Robustness in Binary-Action Supermodular Games

Daisuke Oyama

Game Theory I

October 19, 2023

Papers

- Oyama, D. and S. Takahashi (2020). "Generalized Belief Operator and Robustness in Binary-Action Supermodular Games," Econometrica 88, 693-726.
- Oyama, D. and S. Takahashi (2023). "Robustness in Binary-Action Supermodular Games Revisited."

Complete Information Games

•
$$I = \{1, \dots, |I|\}$$
: Set of players

- $A_i = \{0, 1\}$: Action set $(A = \prod_{i \in I} A_i, A_{-i} = \prod_{j \neq i} A_j)$
- ▶ $0 = (0, ..., 0) \in A$, $1 = (1, ..., 1) \in A$
- ▶ $f_i: 2^{I \setminus \{i\}} \to \mathbb{R}$: Payoff gain function
 - *f_i(S)*: *i*'s payoff gain from action 1 over 0 when subset S ⊂ I \ {*i*} of players play action 1
 - Assume supermodularity: $f_i(S)$ increasing in S

We write $\mathbf{f} = (f_i)_{i \in I}$.

Incomplete Information Elaborations

 \cdots Set of i 's types that know that payoffs are given by f_i

▶
$$(T, P, \mathbf{u})$$
 is an ε -elaboration of \mathbf{f} if

$$P(T^*) \ge 1 - \varepsilon$$

i.e., $\Pr(\text{players know that payoffs are given by } \mathbf{f}) \geq 1 - \varepsilon.$

Robustness to Incomplete Information

$$\sum_{t \in T} P(t) \prod_{i \in I} \sigma_i^*(t_i)(a_i^*) \ge 1 - \delta.$$

In the following, we study the robustness of 0 = (0,...,0).
 (OT study that of 1.)

Robustness to Canonical Elaborations

- For extreme action profiles (e.g., 0) in supermodular games, robustness is equivalent to robustness to "canonical elaborations".
- (T, P, u) is an ε-canonical elaboration of f if it is an ε-elaboration such that for all t_i ∈ T_i \ T^{*}_i,

$$d_i(S,(t_i,t_{-i})) = 1$$
 for all $S \subset I \setminus \{i\}$ and all $t_{-i} \in T_{-i}$

(and hence action 1 is a dominant action for all $t_i \in T_i \setminus T_i^*$).

 0 is robust if and only if it is robust to canonical elaborations, i.e.,

for any $\delta > 0$, there exists $\varepsilon > 0$ such that for any ε -canonical elaboration of \mathbf{f} , there exists an equilibrium $\sigma^* = (\sigma_i^*)_{i \in I}$ such that

$$\sum_{t \in T} P(t) \prod_{i \in I} \sigma_i^*(t_i)(0) \ge 1 - \delta.$$

By supermodularity, this is equivalent to the following: for any δ > 0, there exists ε > 0 such that for any ε-canonical elaboration of f,

$$P(\{t \in T \mid \underline{\sigma}_i(t_i)(0) = 1 \text{ for all } i \in I\}) \ge 1 - \delta,$$

where $\underline{\sigma} = (\underline{\sigma}_i)_{i \in I}$ is the smallest equilibrium.

Result

Theorem 1

For a generic binary-action supermodular game f, the following conditions are equivalent:

- 1. 0 is robust in f.
- 2. 0 is a strict monotone potential maximizer in ${\bf f}.$
- 3. There exists no $\rho \in \Delta(\Gamma \setminus \{\emptyset\})$ that satisfies sequential obedience in \mathbf{f} , i.e.,

$$\sum_{\gamma \in \Gamma_i} \rho(\gamma) f_i(S_{-i}(\gamma)) \ge 0 \text{ for all } i \in I.$$

- Γ : Set of sequences of distinct players
- $\Gamma_i \subset \Gamma$: Set of sequences in Γ in which i appears
- $S_{-i}(\gamma)$: Set of players that appear before i in γ

► 2 ⇒ 1: By Morris and Ui (2005) for general supermodular games with (finitely) many actions, based on a potential maximization approach.

Provide an alternative proof based on a higher-order beliefs approach.

• Not $3 \Rightarrow$ not 1: For generic payoffs.

Show:

if there exists $\rho \in \Delta(\Gamma \setminus \{\emptyset\})$ that satisfies strict sequential obedience, then for any $\varepsilon > 0$, there exists an ε -elaboration such that **0** is never played in the smallest equilibrium.

