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Base Game
We fix the base game:

» [ ={1,...,|I]}: Set of players

» A; = {0, 1}: Binary action set for i (A=A1x--xAp)
» O: Finite set of states
>

i € A(O): Probability distribution over ©
Assume full support: p(6) > 0 for all § € ©

> u;: A x O — R: i's payoff function, supermodular:
di(a_i, 0) = ui(l, a—q, (9) - ui(O, a—;, 9)
increasing in a_;

» Dominance state:

There exists § € O such that d;(0_;,6) > 0 for all i € 1.
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Information Structures

» T;: Set of types of player i (finite or countably infinite)

» 1€ A(T x ©): Common prior, consistent with y:

S n(t.6) = u(6)

t

for all 6 € ©.
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> Together with the base game, an information structure
T = ((T)ic1, ™) defines an incomplete information game:
» o;: T; — A(A;): Strategy of player ¢
» Bayes Nash equilibrium (BNE) is defined as usual.
» E(T): Set of BNEs.
» g =(g;)icr: Smallest (pure-strategy) BNE

» The outcome v € A(A x ©) induced by information structure
T and strategy profile o:

v(a,0) :Z (t,0) 1_[0Z

el

» Outcome v satisfies consistency if ), v(a,0) = pu(0) for
all 0 € ©.
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Partial Implementation

Definition 1
Outcome v is partially implementable if there exist an information
structure 7 and an equilibrium o € E(T) that induce v.

Proposition 1

Outcome v is partially implementable if and only if it is a Bayes
correlated equilibrium.

» BCE: Set of partially implementable outcomes, or
equivalently Bayes correlated equilibria
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Smallest Equilibrium Implementation (S-Implementation)

Definition 2
Outcome v is S-implementable if there exists an information
structure T such that (7, ¢) induces v.

Definition 3
Outcome v is fully implementable if there exists an information
structure 7 such that (7, 0) induces v for all o € E(T).

» SI: Set of S-implementable outcomes
> FI: Set of fully implementable outcomes

» FI C SI C BCE

6/41



Two-Player Two-State Example (Symmetric Payoffs)
> [ ={1,2}
> Ay = Ay = {NI, I}

> ©={B,G}, u(B) = u(G) = 3

> Payoffs:
B NI I G NI I
NI 0 0 NI 0 0
1 -1 —1+4¢ 1 x r+e

> &> 0 (supermodularity)
> 0<z<le<i(l—ux)

» Designer's objective: maximize the number of players who
invest.
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Optimal BCE

B NI I G N I
1—x—-2

NI | L2 0 NI| 0 0

+ 1

I 0 5 I 0 !

» Conditional on receiving signal I, the average game is:

NI I
NI | 0,0 0,—¢
I | —&0 0,0

» In this direct information structure, “always play NI" is
the smallest equilibrium.

» In fact, this outcome (and any outcome close to it) is not
S-implementable.
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Sequential Obedience

> I': Set of sequences of distinct players
> I'; C I': Set of sequences in which i appears

» a(vy) € A: Action profile of all players where players that
appear v play action 1

» a_;(y) € A_;: Action profile of opponent players where
players that appear before i in v play action 1

» vp € A(T' x ©): “Ordered outcome”

» Ordered outcome v induces an outcome v € A(A x ©) by

v(ad) = 3 wr.0).

~v€l:a(vy)=a
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Definition 4

» Ordered outcome vr satisfies sequential obedience if

> (1 0)di(a—i(y),0) >0

v€l';,0€0
forall i e I.

» Qutcome v satisfies sequential obedience if
there exists an ordered outcome v that induces v and
satisfies sequential obedience.
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Definition 5

» Ordered outcome vr satisfies strict sequential obedience if

> (1 0)di(a—i(v),0) >0

verl';,0€0
for all ¢ € I such that vp(I'; x ©) > 0.

