The Limits of Price Discrimination By Dirk Bergemann, Benjamin Brooks, and Stephen Morris

Leo Nonaka Dorian Deilhes

Overview

(1) Introduction

- Overview
- Objective
- Construction
(2) I. Model
- idea
- Example
(3) The Limits of Discrimination

Overview

Impact of discriminatory pricing on consumer and producer surplus

Hypothesis

\triangleright under monopoly
\triangleright third degree price discrimination

Example

\triangleright price of a lunch in a public school
\triangleright price of a train ticket
\triangleright price of a drug or a surgical intervention

Overview

\triangleright No information \Rightarrow monopoly price $\Rightarrow A$
\triangleright Full information \Rightarrow perfect discrimination $\Rightarrow B$
\triangleright Forced maximize consumer surplus $\Rightarrow C$

Figure 1. The Surplus Triangle

Overview

Remark

\triangleright consumer surplus must be non negative
\triangleright the producer must get at least the surplus of non information situation
\triangleright the sum of consumer and producer surplus cannot exceed the total value limit

Figure 1. The Surplus Triangle

Objective

Construction of a efficient market

\triangleright the producer surplus is above the non information situation
\triangleright the segmentation of the market should maximise the consumer surplus

Construction

idea : sufficient conditions

With a finite possible prices Let's divide the market into segments, with prices less or equal at the price in uniform monopoly If :
(i) in each segment, consumers's valuations are always greater that or equal to the price for the segment
(ii) in each segment, the producer is indifferent between charging the price for that segment and charging the uniform monopoly price
Then :
\triangleright the producer is indifferent to charging the uniform monopoly price on all segments
i.e. producer surplus must equal uniform monopoly profit
\triangleright the allocation is also efficient, so consumers must obtain the rest of the efficient surplus

Iterative construction

\triangleright Start with a "lowest price segment" (where a price equal to the lowest valuation will be charged)
-All consumers with the lowest valuation go into this segment.
\triangleright For each higher valuation, a share of consumers with that valuation also enters into the lowest price segment

- The relative share of each higher valuation (with respect to each other) is the same as in the prior distribution
-The proportion of all of the higher valuations is lower than in the prior distribution

Iterative Construction

\triangleright We can choose that proportion between zero and one such that the producer is indifferent between charging the segment price and the uniform monopoly price
\triangleright are in the same relative proportions as they were in the original population
\triangleright etc... for the second lowest valuation in the second segment

Setting

$\triangleright V=\left\{\nu^{1}, \ldots, \nu^{N}\right\}$ with $0<v_{1}<\ldots<v_{K}$.
$\triangleright X \triangleq \Delta(V)=\left\{x \in \mathbb{R}_{+}^{V} \mid \sum_{k=1}^{K} x\left(\nu_{k}\right)=1\right\}$: a set of markets
$\triangleright x^{*} \in \Delta(V)$: hold one market as fixed

Setting

\triangleright Given a market x, ν_{k} is optimal if

$$
\nu_{k} \sum_{j=k}^{K} x_{j} \geq \nu_{i} \sum_{j=i}^{K} x_{j}, \forall i=1, \ldots, K
$$

\triangleright Let X_{k} be the set of markets which charging ν_{k} is optimal, i.e.,

$$
X_{k} \triangleq\left\{x \in \Delta(V) \mid \nu_{k} \sum_{j=k}^{K} x_{j} \geq v_{i} \sum_{j=i}^{K} x_{j}, \forall i=1, \ldots, K\right\}
$$

\triangleright Let the maximum feasible surplus as $w^{*}:=\sum_{j=1}^{K} \nu_{j} x_{j}^{*}$
\triangleright The uniform price producer surplus is $\pi^{*}:=\max _{k \in 1, \ldots, K} \sum_{j=k}^{K} \nu_{k} x_{j}^{*}$

Example

Three Values with Uniform Probability

$\triangleright V=\{1,2,3\}$
$\triangleright K=3$ and $\nu_{k}=k$ and $x^{*}=\left(\frac{1}{3} ; \frac{1}{3} ; \frac{1}{3}\right)$
\triangleright The feasible social surplus is $w^{*}=\frac{1}{3}(1+2+3)=2$
\triangleright The uniform monopoly price is $\nu^{*}=i^{*}=2$
\triangleright Under the uniform monopoly price:

$$
\pi^{*}=\frac{2}{3} \times 2=\frac{4}{3} \quad u^{*}=\frac{1}{3}(3-2)+\frac{1}{3}(2-2)=\frac{1}{3}
$$