•
$$2 \Leftrightarrow 3$$
: By duality.

Monotone Potential Maximizer (MP-Maximizer)

▶ 0 is a strict MP-maximizer in f if there exist $v: 2^I \to \mathbb{R}$ and $\lambda = (\lambda_i)_{i \in I} \gg 0$ such that

$$\lambda_i f_i(S) \le v(S \cup \{i\}) - v(S)$$

 $\text{for all } i \in I \text{ and all } S \subset I \setminus \{i\} \text{, and } v(\emptyset) > v(S) \text{ for all } S \neq \emptyset.$

Such a function v is called a *strict monotone potential* of **f** for **0**.

 Called "monotone potential maximizer" without "strict" in OT.

Dual Characterization $(2 \Leftrightarrow 3)$

For a sequence of distinct players $\gamma = (i_1, \ldots, i_k)$, write $S_{-i_{\ell}}(\gamma) = \{i_1, \ldots, i_{\ell-1}\}$ and $S(\gamma) = \{i_1, \ldots, i_k\}$.

• Γ : set of all sequences; Γ_i : set of sequences containing i

There exists a strict monotone potential for 0 with weights λ = (λ_i)_{i∈I} if and only if

$$\sum_{i \in S(\gamma)} \lambda_i f_i(S_{-i}(\gamma)) < 0 \text{ for all } \gamma \in \Gamma \setminus \{\emptyset\}.$$
 (*)

• Duality: Either (*) has a solution $\lambda \gg 0$, or

$$\sum_{\gamma \in \Gamma_i} \rho(\gamma) f_i(S_{-i}(\gamma)) \ge 0 \text{ for all } i \in I \tag{**}$$

has a solution $\rho \in \Delta(\Gamma \setminus \{\emptyset\})$, but not both.

Proof of "MP-Maximization \Rightarrow Robustness"

- In OT, this is proved as "Generalized Critical Path Theorem", stated in terms of "generalized belief operator".
- Here, we prove in terms of best responses.

Suppose that there exists a strict monotone potential v for 0 with weights (λ_i)_{i∈I} ≫ 0:

 $\lambda_i f_i(S) \le v(S \cup \{i\}) - v(S)$

 $\text{for all } i \in I \text{ and all } S \subset I \setminus \{i\} \text{, and } v(\emptyset) > v(S) \text{ for all } S \neq \emptyset.$

Fix any ε -canonical elaboration (T, P, \mathbf{u}) :

•
$$d_i(S,(t_i,t_{-i})) = f_i(S)$$
 for $t_i \in T_i^*$ ("normal types")

$$\blacktriangleright P(T^*) \ge 1 - \varepsilon$$

• Action 1: dominant action for $t_i \in T_i \setminus T_i^*$ ("crazy types")

- Starting with the smallest strategy $\sigma_i^0(t_i) = 0$ for all $i \in I$ and all $t_i \in T_i$, apply sequential best response in the order $1, 2, \ldots, |I|$.
- First, let types in $T_i \setminus T_i^*$ switch:

For
$$n = 1, ..., |I|$$
,

•
$$\sigma_i^n(t_i) = 1$$
 if $i = n$ and $t_i \in T_i \setminus T_i^*$,
• $\sigma_i^n(t_i) = \sigma_i^{n-1}(t_i)$ otherwise.

• Then, let types in T_i^* switch: For n = |I| + 1, ...,

•
$$\sigma_i^n(t_i) = 1$$
 if $i \equiv n \pmod{|I|}$ and
 $\sum_{t_{-i}} P(t_i, t_{-i}) f_i(S(\sigma_{-i}^{n-1}(t_{-i}))) > 0$,

•
$$\sigma_i^n(t_i) = \sigma_i^{n-1}(t_i)$$
 otherwise.

By supermodularity, this process converges monotonically to the smallest equilibrium.

•
$$n_i(t_i) = n$$
 if $\sigma_i^{n-1}(t_i) = 0$ and $\sigma_i^n(t_i) = 1$, and
• $n_i(t_i) = \infty$ if $\sigma_i^n(t_i) = 0$ for all n .

Write $n(t) = (n_1(t_1), \dots, n_{|I|}(t_{|I|})).$

We want to show:

$$P(\{t \in T \mid n(t) = (\infty, \dots, \infty)\}) \ge 1 - \kappa \times (1 - P(T^*))$$

for some constant $\kappa = \kappa(v)$ that depends only on payoffs in **f** through monotone potential v (and is independent of the elaboration).

