The Limits of Price Discrimination By Dirk Bergemann, Benjamin Brooks, and Stephen Morris

Leo Nonaka Dorian Deilhes

Introduction

- Overview
- Objective
- Construction
- I. Model
 - idea
 - Example

Impact of discriminatory pricing on consumer and producer surplus

Hypothesis

 \triangleright under monopoly

▷ third degree price discrimination

Example

- ▷ price of a lunch in a public school
- ▷ price of a train ticket
- ▷ price of a drug or a surgical intervention

- $\triangleright \ \ No \ \, information \Rightarrow monopoly \\ price \Rightarrow A$
- $\triangleright \ \ \mbox{Full information} \Rightarrow \mbox{perfect} \\ \mbox{discrimination} \Rightarrow \mbox{B}$
- $\triangleright \ \ {\sf Forced \ maximize \ consumer} \\ {\sf surplus} \Rightarrow {\sf C} \\$

Consumer surplus (*u*)

Remark

- consumer surplus must be non negative
- the producer must get at least the surplus of non information situation
- the sum of consumer and producer surplus cannot exceed the total value limit

Construction of a efficient market

- \triangleright the producer surplus is above the non information situation
- ▷ the segmentation of the market should maximise the consumer surplus

idea : sufficient conditions

With a finite possible prices Let's divide the market into segments, with prices less or equal at the price in uniform monopoly *If* :

- $({\sf i})\,$ in each segment, consumers's valuations are always greater that or equal to the price for the segment
- (ii) in each segment, the producer is indifferent between charging the price for that segment and charging the uniform monopoly price

Then :

- b the producer is indifferent to charging the uniform monopoly price on all segments
- i.e. producer surplus must equal uniform monopoly profit
 - b the allocation is also efficient, so consumers must obtain the rest of the efficient surplus

- ▷ Start with a "lowest price segment" (where a price equal to the lowest valuation will be charged)
- -All consumers with the lowest valuation go into this segment.
 - For each higher valuation, a share of consumers with that valuation also enters into the lowest price segment
- The relative share of each higher valuation (with respect to each other) is the same as in the prior distribution
- The proportion of all of the higher valuations is lower than in the prior distribution

- We can choose that proportion between zero and one such that the producer is indifferent between charging the segment price and the uniform monopoly price
- are in the same relative proportions as they were in the original population
- ▷ etc... for the second lowest valuation in the second segment

$$V = \left\{ \nu^1, \dots, \nu^N \right\} \text{ with } 0 < v_1 < \dots < v_K.$$

$$X \stackrel{\Delta}{=} \Delta(V) = \left\{ x \in \mathbb{R}^V_+ \mid \sum_{k=1}^K x(\nu_k) = 1 \right\} : \text{ a set of markets}$$

$$x^* \in \Delta(V) : \text{ hold one market as fixed}$$

Setting

 \triangleright Given a market x, ν_k is optimal if

$$u_k \sum_{j=k}^{K} x_j \ge \nu_i \sum_{j=i}^{K} x_j, \forall i = 1, \dots, K$$

 \triangleright Let X_k be the set of markets which charging ν_k is optimal, i.e.,

$$X_{k} \triangleq \left\{ x \in \Delta(V) | \nu_{k} \sum_{j=k}^{K} x_{j} \ge v_{i} \sum_{j=i}^{K} x_{j}, \forall i = 1, \dots, K \right\}$$

 \triangleright Let the maximum feasible surplus as $w^* := \sum_{j=1}^{N} \nu_j x_j^*$

 \triangleright The uniform price producer surplus is $\pi^* := \max_{k \in 1,...,K} \sum_{j=k}^{m} \nu_k x_j^*$

Three Values with Uniform Probability

 $\triangleright V = \{1, 2, 3\}$

$$\triangleright \ \ \mathcal{K}=3 \ {
m and} \
u_k=k \ {
m and} \ x^*=\left(rac{1}{3};rac{1}{3};rac{1}{3}
ight)$$