Figure 2. The Simplex of Markets with $v_{k} \in\{1,2,3\}$

Example

$\triangleright \Sigma=\left\{\sigma \in \Delta(X) \mid \sum_{x \in \text { supp } \sigma} x \cdot \sigma(x)=x^{*}\right.$ and $\left.|\operatorname{supp} \sigma|<\infty\right\}:$ a set of
segmentation
\triangleright A pricing rule is $\phi: \operatorname{supp} \sigma \rightarrow \Delta(V)$
\triangleright A pricing rule ϕ is optimal if $v_{k} \in \operatorname{supp} \phi(x)$ implies $x \in X_{k}$.

$$
\text { Segment } \quad \mathrm{x}_{1} \quad \mathrm{x}_{2} \quad \mathrm{x}_{3} \quad \sigma(x) \quad \operatorname{supp} \phi(x)
$$

$$
\begin{array}{llllll}
x^{\{1\}} & 1 & 0 & 0 & 1 / 3 & \{1\} \\
x^{\{2\}} & 0 & 1 & 0 & 1 / 3 & \{2\} \\
x^{\{3\}} & 0 & 0 & 1 & 1 / 3 & \{3\}
\end{array}
$$

$$
\begin{array}{lllll}
x^{*} & 1 / 3 & 1 / 3 & 1 / 3 & 1
\end{array}
$$

Given a segmentation σ and pricing rule ψ, consumer surplus is

$$
\sum_{x \in \text { supp } \sigma} \sigma(x) \sum_{k=1}^{K} \phi(k) \sum_{j=k}^{K}\left(\nu_{j}-\nu_{k}\right) x_{j}
$$

producer surplus is

$$
\sum_{x \in \text { supp } \sigma} \sigma(x) \sum_{k=1}^{K} \phi(k) \nu_{k} \sum_{j=k}^{K} x_{j}
$$

and the total surplus is

$$
\sum_{x \in \text { supp } \sigma} \sigma(x) \sum_{k=1}^{K} \phi(k) \sum_{j=k}^{K} x_{j} \nu_{j}
$$

Main Theorem

Now we are ready to state the main theorem formally.

Main theorem

There exists σ and optimal ϕ with consumer surplus u and producer surplus π iff $u \geq 0, \pi \geq \pi^{*}$, and $u+\pi \leq w^{*}$.

Only if part is easy. Especially, it is easy to see $u \geq 0$ and $u+\pi \leq w^{*}$. Since ϕ is optimal, for all $x \in \operatorname{supp} \sigma$,

$$
\sum_{k=1}^{K} \phi_{k}(x) v_{i} \sum_{j=i}^{K} x_{j} \geq v_{i^{*}} \sum_{j=i^{*}}^{K} x_{j}
$$

where $v_{i^{*}}$ is uniform monopoly price. Summing up this equations over all $x \in \operatorname{supp} \sigma$,

$$
\pi=\sum_{x \in \operatorname{supp} \sigma} \sigma(x) \sum_{k=1}^{K} \phi_{k}(x) v_{i} \sum_{j=i}^{K} x_{j} \geq v_{i^{*}} \sum_{x \in \operatorname{supp} \sigma} \sigma(x) \sum_{j=i^{*}}^{K} x_{j}=\pi^{*}
$$

Main Theorem

Main theorem

There exists σ and ϕ with consumer surplus u and producer surplus π iff $u \geq 0, \pi \geq \pi^{*}$, and $u+\pi \leq w^{*}$.

- From now on, we will focus on proving if part. It is easy to achieve $u+\pi=w^{*}$ or $u=0$ using these pricing rules.

The maximal and minimal pricing rule

The minimum(maximum) pricing rule is ϕ such that charges $\min (\max) \operatorname{supp} x$ for all x deterministically.

- How can we attain the point between the two? In other words, what happens when u moves between $w^{*}-\pi$ and 0 with the value π the same? (Note that u and π are linear to σ and ϕ)

Extremal Market

Extremal market

$x \in \Delta(V)$ is extremal market if the producer is indifferent between charging any price in supp x.

Example 1

Under the setting in Example 1, the producer surplus can be $x_{1}+x_{2}+x_{3}$, $2 x_{2}+2 x_{3}$, or $3 x_{3}$.

Generally, an extremal market x^{S} with supp $x=S \subset\{1, \ldots, K\}$ is determined by these $|S|+1$ equations:

$$
\begin{gathered}
v_{i} \sum_{j=i}^{K} x_{i}^{S}=\text { const }, \forall i \in S \\
\sum_{i \in S} x_{i}^{S}=1
\end{gathered}
$$

Extremal Market

Lemma 1

$$
x_{k}=\operatorname{conv}\left(\left\{x^{S} \mid k \in S\right\}\right)
$$

The proof uses two facts.

