# Full Implementation in Binary-Action Supermodular Games

Daisuke Oyama

Game Theory I

November 1, 2023

Morris, S., D. Oyama, and S. Takahashi (2020). "Implementation via Information Design in Binary-Action Supermodular Games."

# Base Game

- $I = \{1, \ldots, |I|\}$ : Set of players
- $A_i = \{0, 1\}$ : Binary action set for i  $(A = A_1 \times \cdots \times A_{|I|})$
- Θ: Finite set of states

μ ∈ Δ(Θ): Probability distribution over Θ
 Assume full support: μ(θ) > 0 for all θ ∈ Θ

▶  $u_i: A \times \Theta \to \mathbb{R}$ : *i*'s payoff function, supermodular:

$$d_i(a_{-i}, \theta) = u_i(1, a_{-i}, \theta) - u_i(0, a_{-i}, \theta)$$

increasing in  $a_{-i}$ 

Two-sided dominance states:

There exist  $\overline{\theta}, \underline{\theta} \in \Theta$  such that  $d_i(\mathbf{0}_{-i}, \overline{\theta}) > 0$  and  $d_i(\mathbf{1}_{-i}, \underline{\theta}) < 0$  for all  $i \in I$ .

## Information Structures

- *T<sub>i</sub>*: Set of types of player *i* (finite or countably infinite) (*T* = *T*<sub>1</sub> × · · · × *T*<sub>|*I*|</sub>)
- $\pi \in \Delta(T \times \Theta)$ : Common prior, consistent with  $\mu$ :

$$\sum_t \pi(t,\theta) = \mu(\theta)$$

for all  $\theta \in \Theta$ .

- Together with the base game, an information structure  $\mathcal{T} = ((T_i)_{i \in I}, \pi)$  defines an incomplete information game:
  - $\sigma_i \colon T_i \to \Delta(A_i)$ : Strategy of player i
  - Bayes Nash equilibrium (BNE) is defined as usual.
  - $E(\mathcal{T})$ : Set of BNEs.

•  $\underline{\sigma} = (\underline{\sigma}_i)_{i \in I}$ : Smallest (pure-strategy) BNE

The outcome ν ∈ Δ(A × Θ) induced by information structure *T* and strategy profile σ:

$$\nu(a,\theta) = \sum_{t} \pi(t,\theta) \prod_{i \in I} \sigma_i(t_i)(a_i).$$

• Outcome  $\nu$  satisfies *consistency* if  $\sum_{a \in A} \nu(a, \theta) = \mu(\theta)$  for all  $\theta \in \Theta$ .

# Partial Implementation

#### Definition 1

Outcome  $\nu$  is *partially implementable* if there exist an information structure  $\mathcal{T}$  and an equilibrium  $\sigma \in E(\mathcal{T})$  that induce  $\nu$ .

### Proposition 1

Outcome  $\nu$  is partially implementable if and only if it is a Bayes correlated equilibrium.

 BCE: Set of partially implementable outcomes, or equivalently Bayes correlated equilibria Smallest Equilibrium Implementation (S-Implementation)

#### Definition 2

Outcome  $\nu$  is S-implementable if there exists an information structure  $\mathcal{T}$  such that  $(\mathcal{T}, \underline{\sigma})$  induces  $\nu$ .

### Definition 3

Outcome  $\nu$  is fully implementable if there exists an information structure  $\mathcal{T}$  such that  $(\mathcal{T}, \sigma)$  induces  $\nu$  for all  $\sigma \in E(\mathcal{T})$ .

