Game Theory I

Daisuke Oyama

www.oyama.e.u-tokyo.ac.jp/theory23

October 5, 2023

Outline

Monday, Thursday 8:30-10:15

October 5, 9, 12, 16, 19, 23, 26, 30

November 1 (Wed), 2, 6, 9, 13

 Course webpage: www.oyama.e.u-tokyo.ac.jp/theory23

In this course, we study advanced topics on incomplete information games, in particular on information design.

Half (or 2/3) of the course will consist of lectures by the instructor and the other half (or 1/3) of presentations by students.

Other Information

Grading

Participation

Presentation

Final project

 Office hours: Fridays 14:00-15:30, or by appointment 10th floor, 1012

- 1. Correlated equilibrium/Bayes correlated equilibrium
- 2. Email game, global games/Full implementation with payoff perturbations
- 3. Robustness to incomplete information
- 4. Smallest equilibrium implementation, full implementation
- 5. Application: Joint design of information and transfers

Incomplete Information Games

- Players: $I = \{1, ..., |I|\}$
- *i*'s actions: A_i (finite) $(A = A_1 \times \cdots \times A_{|I|})$
- ► States: Θ (finite)
- $\mu \in \Delta(\Theta)$: Probability distribution over Θ
- *i*'s payoff function: $u_i: A \times \Theta \to \mathbb{R}$
- ▶ *i*'s types: T_i (countable) $(T = T_1 \times \cdots \times T_{|I|})$
- Common prior: $\pi \in \Delta(T \times \Theta)$
- *i*'s strategy: $\sigma_i \colon T_i \to \Delta(A_i)$.
- Economic/game theoretic models analyze the behavior of solutions (Bayes Nash equilibria, rationalizable strategies, ...) of an incomplete information game.

Implementation via Information Design

- Fix I, $(A_i)_{i \in I}$, Θ , μ , and $(u_i)_{i \in I}$. \cdots "Base game"
- ▶ Vary $(T_i)_{i \in I}$ and π . \cdots "Information structure"
- Strategy profile (σ_i)_{i∈I} given T = ((T_i)_{i∈I}, π) induces a joint distribution ν over A × Θ:

$$\nu(a,\theta) = \sum_{t} \pi(t,\theta) \prod_{i} \sigma_i(t_i)(a_i).$$

 ν : "outcome"

What outcomes are induced by an equilibrium of the incomplete information game given by a choice of an information structure?

Implementability

- Once an information structure $\mathcal{T} = ((T_i)_{i \in I}, \pi)$ is chosen, the game has multiple equilibria in general.
- Partial implementation:

An outcome ν is partially implementable if there exists an information structure \mathcal{T} such that some equilibrium of (the game induced by) \mathcal{T} induces ν .

PI: Set of partially implementable outcomes

Full implementation:

An outcome ν is fully implementable if there exists an information structure \mathcal{T} such that all equilibria of \mathcal{T} induce ν .

(Equivalent to unique implementation in supermodular games.)

FI: Set of fully implementable outcomes

Smallest equilibrium implementation:

An outcome ν is smallest equilibrium implementable if there exists an information structure \mathcal{T} such that the smallest equilibrium of \mathcal{T} induces ν .

(Well defined in supermodular games.)

SI: Set of smallest equilibrium implementable outcomes

Optimal Information Design

- There is an (informed) information designer who designs and provides an information structure to the players.
 - She can commit to the chosen information structure, before the state is realized.
- The information designer chooses an information structure to maximize the expected value of her objective function V: A × Θ → ℝ.

Best-case information design:

Assume that, once an information structure \mathcal{T} is given, players will play the best equilibrium for the information designer.

 \cdots Optimization over PI

Worst-case information design:

Assume that, once an information structure \mathcal{T} is given, players will play the worst equilibrium for the information designer. Assume:

The base game is supermodular (where actions are ordered).

• Designer's objective $V(a, \theta)$ is increasing in a.

 \cdots Optimization over \overline{SI}