Krein-Millman Theorem

Let $C \subset \mathbb{R}^{n}, C \neq \emptyset$, be a compact convex set. Then $C=\operatorname{conv}(\operatorname{ext}(C))$.

Simon 2011, Proposition 15.2

Let $\left\{I_{\alpha}\right\}_{\alpha=1}^{m}$ be a finite number of linear functionals on \mathbb{R}^{ν}. Let $\beta_{1}, \ldots, \beta_{m} \in \mathbb{R}$. Let $K:=\cap_{\alpha=1}^{m}\left\{x \mid L_{\alpha}(x) \geq \beta_{\alpha}\right\}$. Let $x \in E(K)$ be an extreme point of K. Then x obeys at least ν distinct equations.

$$
I_{\alpha}(x)=\beta_{\alpha}
$$

Extremal Market

(proof)

Since it is immediate that X_{k} is convex, $X_{k} \supset \operatorname{conv}\left(\left\{x^{S} \mid k \in S\right\}\right)$.
We are left to prove the converse. By Krein-Millman Theorem, we only have to prove $\left\{x^{S} \mid k \in S\right\}=\operatorname{ext}\left(X^{k}\right)$.
Note that $X^{k} \subset \mathbb{R}^{K}$ is characterized by these (2K-1) constraints:

$$
\begin{gathered}
\sum_{j=1}^{K} x_{j}=1 \\
x_{i} \geq 0, \forall i \neq k \\
v_{k} \sum_{j=k}^{K} x_{j} \geq v_{i} \sum_{j=i}^{K} x_{j}, \forall i \neq k
\end{gathered}
$$

We can ignore the constraint $x_{k} \geq 0$ because v_{i} is optimal $\Rightarrow x_{i}>0$

Extremal Market

(proof) By the second fact, all extreme points are characterized by at least K equations out of them. However, we cannot choose $x_{i}=0$ and
$v_{k} \sum_{j=k}^{K} x_{j}=v_{i} \sum_{j=i}^{K} x_{j}$ at the same time. Each choice corresponds to x^{s}.

Corollary

There exists a segmentation consisting only of extremal markets in $X_{i^{*}}$.

Main Theorem

Extremal markets make it easy to move between $u+\pi=w^{*}$ line and $u=0$ line.
Suppose that σ consists only of extremal markets. Let us consider ϕ such that charges min supp x with probability p and $\max \operatorname{supp} x$ with probability $1-p$. Then the consumer surplus is:

$$
\sum_{x \in \text { supp } \sigma} \sigma(x)\left(p \cdot 0+(1-p) \sum_{j=1}^{K} v_{j} x_{j}\right)
$$

while the producer surplus is the same.

Main Theorem

Now we are ready to prove the main theorem.

Main theorem

There exists σ and ϕ with consumer surplus u and producer surplus π iff $u \geq 0, \pi \geq \pi^{*}$, and $u+\pi \leq w^{*}$.
(if part)
By Corollary, there exists a segmentation σ consisting only of extremal markets in $X_{i^{*}}$. The maximum and minimum pricing rule under this σ acheive the surplus pairs $\left(w^{*}-\pi^{*}, \pi^{*}\right)$ and $\left(0, \pi^{*}\right)$, respectively. Consider a following segmentation σ^{\prime} :

$$
\sigma^{\prime}(x)= \begin{cases}x_{k}^{*} & \text { if } x=x^{\left\{v_{k}\right\}} \\ 0 & \text { o.w. }\end{cases}
$$

Charging v_{k} to market $x^{\left\{v_{k}\right\}}$ under this segmentation achieves the surplus pair ($0, w^{*}$).

Main Theorem

(if part cont'd)
Note that any surplus pair (u, π) with $u \geq 0, \pi \geq \pi^{*}$, and $u+\pi \leq w^{*}$, there exists $\alpha, \beta \in[0,1]$ such that

$$
(u, \pi)=\alpha \cdot\left(0, w^{*}\right)+(1-\alpha) \cdot\left[\beta \cdot\left(w^{*}-\pi^{*}, \pi^{*}\right)+(1-\beta) \cdot\left(0, \pi^{*}\right)\right]
$$

The extremal segmentation

$$
\sigma^{\prime \prime}(x)=\alpha \sigma^{\prime}(x)+(1-\alpha) \sigma(x)
$$

together with the optimal pricing rule that charges min supp x with probability β and maxsupp x with probability $1-\beta$ achieves the desired welfare outcome. (Note that u and π are linear to σ and ϕ)

