$ such that for each $i \in I, B_{i}^{k}$ converges to b_{i}^{*} weakly.

- For each $i \in I$, write τ_{i}^{k} for the distribution of ρ_{i}^{k} on $\Delta(\Pi)$.
- Since the support of τ_{i}^{k} is contained in the compact set $\Delta(\Pi)$, we can take a subsequence such that for each $i \in I$, τ_{i}^{k} converges to some τ_{i}^{*} weakly as $k \rightarrow \infty$ (by Prokhorov's Theorem).

Claim 2
For all $i \in I, h_{i}\left(\rho_{i}^{k}\right) \rightarrow b_{i}^{*}$ weakly as $k \rightarrow \infty$.

- For all $i \in I$,

$$
\int \rho d \tau_{i}^{k}=\sum_{t_{i}} \pi_{i}^{k}\left(t_{i}\right) \rho_{i}^{k}\left(\cdot \mid t_{i}\right)=\rho^{k}
$$

- By the boundedness of $\Delta(\Pi)$, letting $k \rightarrow \infty$ we have

$$
\int \rho d \tau_{i}^{*}=\rho^{*}
$$

for all $i \in I$, where $\rho^{*}=\lim _{k \rightarrow \infty} \rho^{k}$.

- Then we have

$$
\begin{aligned}
& \sum_{i}\left|\int h_{i}(\rho) d \tau_{i}^{k}-h_{i}\left(\int \rho d \tau_{i}^{k}\right)\right| \\
& =\sum_{i}\left(\int h_{i}(\rho) d \tau_{i}^{k}-h_{i}\left(\int \rho d \tau_{i}^{k}\right)\right) \\
& =\frac{T B^{k}}{P(I)}-\sum_{i} h_{i}\left(\rho^{k}\right) \leq \frac{T B^{k}}{P(I)}-\sum_{i} b_{i}^{*} \rightarrow 0 \text { as } k \rightarrow \infty .
\end{aligned}
$$

- Therefore, for all $i \in I$,

$$
\int h_{i}(\rho) d \tau_{i}^{*}=h_{i}\left(\int \rho d \tau_{i}^{*}\right)=h_{i}\left(\rho^{*}\right)
$$

and $\sum_{i} h_{i}\left(\rho^{*}\right)=\sum_{i} b_{i}^{*}$, and hence $h_{i}\left(\rho^{*}\right)=b_{i}^{*}$ by the uniqueness of the solution.

- Therefore, by Lemma 1 , the τ_{i}^{*}-distribution of h_{i} is degenerate on b_{i}^{*}.
- Now fix any $\delta>0$.
- Since $\left|B_{i}^{k}-b_{i}^{*}\right| \geq \delta$ implies $\left|B_{i}^{k}-h_{i}\left(\rho_{i}^{k}\right)\right| \geq \delta / 2$ or $\left|h_{i}\left(\rho_{i}^{k}\right)-b_{i}^{*}\right| \geq \delta / 2$,

$$
\begin{aligned}
& \pi_{i}^{k}\left(\left|B_{i}^{k}-b_{i}^{*}\right| \geq \delta\right) \\
& \leq \pi_{i}^{k}\left(\left|B_{i}^{k}-h_{i}\left(\rho_{i}^{k}\right)\right| \geq \delta / 2\right)+\pi_{i}^{k}\left(\left|h_{i}\left(\rho_{i}^{k}\right)-b_{i}^{*}\right| \geq \delta / 2\right)
\end{aligned}
$$

- Let $k \rightarrow \infty$. Then, by Claim 1 ,

$$
\begin{aligned}
& \pi_{i}^{k}\left(\left|B_{i}^{k}-h_{i}\left(\rho_{i}^{k}\right)\right| \geq \delta / 2\right) \delta / 2 \\
& \leq \sum_{t_{i}} \pi_{i}^{k}\left(t_{i}\right)\left|B_{i}^{k}\left(t_{i}\right)-h_{i}\left(\rho_{i}^{k}\left(\cdot \mid t_{i}\right)\right)\right| \rightarrow 0
\end{aligned}
$$

while by Claim 2,

$$
\pi_{i}^{k}\left(\left|h_{i}\left(\rho_{i}^{k}\right)-b_{i}^{*}\right| \geq \delta / 2\right) \rightarrow 0
$$

Comparative Statics

- Without loss, we assume that $P(\emptyset)=0$.
- Let b^{*} be the optimal limit bonus profile, and $\rho^{*} \in \Delta(\Pi)$ an associated ordered outcome.

