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▶ Robustness (Kajii and Morris 1997)

▶ Implementation via information design (MOT20)

▶ Strict robustness (MOT23)
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Binary-Action Games

▶ I: Finite set of players

▶ Θ: Countable set of states

▶ Ai = {0, 1}: Binary action set for player i (A =
∏

i∈I Ai)

(0 = (0, . . . , 0), 1 = (1, . . . , 1))

▶ ui : A×Θ → R: player i’s payoff (bounded)

u = (ui)i∈I

3 / 22



Information Structures (Type Spaces)

▶ Ti: Countable set of types for player i (T =
∏

i∈I Ti)

▶ P ∈ ∆(T ×Θ): Common prior

▶ With I and (Ai)i∈I fixed, an incomplete information game is
defined by (Θ,u, (Ti)i∈I , P ).
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Robustness (Kajii and Morris 1997)

▶ g = (gi)i∈I : Complete information game

▶ Is a NE a∗ of g approximated by some BNE of any incomplete
information game “close” to g?

▶ An incomplete information game is an ε-elaboration of g if

P (players know that payoffs are equal to g) ≥ 1− ε.
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▶ (Θ,u, (Ti)i∈I , P ) is an ε-elaboration of g if
P (Θ× T g) ≥ 1− ε, where

T gi
i = {ti ∈ Ti | ui(·, θ) = gi(·)

for all θ ∈ Θ such that P ({θ} × T−i|ti) > 0}

and T g =
∏

i∈I T
gi
i .

▶ a∗ ∈ A is robust in g if for any δ > 0, there exists ε > 0 such
that any ε-elaboration of g has a BNE that plays a∗ with
probability at least 1− δ.

▶ Not all NE are robust:
Cf. Email game of Rubinstein (1989).
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Sufficient Conditions for Robustness

▶ Kajii and Morris (1997, Econometrica)
A p-dominant equilibrium with

∑
i pi < 1 is robust.

A risk-dominant equilibrium is robust in 2× 2 games.

▶ Ui (2002, Econometrica)
A potential maximizer is robust in potential games.

▶ Morris and Ui (2005, JET)
A monotone potential maximizer (MP-maximizer) is robust if
the game or the monotone potential function is supermodular.
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Necessity in Binary-Action Supermodular Games (OT)

▶ OT
A robust equilibrium must be a monotone potential maximizer
in generic binary-action supermodular games.

▶ Proof by contraposition:

▶ Suppose that a∗ is not an MP-maximizer.

▶ · · ·
▶ Construct an information structure (with “crazy types” with

probability ε) in which a∗ is never played.

· · · Information design!
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Implementation via Information Design

▶ Fix:

▶ Finite state space Θ

▶ Payoff functions ui(a, θ)

▶ What outcomes (i.e., joint distributions over A×Θ) can be
implemented by choosing an information structure?

▶ Partial implementation:

An outcome is partially implementable if it is induced by
some equilibrium of some information structure.

▶ Well known (Bergemann and Morris 2016):

An outcome is partially implementable if and only if it satisfies
an “obedience” constraint,

or it is a Bayes correlated equilibrium (BCE).
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Full and Smallest Equilibrium Implementation

▶ An outcome ν ∈ ∆(A×Θ) is fully implementable if it is
induced by all equilibria of some information structure.

▶ An outcome ν is smallest equilibrium implementable if it is
induced by the smallest equilibrium of some information
structure.

▶ Well defined in supermodular games.

(For each θ, ui((a
′
i, a−i), θ)− ui((ai, a−i), θ) is increasing in

a−i where a′i > ai.)
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Characterization in Binary-Action Supermodular Games
(MOT20)

▶ Restrict to (Θ,u) such that:

▶ Finite state space Θ

▶ Supermodular payoff functions ui(a, θ):

For each θ ∈ Θ, di(a−i, θ) = ui((1, a−i), θ)− ui((0, a−i), θ) is
increasing in a−i.

▶ Dominance state:

There exists θ ∈ Θ such that di(0−i, θ) > 0 for all i.
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▶ Characterization:

An outcome is S-implementable if and only if
it satisfies not only obedience but also sequential obedience.

▶ “Sequential obedience”:

▶ Designer recommends players to switch to action 1 from
action 0 according to a randomly chosen sequence;

▶ each player has a strict incentive to switch when told to do so
even if he only expects players before him to have switched.

▶ (An incomplete information generalization of a condition that
appeared in an intermediate step in the proof by OT.)

▶ Full implementation requires “reverse sequential obedience” in
addition.
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Connection

▶ Metaphorical interpretation:

Robustness question can be understood as an information
design problem, where an “adversarial” information designer
tries to design an information structure such that all BNE are
bounded away from a∗.