- ▷ The feasible social surplus is $w^* = \frac{1}{3}(1+2+3) = 2$
- \triangleright The uniform monopoly price is $u^* = i^* = 2$
- ▷ Under the uniform monopoly price:

$$\pi^* = \frac{2}{3} \times 2 = \frac{4}{3}$$
 $u^* = \frac{1}{3}(3-2) + \frac{1}{3}(2-2) = \frac{1}{3}$

Figure 2. The Simplex of Markets with $v_k \in \{1, 2, 3\}$

Example

$$\succ \Sigma = \left\{ \sigma \in \Delta(X) | \sum_{x \in \text{supp}\sigma} x \cdot \sigma(x) = x^* \text{ and } | \text{supp } \sigma | < \infty \right\}: \text{ a set of segmentation}$$

- \triangleright A pricing rule is ϕ : supp $\sigma \rightarrow \Delta(V)$
- ▷ A pricing rule ϕ is optimal if $v_k \in \operatorname{supp} \phi(x)$ implies $x \in X_k$.

Segment	x ₁	x ₂	X3	$\sigma(x)$	$supp\phi(x)$
$x^{\{1\}}$ $x^{\{2\}}$ $x^{\{3\}}$	1 0 0	0 1 0	0 0 1	1/3 1/3 1/3	$\{1\}$ $\{2\}$ $\{3\}$
x*	1/3	1/3	1/3	1	

Given a segmentation σ and pricing rule ψ , consumer surplus is

$$\sum_{x \in supp\sigma} \sigma(x) \sum_{k=1}^{K} \phi(k) \sum_{j=k}^{K} (\nu_j - \nu_k) x_j$$

producer surplus is

and the total surplus is

$$\sum_{x \in supp\sigma} \sigma(x) \sum_{k=1}^{K} \phi(k) \sum_{j=k}^{K} x_{j} \nu_{j}$$

Main Theorem

Now we are ready to state the main theorem formally.

Main theorem

There exists σ and optimal ϕ with consumer surplus u and producer surplus π iff $u \ge 0, \pi \ge \pi^*$, and $u + \pi \le w^*$.

Only if part is easy. Especially, it is easy to see $u \ge 0$ and $u + \pi \le w^*$. Since ϕ is optimal, for all $x \in \text{supp } \sigma$,

$$\sum_{k=1}^{K} \phi_k(x) \mathsf{v}_i \sum_{j=i}^{K} \mathsf{x}_j \ge \mathsf{v}_{i^*} \sum_{j=i^*}^{K} \mathsf{x}_j$$

where v_{i^*} is uniform monopoly price. Summing up this equations over all $x \in \operatorname{supp} \sigma$,

$$\pi = \sum_{x \in \text{supp } \sigma} \sigma(x) \sum_{k=1}^{K} \phi_k(x) v_i \sum_{j=i}^{K} x_j \ge v_{i^*} \sum_{x \in \text{supp } \sigma} \sigma(x) \sum_{j=i^*}^{K} x_j = \pi^*$$

Main theorem

There exists σ and ϕ with consumer surplus u and producer surplus π iff $u \ge 0, \pi \ge \pi^*$, and $u + \pi \le w^*$.

• From now on, we will focus on proving if part. It is easy to achieve $u + \pi = w^*$ or u = 0 using these pricing rules.

The maximal and minimal pricing rule

The minimum(maximum) pricing rule is ϕ such that charges min(max) supp x for all x deterministically.

How can we attain the point between the two? In other words, what happens when u moves between w^{*} - π and 0 with the value π the same? (Note that u and π are linear to σ and φ)

Extremal market

 $x \in \Delta(V)$ is extremal market if the producer is indifferent between charging any price in supp x.

Example 1

Under the setting in Example 1, the producer surplus can be $x_1 + x_2 + x_3$, $2x_2 + 2x_3$, or $3x_3$.

Generally, an extremal market x^S with supp $x = S \subset \{1, ..., K\}$ is determined by these |S| + 1 equations:

$$v_i \sum_{j=i}^{K} x_i^S = const, \forall i \in S$$

 $\sum_{i \in S} x_i^S = 1$

Lemma 1

$$X_k = \operatorname{conv}\left(\left\{x^{\mathcal{S}}|k \in \mathcal{S}\right\}\right)$$

The proof uses two facts.

