Robustness and Information Design

Daisuke Oyama

Game Theory I

November 1, 2023

Robustness of Equilibrium and Information Design

[OT] Oyama and Takahashi, "Generalized Belief Operator and Robustness in Binary-Action Supermodular Games," *Econometrica*, 2020

- [MOT20] Morris, Oyama, and Takahashi, "Implementation via Information Design in Binary-Action Supermodular Games," working paper, 2020 (revised 2023)
- [MOT23] Morris, Oyama, and Takahashi, "Strict Robustness to Incomplete Information," *Japanese Economic Review*, 2023

- Robustness (Kajii and Morris 1997)
- Implementation via information design (MOT20)
- Strict robustness (MOT23)

Binary-Action Games

- ► *I*: Finite set of players
- \blacktriangleright Θ : Countable set of states

Information Structures (Type Spaces)

- ► T_i : Countable set of types for player i $(T = \prod_{i \in I} T_i)$
- ▶ $P \in \Delta(T \times \Theta)$: Common prior
- With I and (A_i)_{i∈I} fixed, an incomplete information game is defined by (Θ, u, (T_i)_{i∈I}, P).

Robustness (Kajii and Morris 1997)

- ▶ $\mathbf{g} = (g_i)_{i \in I}$: Complete information game
- Is a NE a* of g approximated by some BNE of any incomplete information game "close" to g?
- ► An incomplete information game is an *ɛ*-elaboration of g if

 $P(\text{players know that payoffs are equal to } \mathbf{g}) \geq 1 - \varepsilon.$

► $(\Theta, \mathbf{u}, (T_i)_{i \in I}, P)$ is an ε -elaboration of \mathbf{g} if $P(\Theta \times T^{\mathbf{g}}) \ge 1 - \varepsilon$, where

$$\begin{split} T_i^{g_i} &= \{t_i \in T_i \mid u_i(\cdot, \theta) = g_i(\cdot) \\ & \text{ for all } \theta \in \Theta \text{ such that } P(\{\theta\} \times T_{-i} | t_i) > 0\} \end{split}$$

and $T^{\mathbf{g}} = \prod_{i \in I} T_i^{g_i}$.

- a^{*} ∈ A is robust in g if for any δ > 0, there exists ε > 0 such that any ε-elaboration of g has a BNE that plays a^{*} with probability at least 1 − δ.
- Not all NE are robust: Cf. Email game of Rubinstein (1989).

Sufficient Conditions for Robustness

▶ Kajii and Morris (1997, Econometrica)
 A p-dominant equilibrium with ∑_i p_i < 1 is robust.

A risk-dominant equilibrium is robust in 2×2 games.

- Ui (2002, Econometrica)
 A potential maximizer is robust in potential games.
- Morris and Ui (2005, JET) A monotone potential maximizer (MP-maximizer) is robust if the game or the monotone potential function is supermodular.

Necessity in Binary-Action Supermodular Games (OT)

► 0T

A robust equilibrium must be a monotone potential maximizer in **generic** binary-action supermodular games.

Proof by contraposition:

Suppose that a^* is not an MP-maximizer.

...

Construct an information structure (with "crazy types" with probability ε) in which a* is never played.

··· Information design!

Implementation via Information Design

Fix:

- Finite state space Θ
- ▶ Payoff functions $u_i(a, \theta)$
- What outcomes (i.e., joint distributions over A × Θ) can be implemented by choosing an information structure?
- Partial implementation:

An outcome is partially implementable if it is induced by **some** equilibrium of some information structure.

Well known (Bergemann and Morris 2016):

An outcome is partially implementable if and only if it satisfies an "obedience" constraint,

or it is a Bayes correlated equilibrium (BCE).

Full and Smallest Equilibrium Implementation

- An outcome *v* ∈ ∆(*A* × Θ) is **fully implementable** if it is induced by all equilibria of some information structure.
- An outcome v is smallest equilibrium implementable if it is induced by the smallest equilibrium of some information structure.

Well defined in supermodular games.

(For each θ , $u_i((a_i',a_{-i}),\theta)-u_i((a_i,a_{-i}),\theta)$ is increasing in a_{-i} where $a_i'>a_i.)$

Characterization in Binary-Action Supermodular Games (MOT20)

• Restrict to (Θ, \mathbf{u}) such that:

• Finite state space Θ

Supermodular payoff functions $u_i(a, \theta)$:

For each $\theta \in \Theta$, $d_i(a_{-i}, \theta) = u_i((1, a_{-i}), \theta) - u_i((0, a_{-i}), \theta)$ is increasing in a_{-i} .

Dominance state:

There exists $\overline{\theta} \in \Theta$ such that $d_i(\mathbf{0}_{-i}, \overline{\theta}) > 0$ for all i.

Characterization:

An outcome is S-implementable if and only if it satisfies not only obedience but also **sequential obedience**.

- "Sequential obedience":
 - Designer recommends players to switch to action 1 from action 0 according to a randomly chosen sequence;
 - each player has a strict incentive to switch when told to do so even if he only expects players before him to have switched.
- (An incomplete information generalization of a condition that appeared in an intermediate step in the proof by OT.)
- Full implementation requires "reverse sequential obedience" in addition.

Connection

• Metaphorical interpretation:

Robustness question can be understood as an information design problem, where an "adversarial" information designer tries to design an information structure such that all BNE are bounded away from a^* .

- If there is no such information structure, then a^* is robust.
- Incompatibility between the robustness notion of Kajii and Morris and the information design setting,

as the former requires that players ${\bf know}$ their payoff functions, whereas no such requirement in the latter.