▶ If there is no such information structure, then a∗ is robust.

▶ Incompatibility between the robustness notion of Kajii and
Morris and the information design setting,

as the former requires that players know their payoff functions,
whereas no such requirement in the latter.
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Strict Robustness (MOT23)

▶ Robustness against incomplete information perturbations
where players believe with 1− ε that payoff functions are
close to g.

▶ A strict MP-maximizer is strictly robust if the game or
the strict MP function is supermodular.

▶ The converse also holds in all binary-action supermodular
games.

· · · By the results on (limit) smallest equilibrium/full
implementation by MOT20.
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Strict Robustness (MOT23)

▶ (Θ,u, (Ti)i∈I , P ) is an (ε, η)-elaboration of g if
P (T g,η ×Θ) ≥ 1− ε, where

T gi,η
i =

{
ti ∈ Ti

∣∣∣∣ ∑
θ∈Θ

P ({θ} × T−i|ti)max
a∈A

|ui(a, θ)− gi(a)| ≤ η

}

and T g,η =
∏

i∈I T
gi,η
i .

▶ a∗ ∈ A is strictly robust in g if for any δ > 0, there exist
ε > 0 and η > 0 such that any (ε, η)-elaboration of g has
a BNE that plays a∗ with probability at least 1− δ.
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Robustness (Kajii and Morris 1997)

▶ (Θ,u, (Ti)i∈I , P ) is an ε-elaboration of g if and only if
it is an (ε, 0)-elaboration of g.

▶ Strictly robust ⇒ KM-robust

▶ In a constant payoff game, any action profile is KM-robust,
but none is strictly robust.
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Limit Smallest Equilibrium Implementation (MOT20)

▶ Restrict to (Θ,u) such that:

▶ Finite state space Θ

▶ Supermodular payoff functions ui(a, θ):

For each θ ∈ Θ, di(a−i, θ) = ui((1, a−i), θ)− ui((0, a−i), θ) is
increasing in a−i.

▶ Dominance state:

There exists θ ∈ Θ such that di(0−i, θ) > 0 for all i.
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▶ ν ∈ ∆(A×Θ) is S-implementable in (Θ,u) if it is induced by
the smallest BNE of some information structure.

▶ ξ ∈ ∆(A) is limit S-implementable in (Θ,u) at θ∗ if there
exists a sequence {νk} of S-implementable outcomes such
that νk(·, θ∗) → ξ.

▶ Implementing information structures are (ε, η)-elaborations of
u(·, θ∗) with ε, η → 0.
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Equivalence

▶ ξ ∈ ∆(A) is limit S-implementable in g if there exists (Θ,u)
such that

▶ u(·, θ∗) = g(·), and
▶ ξ is limit S-implementable in (Θ,u) at θ∗.

▶ Focus on 0 ∈ A. (Also viewed as an element of ∆(A).)
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Theorem 1
In any BAS game g, the following are equivalent:

1. 0 is strictly robust in g.

2. 0 is the unique action distribution that is limit
S-implementable in g.

3. 0 is the unique action distribution that satisfies sequential
obedience in g.

4. 0 is a strict monotone potential maximizer in g.

▶ Not 2 ⇒ Not 1

▶ Not 3 ⇒ Not 2: by MOT20 (OT)

▶ 3 ⇔ 4: by duality (OT)

▶ 4 ⇒ 1: by argument similar to Morris and Ui (2005)
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Proof of “Not 3 ⇒ Not 2”

▶ Suppose that ρ ∈ ∆(Γ) with ρ(Γ \ {∅}) > 0 satisfies
sequential obedience.

▶ Define νkΓ ∈ ∆(Γ×Θ) by

νkΓ(γ, θ) =

{
(1− 1

k )ρ(γ) if θ = θ∗

1
k if (γ, θ) = (γ̄, θ)

where γ̄ ∈ Γ is an arbitrarily fixed permutation of all players
and θ ∈ Θ is the dominance state, where action 1 is strictly
dominant for all players.

▶ Then νkΓ satisfies strict sequential obedience for u:∑
γ∈Γi,θ∈Θ

νkΓ(γ, θ)di(a−i(γ), θ) > 0

for all i ∈ I.
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Non-Extreme Action Profiles

▶ Assume:

There exist θ, θ ∈ Θ such that di(0−i, θ) > 0 and
di(1−i, θ) < 0 for all i ∈ I.

Theorem 2
In any BAS game g, the following are equivalent:

1. a∗ is strictly robust in g.

2. a∗ is the unique action distribution that is limit fully
implementable in g.

3. a∗ is the unique action distribution that satisfies sequential
obedience and reverse sequential obedience in g.

4. a∗ is a strict monotone potential maximizer in g.
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