» Outcome v satisfies strict sequential obedience if
there exists an ordered outcome v that induces v and
satisfies strict sequential obedience.
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Characterization

Theorem 1

1. If v € SI, then it satisfies consistency, obedience, and strict
sequential obedience.

2. If v with v(1,0) > 0 satisfies consistency, obedience, and
strict sequential obedience, then v € SI.

Corollary 2

v € SI if and only if it is satisfies consistency, obedience, and
sequential obedience.
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Necessity of Sequential Obedience

» Suppose that v is smallest equilibrium implementable.

» Let 7 = ((T})ic1, ) be an information structure whose
smallest equilibrium induces v.

» Starting with the smallest strategy o¥(¢;) = 0 for all i € I and
all t; € T;, apply sequential best response in the order
1,2,..., 1]

> ol'(t;)) =1ifi=n (mod |I]) and
Zt_l, (i t—i),0)di (0”5 (t-0),0) > 0,

> o7 (t;) = ol !(t;) otherwise.

» By supermodularity, this process converges monotonically to
the smallest equilibrium.
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> Let
> n(t;) =nif o (t;) = 0 and o7(¢;) = 1, and
> n,;(t;) = oo if o' (t;) = 0 for all n.

» T(v): Set of type profiles ¢ such that n;(t;) = oo if i ¢ S(7),
and n;,(t;,) < ng,, (t;,,) if and only if £ <m

» Define

vr(1,0) = > w(t,0).

teT(v)

» v induces v:

Z'yera('y):a vr (7’ 0) = Z'yeF :a( ZteT () 7I-(t 6)
ZteT:g(t):a 7T(t, 9) = V(a 9)
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» For each t; € T; with n;(t;) < oo,

3wty =), 0)di(0™ 7 (t4),0) > 0.

t_;,0

» By adding up the inequality over all such ¢;, we have

o< > 3 at.0)die™ 7 i), 0)

t;: ni(ti)<oo t_q,0

= Z Z w(t,0)di(a—i(7),0)

vel;,0 teT ()

- Z vr(v,0)di(a—i(),0)

~v€el;,0
for any i € I such that vp(I'; x ©) > 0.

» Thus, strict sequential obedience is satisfied.
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Sufficiency of Sequential Obedience

» Let vp € A(T" x O) satisfy strict sequential obedience.

» We construct an information structure as follows.

> T, ={1,2,...} U{cc}

» By the assumption v(1,6) > 0,

vr(%,8) > 0 for some sequence 7 of all players.

Take € > 0 such that e < vp(%,0).

m

» m drawn from Z, according to the distribution n(1 — )™,
where 0 <7 < e.

» ~ drawn from I' according to vrp.

» Player i receives signal t; given by

b m + (ranking of i in y) ifyeTly
R S otherwise.
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P> To initiate contagion, re-arrange probabilities:

» Replace vr(7,0) with vp(7,0) —

> Allocate & to (t,0) such that 1 <ty =~ =t < |I| - 1.

> Since n < ¢, types t; € {1,...,|[I| — 1} will assign high
probability to 6.
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» Show by induction that action 1 is the unique action surviving
iterated deletion of dominated strategies for all types ¢; < co.

> Initialization step:

Ift; € {1,...,|I| — 1}, the player assigns high probability to
0 = 0, and by Dominance State, action 1 is a dominant action.

» Induction step:
For 7 > |I|, Suppose all types t; < 7 — 1 play action 1.

Then type t; = 7 knows that all players before him in the
realized sequence play action 1, so his payoff to 1 is at least

Z vr(,0)d;(a—;(7),0) x (constant) >0 asn ~ 0,
~el';,0€0

where the inequality is by strict sequential obedience.
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Two-Player Two-State Example (Symmetric Payoffs)

B NI I G NI I
NI 0 0 NI 0 0
I -1 —1+4+e¢ I x Tr+e€

» S-implemetable outcome:

B NI I G NI I
NI | 52== 46 0 NI 0 0
2z 1

I 0 sog 0| I 0 3

» The limit as 6 — 0 attains the supremum when the objective
is to maximize the expected number of players who invest.
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B NI I
NI 0 0
I -1 —1+4+¢

» By symmetry, consider the symmetric ordered outcome:

0
12
21

» Determine p such that sequential obedience is satisfied with

NI

B G
%—Qp 0
p i
P i

equality.