- ··· "(Generalized) Critical Path Theorem"
 - ▶ Then, we have $P(\{t \in T \mid n(t) = (\infty, ..., \infty)\}) \rightarrow 1$ as $P(T^*) \rightarrow 1$ uniformly over all elaborations.

For $t_i \in T_i^*$ such that $n_i(t_i) < \infty$,

$$\sum_{t_{-i}} P(t_i, t_{-i}) f_i(S(\sigma_{-i}^{n_i(t_i)-1}(t_{-i}))) > 0.$$

- Add these incentive conditions across such t_i's, multiple by λ_i > 0, and then add across players.
- Notation:

$$\begin{split} & \textbf{For } \gamma = (i_1, \ldots, i_k) \text{:} \\ & S(\gamma) = \{i_1, \ldots, i_k\} \\ & T(\gamma) \text{: Set of type profiles } t \text{ such that } n_i(t_i) = \infty \text{ if } i \notin S(\gamma) \text{,} \\ & \text{and } n_{i_\ell}(t_{i_\ell}) < n_{i_m}(t_{i_m}) \text{ if and only if } \ell < m \end{split}$$

For
$$t = (t_i)_{i \in I}$$
:

 $S^*(t) = \{i \in I \mid t_i \in T_i^*\}$

We have

$$0 \leq \sum_{i} \lambda_{i} \sum_{\substack{t_{i} \in T_{i}^{*}: n_{i}(t_{i}) < \infty \\ t_{-i}}} \sum_{t_{-i} \in T_{i}^{*}: n_{i}(t_{i}) < \infty } P(t_{i}, t_{-i}) f_{i}(S(\sigma_{-i}^{n_{i}(t_{i})-1}(t_{-i})))$$

$$= \sum_{\gamma \in \Gamma} \sum_{t \in T(\gamma)} P(t) \sum_{i \in S(\gamma) \cap S^{*}(t)} \lambda_{i} f_{i}(S_{-i}(\gamma))$$

$$\leq \sum_{\gamma \in \Gamma} \sum_{t \in T(\gamma)} P(t) \sum_{i \in S(\gamma) \cap S^{*}(t)} \left(v(S_{-i}(\gamma) \cup \{i\}) - v(S_{-i}(\gamma)) \right)$$

$$= \sum_{\gamma \in \Gamma} \sum_{t \in T(\gamma)} P(t) \left(v(S(\gamma)) - v(S(\gamma) \setminus S^{*}(t)) \right)$$

$$\begin{split} &= \sum_{\gamma \in \Gamma} \sum_{t \in T(\gamma) \cap T^*} P(t) \big(v(S(\gamma)) - v(\emptyset) \big) \\ &+ \sum_{\gamma \in \Gamma} \sum_{t \in T(\gamma) \setminus T^*} P(t) \big(v(S(\gamma)) - v(S(\gamma) \setminus S^*(t)) \big) \\ &\leq \sum_{\gamma \in \Gamma \setminus \{\emptyset\}} \sum_{t \in T(\gamma) \cap T^*} P(t) (v' - v(\emptyset)) + \sum_{\gamma \in \Gamma} \sum_{t \in T(\gamma) \setminus T^*} P(t) M \\ &= P(\{t \in T^* \mid n(t) \neq (\infty, \dots, \infty)\}) (v' - v(\emptyset)) + P(T \setminus T^*) M, \end{split}$$

where

$$v' = \max_{S \neq \emptyset} v(S),$$

$$M = \max_{S \supset S' \neq \emptyset} (v(S) - v(S')).$$

Hence we have

$$P(\{t \in T^* \mid n(t) \neq (\infty, \dots, \infty)\}) \le \frac{M}{v(\emptyset) - v'} P(T \setminus T^*).$$

Finally, we have

$$1 - P(\{t \in T \mid n(t) = (\infty, \dots, \infty)\})$$

= $P(T \setminus T^*) + P(\{t \in T^* \mid n(t) \neq (\infty, \dots, \infty)\})$
$$\leq \underbrace{\left(1 + \frac{M}{v(\emptyset) - v'}\right)}_{=\kappa(v)} (1 - P(T^*)).$$

p-Dominance (Kajii and Morris 1997)

• For
$$\mathbf{p} = (p_1, \dots, p_{|I|}) \in [0, 1]^I$$
, consider the game

$$f_i(S) = \begin{cases} p_i - 1 & \text{if } S = \emptyset, \\ p_i & \text{otherwise.} \end{cases}$$