Write $x_{i}^{*}=\frac{c_{i}}{b_{i}^{*}}$.

- $x^{*}=\left(x_{1}^{*}, \ldots, x_{|I|}^{*}\right)$ satisfies the sequential obedience condition with equality:

$$
x_{i}^{*}=\sum_{\gamma} \rho^{*}(\gamma) \Delta_{i} P\left(S_{-i}(\gamma)\right) \text { for all } i \in I
$$

$>x^{*}=\left(x_{1}^{*}, \ldots, x_{|I|}^{*}\right)$ satisfies the sequential obedience condition with equality:

$$
x_{i}^{*}=\sum_{\gamma} \rho^{*}(\gamma) \Delta_{i} P\left(S_{-i}(\gamma)\right) \text { for all } i \in I
$$

- For each $\gamma \in \Pi$, define $\alpha^{\gamma}=\left(\alpha_{1}^{\gamma}, \ldots, \alpha_{|I|}^{\gamma}\right)$ by

$$
\alpha_{i}^{\gamma}=\Delta_{i} P\left(S_{-i}(\gamma)\right)
$$

$-(\star)$ says:
x^{*} is written as a convex combination of $\left(\alpha^{\gamma}\right)_{\gamma \in \Pi}$, where coefficients are given by ρ^{*}.

Some Facts from Cooperative Game Theory

From Shapley (1971), "Cores of Convex Games," IJGT.

- P viewed as a cooperative game, the core of P is the set

$$
C=\left\{x \in \mathbb{R}^{I} \mid x(I)=P(I), x(S) \geq P(S) \text { for all } S \in \mathcal{I}\right\}
$$

where $x(S)=\sum_{i \in S} x_{i}$.

- C is a polytope (intersection of finitely many half spaces, bounded).
- $C \neq \emptyset$ by the convexity of P.

In fact, $\alpha^{\gamma} \in C$ for all $\gamma \in \Pi$.

- $\left(\alpha^{\gamma}\right)_{\gamma \in \Pi}$ are precisely the vertices of C.

These are all distinct by the strict convexity of P.

- Thus, x satisfies (\star) if and only if $x \in C$.
- For $S \in \mathcal{I}$, let

$$
C_{S}=\{x \in C \mid x(S)=P(S)\}
$$

(Define $C_{\emptyset}=C$.)
These are the faces of C.

- The vertices of C_{S} are precisely the points α^{γ} such that agents in S are ranked higher in γ.
- For $x \in C$, let $\mathcal{S}_{x}=\left\{S \in \mathcal{I} \mid x \in C_{S}\right\}$.

The members of \mathcal{S}_{x} are nested: If $S, S^{\prime} \in \mathcal{S}_{x}$, then $S \subset S^{\prime}$ or $S^{\prime} \subset S$.

Structure of Optimal Bonus Profile and Associated Ordered Outcomes

- Let b^{*} be the optimal limit bonus profile, and ρ^{*} an associated ordered outcome.

Let $x^{*}=\left(c_{i} / b_{i}^{*}\right)_{i \in I}$ as before: $x^{*}=\sum_{\gamma \in \Pi} \rho^{*}(\gamma) \alpha^{\gamma}$.