Krein-Millman Theorem

Let $C \subset \mathbb{R}^n$, $C \neq \emptyset$, be a compact convex set. Then $C = \operatorname{conv}(\operatorname{ext}(C))$.

Simon 2011, Proposition 15.2

Let $\{I_{\alpha}\}_{\alpha=1}^{m}$ be a finite number of linear functionals on \mathbb{R}^{ν} . Let $\beta_{1}, \ldots, \beta_{m} \in \mathbb{R}$. Let $K := \bigcap_{\alpha=1}^{m} \{x | I_{\alpha}(x) \ge \beta_{\alpha}\}$. Let $x \in E(K)$ be an extreme point of K. Then x obeys at least ν distinct equations.

$$I_{\alpha}(x) = \beta_{\alpha}$$

(proof)

Since it is immediate that X_k is convex, $X_k \supset \operatorname{conv}\left(\left\{x^S | k \in S\right\}\right)$. We are left to prove the converse. By Krein-Millman Theorem, we only have to prove $\left\{x^S | k \in S\right\} = \operatorname{ext}(X^k)$. Note that $X^k \subset \mathbb{R}^K$ is characterized by these (2K-1) constraints:

$$\sum_{j=1}^{K} x_j = 1$$
 $x_i \ge 0, orall i
eq k$ $v_k \sum_{j=k}^{K} x_j \ge v_i \sum_{j=i}^{K} x_j, orall i
eq k$

We can ignore the constraint $x_k \ge 0$ because v_i is optimal $\Rightarrow x_i > 0$

(proof) By the second fact, all extreme points are characterized by at least K equations out of them. However, we cannot choose $x_i = 0$ and $v_k \sum_{j=k}^{K} x_j = v_i \sum_{j=i}^{K} x_j$ at the same time. Each choice corresponds to x^S . \Box

Corollary

There exists a segmentation consisting only of extremal markets in X_{i^*} .

Extremal markets make it easy to move between $u + \pi = w^*$ line and u = 0 line.

Suppose that σ consists only of extremal markets. Let us consider ϕ such that charges min supp x with probability p and max supp x with probability 1 - p. Then the consumer surplus is:

$$\sum_{x \in \text{supp}\sigma} \sigma(x) \left(p \cdot 0 + (1-p) \sum_{j=1}^{K} v_j x_j \right)$$

while the producer surplus is the same.

Main Theorem

Now we are ready to prove the main theorem.

Main theorem

There exists σ and ϕ with consumer surplus u and producer surplus π iff $u \ge 0, \pi \ge \pi^*$, and $u + \pi \le w^*$.

(if part)

By Corollary, there exists a segmentation σ consisting only of extremal markets in X_{i^*} . The maximum and minimum pricing rule under this σ acheive the surplus pairs $(w^* - \pi^*, \pi^*)$ and $(0,\pi^*)$, respectively. Consider a following segmentation σ' :

$$\sigma'(x) = \begin{cases} x_k^* & \text{if } x = x^{\{v_k\}} \\ 0 & \text{o.w.} \end{cases}$$

Charging v_k to market $x^{\{v_k\}}$ under this segmentation achieves the surplus pair (0, w^*).

(if part cont'd) Note that any surplus pair (u, π) with $u \ge 0, \pi \ge \pi^*$, and $u + \pi \le w^*$, there exists $\alpha, \beta \in [0, 1]$ such that

$$(u,\pi) = \alpha \cdot (\mathbf{0}, w^*) + (1-\alpha) \cdot [\beta \cdot (w^* - \pi^*, \pi^*) + (1-\beta) \cdot (\mathbf{0}, \pi^*)]$$

The extremal segmentation

$$\sigma''(x) = \alpha \sigma'(x) + (1 - \alpha)\sigma(x)$$

together with the optimal pricing rule that charges min supp x with probability β and max supp x with probability $1 - \beta$ achieves the desired welfare outcome.(Note that u and π are linear to σ and ϕ)