Strict Robustness (MOT23)

- Robustness against incomplete information perturbations where players believe with 1 - ε that payoff functions are close to g.
- A strict MP-maximizer is strictly robust if the game or the strict MP function is supermodular.
- The converse also holds in **all** binary-action supermodular games.

 \cdots By the results on (limit) smallest equilibrium/full implementation by MOT20.

Strict Robustness (MOT23)

•
$$(\Theta, \mathbf{u}, (T_i)_{i \in I}, P)$$
 is an (ε, η) -elaboration of \mathbf{g} if $P(T^{\mathbf{g}, \eta} \times \Theta) \ge 1 - \varepsilon$, where

$$T_i^{g_i,\eta} = \left\{ t_i \in T_i \ \bigg| \ \sum_{\theta \in \Theta} P(\{\theta\} \times T_{-i} | t_i) \max_{a \in A} |u_i(a,\theta) - g_i(a)| \le \eta \right\}$$

and $T^{\mathbf{g},\eta} = \prod_{i \in I} T_i^{g_i,\eta}$.

a^{*} ∈ A is strictly robust in g if for any δ > 0, there exist ε > 0 and η > 0 such that any (ε, η)-elaboration of g has a BNE that plays a^{*} with probability at least 1 − δ.

Robustness (Kajii and Morris 1997)

- (Θ, u, (T_i)_{i∈I}, P) is an ε-elaboration of g if and only if it is an (ε, 0)-elaboration of g.
- ► Strictly robust ⇒ KM-robust
- In a constant payoff game, any action profile is KM-robust, but none is strictly robust.

Limit Smallest Equilibrium Implementation (MOT20)

• Restrict to (Θ, \mathbf{u}) such that:

• Finite state space Θ

Supermodular payoff functions $u_i(a, \theta)$:

For each $\theta \in \Theta$, $d_i(a_{-i}, \theta) = u_i((1, a_{-i}), \theta) - u_i((0, a_{-i}), \theta)$ is increasing in a_{-i} .

Dominance state:

There exists $\overline{\theta} \in \Theta$ such that $d_i(\mathbf{0}_{-i}, \overline{\theta}) > 0$ for all *i*.

- ▶ $\nu \in \Delta(A \times \Theta)$ is S-implementable in (Θ, \mathbf{u}) if it is induced by the smallest BNE of some information structure.
- ► $\xi \in \Delta(A)$ is limit S-implementable in (Θ, \mathbf{u}) at θ^* if there exists a sequence $\{\nu^k\}$ of S-implementable outcomes such that $\nu^k(\cdot, \theta^*) \to \xi$.
- Implementing information structures are (ε, η) -elaborations of $\mathbf{u}(\cdot, \theta^*)$ with $\varepsilon, \eta \to 0$.

Equivalence

▶ $\xi \in \Delta(A)$ is limit S-implementable in g if there exists (Θ, \mathbf{u}) such that

•
$$\mathbf{u}(\cdot, \theta^*) = \mathbf{g}(\cdot)$$
, and

• ξ is limit S-implementable in (Θ, \mathbf{u}) at θ^* .

Focus on $0 \in A$. (Also viewed as an element of $\Delta(A)$.)

Theorem 1

In any BAS game g, the following are equivalent:

- 1. 0 is strictly robust in g.
- 2. **0** is the unique action distribution that is limit *S*-implementable in g.
- 3. 0 is the unique action distribution that satisfies sequential obedience in g.
- 4. 0 is a strict monotone potential maximizer in g.

- $\blacktriangleright \text{ Not } 2 \Rightarrow \text{Not } 1$
- ▶ Not 3 \Rightarrow Not 2: by MOT20 (OT)
- ▶ 3 \Leftrightarrow 4: by duality (OT)
- 4 \Rightarrow 1: by argument similar to Morris and Ui (2005)

Proof of "Not $3 \Rightarrow Not 2$ "

Suppose that ρ ∈ Δ(Γ) with ρ(Γ \ {∅}) > 0 satisfies sequential obedience.

▶ Define $\nu_{\Gamma}^k \in \Delta(\Gamma \times \Theta)$ by

$$\nu_{\Gamma}^{k}(\gamma,\theta) = \begin{cases} (1-\frac{1}{k})\rho(\gamma) & \text{if } \theta = \theta^{*} \\ \frac{1}{k} & \text{if } (\gamma,\theta) = (\bar{\gamma},\overline{\theta}) \end{cases}$$

where $\bar{\gamma} \in \Gamma$ is an arbitrarily fixed permutation of all players and $\bar{\theta} \in \Theta$ is the dominance state, where action 1 is strictly dominant for all players.

• Then ν_{Γ}^k satisfies strict sequential obedience for **u**:

$$\sum_{\gamma \in \Gamma_i, \theta \in \Theta} \nu_{\Gamma}^k(\gamma, \theta) d_i(a_{-i}(\gamma), \theta) > 0$$

for all $i \in I$.

Non-Extreme Action Profiles

Assume:

There exist $\overline{\theta}, \underline{\theta} \in \Theta$ such that $d_i(\mathbf{0}_{-i}, \overline{\theta}) > 0$ and $d_i(\mathbf{1}_{-i}, \underline{\theta}) < 0$ for all $i \in I$.

Theorem 2

In any BAS game g, the following are equivalent:

- 1. a^* is strictly robust in g.
- 2. *a*^{*} is the unique action distribution that is limit fully implementable in g.
- 3. *a*^{*} is the unique action distribution that satisfies sequential obedience and reverse sequential obedience in g.
- 4. a^* is a strict monotone potential maximizer in g.