- ► SI: Set of S-implementable outcomes
- ► *FI*: Set of fully implementable outcomes
- $\blacktriangleright \ FI \subset SI \subset BCE$

## Sequential Obedience

- Γ: Set of sequences of distinct players
- $\Gamma_i \subset \Gamma$ : Set of sequences in which *i* appears
- ► a(γ) ∈ A: Action profile of all players where players that appear γ play action 1
- ► a<sub>-i</sub>(γ) ∈ A<sub>-i</sub>: Action profile of opponent players where players that appear before i in γ play action 1
- $\nu_{\Gamma} \in \Delta(\Gamma \times \Theta)$ : "Ordered outcome"
- ▶ Ordered outcome  $\nu_{\Gamma}$  induces an outcome  $\nu \in \Delta(A \times \Theta)$  by

$$\nu(a,\theta) = \sum_{\gamma \in \Gamma: a(\gamma) = a} \nu_{\Gamma}(\gamma,\theta).$$

▶ Ordered outcome  $\nu_{\Gamma}$  satisfies sequential obedience if

$$\sum_{\gamma \in \Gamma_i, \theta \in \Theta} \nu_{\Gamma}(\gamma, \theta) d_i(a_{-i}(\gamma), \theta) \ge 0$$

for all  $i \in I$ .

Outcome ν satisfies sequential obedience if there exists an ordered outcome ν<sub>Γ</sub> that induces ν and satisfies sequential obedience.

 $\blacktriangleright$  Ordered outcome  $\nu_{\Gamma}$  satisfies strict sequential obedience if

$$\sum_{\gamma \in \Gamma_i, \theta \in \Theta} \nu_{\Gamma}(\gamma, \theta) d_i(a_{-i}(\gamma), \theta) > 0$$

for all  $i \in I$  such that  $\nu_{\Gamma}(\Gamma_i \times \Theta) > 0$ .

Outcome ν satisfies strict sequential obedience if there exists an ordered outcome ν<sub>Γ</sub> that induces ν and satisfies strict sequential obedience.

# Reverse Sequential Obedience

- ▶ a<sup>0</sup>(γ) ∈ A: Action profile of all players where players that appear γ play action 0
- ▶ a<sup>0</sup><sub>-i</sub>(γ) ∈ A<sub>-i</sub>: Action profile of opponent players where players that appear before i in γ play action 0
- ▶ Ordered outcome  $\nu_{\Gamma}^0 \in \Delta(\Gamma \times \Theta)$  reverse induces an outcome  $\nu \in \Delta(A \times \Theta)$  by

$$\nu(a,\theta) = \sum_{\gamma \in \Gamma: a^0(\gamma) = a} \nu_{\Gamma}^0(\gamma,\theta).$$

• Ordered outcome  $\nu_{\Gamma}^0$  satisfies reverse sequential obedience if

$$\sum_{\gamma \in \Gamma_i, \theta \in \Theta} \nu_{\Gamma}^0(\gamma, \theta) d_i(a_{-i}^0(\gamma), \theta) \le 0$$

for all  $i \in I$ .

Outcome ν satisfies sequential obedience if there exists an ordered outcome ν<sup>0</sup><sub>Γ</sub> that reverse induces ν and satisfies reverse sequential obedience.

 $\blacktriangleright$  Ordered outcome  $\nu_{\Gamma}$  satisfies strict reverse sequential obedience if

$$\sum_{\boldsymbol{\gamma}\in\Gamma_i, \boldsymbol{\theta}\in\Theta}\nu_{\Gamma}^0(\boldsymbol{\gamma},\boldsymbol{\theta})d_i(a_{-i}^0(\boldsymbol{\gamma}),\boldsymbol{\theta})<0$$

for all  $i \in I$  such that  $\nu_{\Gamma}^0(\Gamma_i \times \Theta) > 0$ .

Outcome ν satisfies sequential obedience if there exists an ordered outcome ν<sup>0</sup><sub>Γ</sub> that reverse induces ν and satisfies strict reverse sequential obedience.

# Characterization

### Theorem 1

- 1. If  $\nu \in FI$ , then it satisfies consistency, strict sequential obedience, and strict reverse sequential obedience.
- 2. If  $\nu$  with  $\nu(\mathbf{1}, \overline{\theta}) > 0$  and  $\nu(\mathbf{0}, \underline{\theta}) > 0$  satisfies consistency, strict sequential obedience, and strict reverse sequential obedience, then  $\nu \in FI$ .

Part 1:

Fully implementable  $\Rightarrow$  S-implementable and L-implementable

Apply the characterization of S-implementability

# Part 2

Let  $\nu$  satisfy consistency, strict sequential obedience with  $\nu_{\Gamma}$ , and strict reverse sequential obedience with  $\nu_{\Gamma}^{0}$ .