0 is a p-dominant equilibrium:

For all $i \in I$ and all $\alpha_i \in \Delta(2^{I \setminus \{i\}})$ such that $\alpha_i(\emptyset) \ge p_i$, $\sum_{S \subset I \setminus \{i\}} \alpha_i(S) f_i(S) = p_i - \alpha_i(\emptyset) \le 0.$

This is a potential game with potential

$$v(S) = \begin{cases} 1 - \sum_{i \in I} p_i & \text{if } S = \emptyset, \\ -\sum_{i \in I \setminus S} p_i & \text{otherwise.} \end{cases}$$

▶ $v(\emptyset) > v(S)$ for all $S \neq \emptyset$ if and only if $\sum_{i \in I} p_i < 1$.

For this
$$v$$
,

$$\begin{aligned} \kappa(v) &= 1 + \frac{\max_{S \supset S' \neq \emptyset} (v(S) - v(S'))}{v(\emptyset) - \max_{S \neq \emptyset} v(S)} \\ &= 1 + \frac{\max_{i \in I} \sum_{j \neq i} p_j}{1 - \sum_{i \in I} p_i} \\ &= \frac{1 - \min_{i \in I} p_i}{1 - \sum_{i \in I} p_i} = \kappa^{\text{KM}}(\mathbf{p}). \end{aligned}$$

Proof of "Sequential Obedience \Rightarrow Non-Robustness"

▶ Suppose that there exists $\rho \in \Delta(\Gamma \setminus \{\emptyset\})$ that satisfies strict sequential obedience:

$$\begin{split} \sum_{\gamma\in\Gamma_i}\rho(\gamma)f_i(S_{-i}(\gamma)) > 0 \\ \text{for all } i\in I \text{ such that } \rho(\Gamma_i) > 0. \quad (***) \end{split}$$

 By supermodularity, there exists Ø ≠ S̄ ⊂ I such that there exists ρ ∈ Δ(Γ(S̄)) that satisfies sequential obedience, where Γ(S̄) is the set of permutations of players in S̄.
 (OT 2019, Appendix A.3) ▶ For any such $\rho \in \Delta(\Gamma(\bar{S}))$, consider the following elaboration:

•
$$T_i = \{1, 2, \ldots\}$$
 for $i \in \overline{S}$;
 $T_i = \{\infty\}$ for $i \in I \setminus \overline{S}$.

- *m* drawn from \mathbb{Z}_+ according to the distribution $\eta(1-\eta)^m$, where $\eta \approx 0$;
- γ drawn from $\Gamma \setminus \{\emptyset\}$ according to ρ ;
- Player *i* receives signal t_i given by

$$t_i = \begin{cases} m + (\text{ranking of } i \text{ in } \gamma) & \text{if } \gamma \in \Gamma_i \\ \infty & \text{otherwise;} \end{cases}$$

▶ $1 \le t_i \le |I| - 1$: action 1 dominant.

- ▶ In this elaboration, in any equilibrium, all types t_i of $i \in \overline{S}$ play action 1:
 - If types t_j < τ play action 1, then approximately the payoff for type t_i = τ is at least

$$\sum_{\gamma \in \Gamma_i} \rho(\gamma) f_i(S_{-i}(\gamma)) \times \text{const},$$

which is positive by (***).

- Hence, **0** is not played at any $t \in T$.
- This implies that 0 is not robust.

Definitions of MP-Maximizer

 (Simplified version of) the original definition by Morris and Ui (2005):

 $v\colon 2^I\to \mathbb{R}$ is a monotone potential of \mathbf{f} for $\mathbf{0}$ if

$$\begin{split} \min br_i^{g_i}(\pi_i) &\leq \max br_i^v(\pi_i) \\ \text{for all } i \in I \text{ and all } \pi_i \in \Delta(2^{I \setminus \{i\}}), \\ \text{and } v(\emptyset) > v(S) \text{ for all } S \neq \emptyset. \end{split} \tag{MU}$$

Strict version by Oyama, Takahashi, and Hofbauer (2008):
v: 2^I → ℝ is a strict monotone potential for f for 0 if

$$\begin{aligned} \max br_i^{g_i}(\pi_i) &\leq \max br_i^v(\pi_i) \\ \text{for all } i \in I \text{ and all } \pi_i \in \Delta(2^{I \setminus \{i\}}), \\ \text{and } v(\emptyset) > v(S) \text{ for all } S \neq \emptyset. \end{aligned} \tag{OTH}$$

Equivalence (Strict Version)

Condition (OTH) is equivalent to our definition: There exists λ = (λ_i)_{i∈I} ≫ 0 such that

$$\begin{split} \lambda_i f_i(S) &\leq v(S \cup \{i\}) - v(S) \\ \text{for all } i \in I \text{ and all } S \subset I \setminus \{i\}, \\ \text{and } v(\emptyset) &> v(S) \text{ for all } S \neq \emptyset. \end{split}$$
(1)

Assume condition (OTH).