NI I
0 0
T x4+ e
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» In the information structure constructed in the sufficiency
proof, if the players receive t; = oo, then they know that
0 = B and play NI as a dominant action.

» Conditional on not receiving t; = 0o, the average game as
0 —0is:

NI I
NI | 0,0 0,5
I -350 53

(I,1I): risk-dominant (strictly risk-dominant with § > 0)

» Then signals as in the Email game are sent,
using the dominance state # = G as ‘crazy types”.
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Dual Characterization of Sequential Obedience
> Recall:

v € A(A x O) satisfies sequential obedience if there exists
vr € A(T' x ©) that induces v and satisfies

" ur(n.0)di(a—i(v),0) > 0 for all i € I. (84)
vel';,0€0

Proposition 3
v satisfies sequential obedience if and only if

> w(a,0) max > Ndi(a_i(y),0) >0

) 7= 5
for all (\i)ier > 0. (#)
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Proof
> Fix v e A(A x 09).

> Let Np(v )—{ureA(Fx@)lZ7
andA )—{)\EA ‘Zzel )Az

(Both are convex and compact.)

ovr(7,0) = v(a,0)}

|| @\

}
» For vp € Np(v) and A € A(v), let

DN =N Y w(r.0)diai(1).)

icl  ~el;,0e0

= Z vr(7,0 Z)\d ,0)

~veT',0€0 1€S(y
Z Z Z )\zdz CL_Z' (’}/), 9)
a€A,0€0 ~v:a(vy)=a 1€S(a)

(Linear in each of v and A.)
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» By the Minimax Theorem, D has a value D*:

min  max D(vp,\) =D*= max min D(vp,\).
XeA(v) vreNp(v) vr€Nr(v) AeA(v)

> v satisfies sequential obedience
< dur € Np(v) YA € A(v): D(vr,A\) >0
< D" =max, enp(v) Mireaw) D(vr, A) >0

» (LHS of (1)) = max,.en.) D(vr, A) for each A € A(v)
Hence,

(#) holds <= D* = minyegy () max,, eny () D(vr, A) >0
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Sequential Obedience in Potential Games

P In potential games,

the dual condition (#) (hence sequential obedience) is
equivalent to a simpler coalitional obedience condition.
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Potential Games

Definition 6
The game is a potential game if there exists ®: A x © — R such

that

di(a—i,0) = ®(1,a—;,0) — ®(0,a—,0).

» For each v € A(A x O), we define a potential for that
outcome:

O, (a) = v(a,0)®(and,0)

a0

where b = a A a’ is the action profile such that b; = 1 if and
only if a; = a} = 1.
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Potential Games

» For simplicity, we focus on outcomes v such that
v({1} x ©) > 0.

Definition 7
Outcome v satisfies coalitional obedience if
‘I>,,(1) > <I>l,(a)

for all @ € A.

Proposition 4

In a potential game, an outcome satisfies sequential obedience
if and only if it satisfies coalitional obedience.

» Show that coalitional obedience is equivalent to the dual
condition () of sequential obedience.
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Convex Potential

» Normalize: ®(0,6) = 0 for all 6.
» Denote n(a) = [{i € I | a; = 1}|.

Definition 8
The potential ® satisfies convexity if

n(a) _(; nla) n(a)
®(a,0) < W(I)(LH) <— <1 W )@(0,9) + 7l @(1,0))

for all 6.

> Because of supermodularity, this is automatically satisfied if ®
is symmetric.

» The potential is convex if and only if the game is not too
asymmetric.
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Investment Game

» 0={1,...,|9|}
> di(a—i,0) = R(0) + hpa_+1 — ¢
» hy: increasing in k
> R(#): strictly increasing in 6
> R(|©])+hy >c¢foralliel
Dominant state is satisfied with 6 = |©|
> << <qp

» This game has a potential:

n(a)

®(a,b) = —i—th— Z Ci.

i€S(a
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> & satisfies convexity if and only if

forany ¢ =1,...,|I| — 1.

