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Production Sets

» Y c RY: production set

> For (y1,...,yr) €Y

> yp >0 = /{: output
» y¢o <0 = £ input

» Example: Suppose L =5 and y = (—5,2,-6,3,0) € Y.

> revenue = Pa X Yo + Pa X Yu
> cost = p1 X (—y1) +p3 x (—y3)
> profit = [p2 X Y2 +pa X ya] — [p1 X (—y1) +p3 X (—y3)] =p-y

> If a production function f is given where L is the output, then

Y={(-z1,....,—21-1,¢) | ¢ < f(z1,...,20-1), z¢ > 0}.
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Properties of Production Sets

N

. Y is nonempty.

. Y is closed.

No free lunch: Y NRE {0}
. Possibility of inaction: 0 € Y

Free disposal: If y € Y and 3/ <y, theny/ €Y, or
equivalently, Y — Ri cY.

(A—B={c|ec=a—"bforsomeac Aandbe B})

Irreversibility: If y € Y and y # 0, then —y ¢ Y.

N
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Properties of Production Sets

7.

10.
11.

12.

Nonincreasing returns to scale:
If y €Y, then ay € Y for all « € [0,1].

Nondecreasing returns to scale:
If yeY, then ay € Y for all a > 1.

Constant returns to scale:
If y €Y, then ay € Y for all a > 0.

(l.e., Y is a cone.)

Additivity: Y +Y C Y.

Convexity:
If y,y' €Y, then ay+ (1 — )y’ €Y for all a € [0, 1].

Y is a convex cone:
If y,y' €Y, then ay + By € Y foralla >0 and g > 0.



Convexity

Proposition 1

Y is additive and exhibits nonincreasing returns to scale
if and only if it is a convex cone.
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Constant Returns to Scale

Proposition 2

IfY c RE is convex and 0 € Y, then there is a constant returns,
convex production set Y’ C R such that
Y={yeR"|(y,-1) €Y'},

» Decreasing returns reflect the scarcity of some underlying,
unlisted input ( “entrepreneurial factor”).

Proof

> Let
Y' = {y e REYL |/ = a(y, —1) for some y € Y and a > 0}.
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Profit Maximization

max p-y
Y

s.t. yeY

» Supply correspondence:

y(p) = argmax p-y
yey

={yeRl|yeYandp-y>p -y forally ev}

» Profit function:

= ma. .
7(p) max p-y

» Analogous to expenditure minimization!
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Properties of 7 and y
Proposition 3

Suppose Y is nonempty and closed.

1.
2.

7 is homogeneous of degree one.
IS convex.

If'Y is convex and satisfies free disposal, then
Y ={yeRl|p-y<n(p) forall p > 0}.

y is homogeneous of degree zero.

IfY is convex, then y(p) is a convex set for all p. If Y is
strictly convex, then y(p) is single-valued (if nonempty).

[Hotelling’s lemma] If y(p) is a singleton, then Vr(p) = y(p).

. If y is a continuously differentiable function, then Dy(p) is
p=0.

symmetric and positive semi-definite, and Dy(p)
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Cost Minimization
f: Production function
min w-z

z>0
s.t. f(z) 2 ¢

» Conditional factor demand correspondence:

z(w,q) = argmin{w - z | f(2) > ¢}
» Cost function:
c(w,z) = min{w - z | f(2) > ¢}

» Analogous to expenditure minimization!
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Properties of ¢ and z
Proposition 4

1.
2.

¢ is homogeneous of degree one in w and nondecreasing in q.
c is concave in w.

If f is nondecreasing and quasi-concave, then
Y ={(-2z,9) ]| z>0and w- z < c(w,q) for all w>> 0}.

z Is homogeneous of degree zero in w.

If f is quasi-concave, then z(w, q) is a convex set. If f is
strictly quasi-concave, then z(w, q) is single-valued.

[Shepard’s lemma] If z(w, q) is a singleton, then
Vuc(w, q) = z(w,q).

. If z is a continuously differentiable function, then D,,z(w,q)
is symmetric and negative semi-definite, and D,z (w, q)w = 0.
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. If f is homogeneous of degree one (i.e., exhibits constant
returns to scale), then ¢ and z are homogeneous of degree one

inq.

. If f is concave, then c is convex in q.

10/10