- x^{*} is the unique solution to the problem:

$$
\min \sum_{i \in I} \frac{c_{i}}{x_{i}}
$$

subject to

$$
x \in C,
$$

that is,

$$
\begin{aligned}
& x(I)=P(I) \\
& x(S) \geq P(S) \quad(S \in \mathcal{I})
\end{aligned}
$$

- Suppose we know that $\mathcal{S}_{x^{*}}=\left\{S_{0}^{*}, S_{1}^{*}, \ldots, S_{L}^{*}\right\}$ where $\emptyset=S_{0}^{*} \subset S_{1}^{*} \subset \cdots \subset S_{L}^{*}=I$.
- In the optimization problem, the constraints $x\left(S_{\ell}^{*}\right)=P\left(S_{\ell}^{*}\right)$, $\ell=1, \ldots, L$, are precisely the binding constraints.
- For any γ such that $\rho^{*}(\gamma)>0$,

$$
\gamma=\left(S_{1}^{*}, S_{2}^{*} \backslash S_{1}^{*}, \ldots, S_{L}^{*} \backslash S_{L-1}^{*}\right)
$$

- Define the weak order \succsim on I by
- $i \succ i^{\prime}$ if and only if $i \in S_{\ell}^{*} \backslash S_{\ell-1}^{*}$ and $i^{\prime} \in S_{\ell^{\prime}}^{*} \backslash S_{\ell^{\prime}-1}^{*}$ for some $\ell<\ell^{\prime}$; and
- $i \sim i^{\prime}$ if and only if $i, i^{\prime} \in S_{\ell}^{*} \backslash S_{\ell-1}^{*}$ for some ℓ.

Extreme Cases

- $i \sim i^{\prime}$ for all $i, i^{\prime} \in I$ (i.e., $L=1$) if and only if

$$
\frac{P(I)}{\sum_{i \in I} \sqrt{c_{i}}}>\frac{P(S)}{\sum_{i \in S} \sqrt{c_{i}}}
$$

for all $S \neq I$.

- $i \succ i^{\prime}$ or $i^{\prime} \succ i$ whenever $i \neq i^{\prime}$ (i.e., $L=|I|$, or $x^{*}=\alpha^{\gamma}$ for some $\gamma \in \Pi$) if and only if there exists $\gamma=\left(i_{1}, \ldots, i_{|I|}\right) \in \Pi$ such that

$$
\frac{\Delta_{i_{k+1}} P\left(S_{-i_{k+1}}(\gamma)\right)}{\sqrt{c_{i_{k+1}}}} \leq \frac{\Delta_{i_{k}} P\left(S_{-i_{k}}(\gamma)\right)}{\sqrt{c_{i_{k}}}}
$$

for all $k=1, \ldots,|I|-1$.

Connection to Cooperative Game Theory

- Recall the problem:

$$
\min \sum_{i \in I} \frac{c_{i}}{x_{i}} \quad \text { subject to } \quad x \in C
$$

- This is a well-studied problem in cooperative game theory.
- When $c_{1}=\cdots=c_{|I|}$, the solution x^{*} coincides with the "constrained egalitarian allocation" of Dutta and Ray (1989), or the "Dutta-Ray solution".
- For general $c_{i}{ }^{\prime} \mathrm{s}, x^{*}$ is a special case of a generalized Dutta-Ray solution (e.g., Hokari (2002)).
- By Hokari (2002), the solution x^{*} is explicitly written as

$$
x_{i}^{*}=\max _{S \subset I, S \ni i} \min _{T \subset S \backslash\{i\}} \frac{\sqrt{c_{i}}(P(S)-P(T))}{\sum_{j \in S \backslash T} \sqrt{c_{j}}} .
$$

Proposition 4

The unique limit optimal bonus profile $b^{*}=\left(b_{i}^{*}\right)_{i \in I}$ is given by

$$
b_{i}^{*}=\min _{S \subset I, S \ni i} \max _{T \subset S \backslash\{i\}} \frac{\sqrt{c_{i}} \sum_{j \in S \backslash T} \sqrt{c_{j}}}{P(S)-P(T)} .
$$

Proposition 5

- b_{i}^{*} is strictly increasing in c_{i}.
- b_{i}^{*} is increasing in $c_{j}, j \neq i$.
- $\frac{b_{i}^{*}}{c_{i}}$ is decreasing in c_{i}.
- $\frac{b_{i}^{*}}{c_{i}}$ is increasing in $c_{j}, j \neq i$.