• Given 
$$\theta \in \Theta$$
, draw  $a \in A$  according to  $\nu$ ;  
and draw  $\gamma^+ \in \Pi(S(a))$  and  $\gamma^- \in \Pi(I \setminus S(a))$  according to  
 $\nu_{\Gamma}$  and  $\nu_{\Gamma}^0$ , respectively.

• Draw 
$$m \in \mathbb{Z}_+$$
 according to  $\eta(1-\eta)^m$ .

▶ Each player receives a signal  $t_i = (s_i, a_i)$  where

$$s_i = \begin{cases} s_i = m + (\text{ranking of } i \text{ in } \gamma^+) & \text{if } a_i = 1, \\ s_i = m + (\text{ranking of } i \text{ in } \gamma^-) & \text{if } a_i = 0. \end{cases}$$

- Re-arrange probabilities so that the player believes with high probability that the state is θ
   (resp. θ) if s<sub>i</sub> ∈ {1,..., |I|} and θ = θ
   (resp. θ = θ).
- Then, a similar argument as in the sufficiency proof for S-implementability shows that the player with signal (t<sub>i</sub>, a<sub>i</sub>) with a<sub>i</sub> = 1 (resp. a<sub>i</sub> = 0) plays action 1 (resp. action 0) as a unique rationalizable action.

# SO/Reverse SO in Complete Information Games

- ▶  $\mathbf{f} = (f_i)_{i \in I}$ : Complete information BAS game
- Endow Δ(A) with the first-order stochastic dominance order.
   For ξ, ξ̂ ∈ Δ(A), ξ̂ first-order stochastically dominates ξ if ∑<sub>a∈B</sub> ξ̂(a) ≥ ∑<sub>a∈B</sub> ξ(a) for all upper sets B ⊂ A
   (i.e., sets B such that a' ∈ B whenever a ∈ B and a' ≥ a).
- X̄ ⊂ Δ(A):
   Set of outcomes that satisfy sequential obedience in f
   X̄<sup>0</sup> ⊂ Δ(A):
   Set of outcomes that satisfy reverse sequential obedience in f

Proposition 2 (Oyama and Takahashi (2019), Lemma 2(2))

- 1.  $\overline{X}$  has a largest element, which is degenerate on some action profile  $\overline{a}$ .
- 2.  $\overline{X}^0$  has a smallest element, which is degenerate on some action profile  $\underline{a}$ .

## Proposition 3 (MOT20, Proposition B.2)

- 1.  $\overline{a}$  satisfies strict reverse sequential obedience.
- 2.  $\underline{a}$  satisfies strict sequential obedience.

In particular,  $\underline{a} \leq \overline{a}$ .



# S-Implementation versus Full Implementation

Go back to BAS game (d<sub>i</sub>)<sub>i∈I</sub>, with the two-sided dominance states assumption.

Lemma 4 If  $\nu \in \Delta(A \times \Theta)$  satisfies

consistency,

strict sequential obedience, and

• 
$$u(\mathbf{1},\overline{ heta}) > 0 \text{ and } \nu(\mathbf{0},\underline{ heta}) > 0,$$

then there exists  $\hat{\nu} \in \Delta(A \times \Theta)$  that

- first-order stochastically dominates  $\nu$  and
- satisfies consistency,
- strict sequential obedience, and
- strict reverse sequential obedience, and

• 
$$\hat{\nu}(\mathbf{1},\overline{\theta}) > 0$$
 and  $\hat{\nu}(\mathbf{0},\underline{\theta}) > 0$ .

#### Proposition 5

For any  $\nu \in \overline{SI}$ , there exists  $\hat{\nu} \in \overline{FI}$  that first-order stochastically dominates  $\nu$ .

▶ In particular, 
$$FI \neq \emptyset$$
.

#### Proposition 6

Suppose that the objective function  $V(a, \theta)$  is nondecreasing in a. Then optimal information design with S-implementation is equivalent to that with full implementation.