» In particular, a sufficient condition for convexity is:

hy —ck < hgyr — crga

forany k=1,...,|I| —1.
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Regime Change Game

> 0={1,...]0]}

. ; N> _
> di(a_s.0) = Ci !f n(a_;) > |I| — k(0)
¢ —1 ifn(az;) < |I| —k(0)
> 0<c <1
» k:© — N: strictly increasing, k(1) > 1
> k(1O]) = [I]
Dominant state is satisfied with 6 = |©|

> Action 0: to attack the regime
Action 1: to abstain from attacking

» The regime collapses if #(action 0 players) > k()
<= #(action 1 players) < |I| — k(0)
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Regime Change Game

» This game has a potential:

®(a,0) = {ZzGS( — (|| - k() if n(a) > |I| — k(8),
; ZieS(a) —n(a) if n(a) < |I| — k().

> @ satisfies convexity if and only if ¢; =--- = ¢p.
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Grand Coalitional Obedience and Perfect Coordination
Definition 9
Outcome v satisfies grand coalitional obedience if
(I)V(l) Z q)V(O) = 07
or equivalently,

> v(a,0)2(a,0) > 0.

acA,0€0

Definition 10
Outcome v satisfies perfect coordination if v(a, ) > 0 only for
a€{0,1}.
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Proposition 5

Suppose that the potential satisfies convexity.
A perfectly coordinated outcome satisfies sequential obedience
if and only if it satisfies grand coalitional obedience.
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Information Design with Adversarial Equilibrium Selection

» Information designer’s objective function: V: A x © - R
» V(a,0): increasing in a

» Normalization: V(0,6) = 0 for all §

>

Optimal information design problem with adversarial
equilibrium selection:

sup min Z w(t,0)V(o(t),0)

T o€B(T)  Toco

—sup Z a(t),0).

teT,0e0

» This is equivalent to

sup Z v(a,0)V(a,0) = max Z ,0).

veST ,c'apeo vesI a€A0€0
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Restricted Convexity
Definition 11
Designer's objective V satisfies restricted convexity with respect to
potential @ if

n(a)
Vie,6) < JEV(L0)

whenever ®(a,0) > ®(1,0).

Special cases of interest
» Linear preferences

V(a,0) =n(a)

» Full coordination preferences
1 ifa=1
V(a,6)=4 "7

0 otherwise
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» Regime change preferences:

» Potential

_ ) Zies@ ¢ — (I = K(0)) ifn(a) > [I] - k(6)
a,d) = .
vle-0) {Zies(a) ¢ —n(a) if n(a) < 1] - k(6)

> ®&(a,d) > ©(1,0) holds only when n(a) < |I| — k().
» The objective

1 ifn(a) > |I] —k(9)

V(a.0) = {0 if n(a) < |I] - k(0)

satisfies restricted convexity with respect to .
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Perfect Coordination Solution

Theorem 2

Suppose that ® satisfies convexity and V satisfies restricted
convexity with respect to P.

Then there exists an optimal outcome of the adversarial
information design problem that satisfies perfect coordination.
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Proof

» Consider the problem

max v(1,0)V (1,0
(V(L@)eeege(:9 (1,6)V(1,6)

with respect to perfect coordination outcomes,

subject to

» grand coalitional obedience:

ZaeA,@E@ V(a’ 9)(1)((1, 0) 2 0,
> consistency:
0<v(1,0) <pu@®) (0c0O).
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» Easy to characterize the solution to this problem:

> Relabel the states as © = {1,...,|O]} in such a way that
D(1,0)
V(1.,0)

is increasing in 6.
» Ignoring integer issues,

find 6* that solves

> Let

w(@) ifa=1and 0> 6%,
v*(a,0) =< u(d) ifa=0and g <6,
0 otherwise.
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> We want to show that v* is an optimal outcome of
the adversarial information design problem.

» Take any v € SI.

» Show that there exists a perfect coordination outcome v/
satisfying consistency such that

» grand coalitional obedience is satisfied (by convexity of ®), and

> Za,@ V/(aa G)V(a‘a 9) > Zaﬁ V(a, 9)V(a, 9)
(by restricted convexity of V).

If v(a,0) > 0 for a # 0,1, split v(a,0) to (0,6) and (1,0)
appropriately.
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