Fix any $i \in I$.

▶ Then there exists no $(\pi_i, \delta_i) \in \mathbb{R}^{2^{|I|-1}+1}_+$ such that

$$\sum_{S \in 2^{I \setminus \{i\}}} \pi_i(S) f_i(S) \ge 0,$$

$$-\sum_{S \in 2^{I \setminus \{i\}}} \pi_i(S) (v(S \cup \{i\}) - v(S)) - \delta_i \ge 0,$$

$$-\delta_i < 0.$$

By duality (Farkas' Lemma), there exists (λ_{i,1}, λ_{i,2}) ∈ ℝ²₊ such that

$$\begin{split} \lambda_{i,1}f_i(S) - \lambda_{i,2}(v(S \cup \{i\}) - v(S)) &\leq 0 \text{ for all } S \in 2^{I \setminus \{i\}}, \\ -\lambda_{i,2} &\leq -1. \end{split}$$

▶ If $\lambda_{i,1} = 0$, then $v(\{i\}) - v(\emptyset) < 0$ would be violated.

• Thus, set
$$\lambda_i = \lambda_{i,1}/\lambda_{i,2} > 0$$
.

Equivalence (Weak Version)

Condition (MU) is equivalent to the following: There exists λ = (λ_i)_{i∈I} ≫ 0 such that

$$\begin{split} \lambda_i f_i(S) &\leq v(S \cup \{i\}) - v(S) \\ \text{for all } i \in I \text{ such that } f_i(I \setminus \{i\}) > 0 \text{ and all } S \subset I \setminus \{i\}, \\ \text{and } v(\emptyset) > v(S) \text{ for all } S \neq \emptyset. \end{split}$$

Assume condition (MU).

Fix any $i \in I$ such that $f_i(I \setminus \{i\}) > 0$.

• Then there exists no $\pi_i \in \Delta(2^{I \setminus \{i\}})$ such that

$$\sum_{\substack{S \in 2^{I \setminus \{i\}}}} \pi_i(S) f_i(S) > 0, \\ -\sum_{\substack{S \in 2^{I \setminus \{i\}}}} \pi_i(S) (v(S \cup \{i\}) - v(S)) > 0.$$

▶ By duality (Ville's Theorem), there exists
$$(\lambda_{i,1}, \lambda_{i,2}) \in \mathbb{R}^2_+ \setminus \{(0,0)\}$$
 such that

$$\lambda_{i,1}f_i(S) - \lambda_{i,2}(v(S \cup \{i\}) - v(S)) \le 0 \text{ for all } S \in 2^{I \setminus \{i\}}.$$

- ▶ If $\lambda_{i,2} = 0$ and thus $\lambda_{i,1} > 0$, then $f_i(I \setminus \{i\}) > 0$ would be violated.
- If $\lambda_{i,1} = 0$, then $v(\{i\}) v(\emptyset) < 0$ would be violated.

• Thus, set
$$\lambda_i = \lambda_{i,1}/\lambda_{i,2} > 0$$

- Denote $I^1 = \{i \in I \mid f_i(I \setminus \{i\}) > 0\}.$
- Let f_{I¹}(·, 0_{I \ I¹}) be the game with players in I¹ where the players in I \ I¹ are fixed to play action 0.

Proposition 1

 $\mathbf{0}$ is an MP-maximizer in \mathbf{f} if and only if $\mathbf{0}_{I^1}$ is a strict MP-maximizer in $\mathbf{f}_{I^1}(\cdot, \mathbf{0}_{I\setminus I^1})$.

Characterization of Robustness of Extreme Action Profiles

Proposition 2

In any binary-action supermodular game, 0 is robust if and only if it is an MP-maximizer.

- "If": by Morris and Ui (2005)
 (For any action profile of supermodular games with (finitely) many actions)
- "Only if": by Oyama and Takahashi (2023)

Does not hold for non-extreme action profiles.