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Production Sets

I Y ⊂ RL: production set

I For (y1, . . . , yL) ∈ Y
I y` > 0 ⇒ `: output

I y` < 0 ⇒ `: input

I Example: Suppose L = 5 and y = (−5, 2,−6, 3, 0) ∈ Y .

I revenue = p2 × y2 + p4 × y4
I cost = p1 × (−y1) + p3 × (−y3)
I profit = [p2× y2 + p4× y4]− [p1× (−y1) + p3× (−y3)] = p · y

I If a production function f is given where L is the output, then

Y = {(−z1, . . . ,−zL−1, q) | q ≤ f(z1, . . . , zL−1), z` ≥ 0}.
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Properties of Production Sets

1. Y is nonempty.

2. Y is closed.

3. No free lunch: Y ∩ RL
+ ⊂ {0}

4. Possibility of inaction: 0 ∈ Y

5. Free disposal: If y ∈ Y and y′ ≤ y, then y′ ∈ Y , or
equivalently, Y − RL

+ ⊂ Y .

(A−B = {c | c = a− b for some a ∈ A and b ∈ B})

6. Irreversibility: If y ∈ Y and y 6= 0, then −y /∈ Y .
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Properties of Production Sets

7. Nonincreasing returns to scale:
If y ∈ Y , then αy ∈ Y for all α ∈ [0, 1].

8. Nondecreasing returns to scale:
If y ∈ Y , then αy ∈ Y for all α ≥ 1.

9. Constant returns to scale:
If y ∈ Y , then αy ∈ Y for all α ≥ 0.

(I.e., Y is a cone.)

10. Additivity: Y + Y ⊂ Y .

11. Convexity:
If y, y′ ∈ Y , then αy + (1− α)y′ ∈ Y for all α ∈ [0, 1].

12. Y is a convex cone:
If y, y′ ∈ Y , then αy + βy′ ∈ Y for all α ≥ 0 and β ≥ 0.
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Convexity

Proposition 1

Y is additive and exhibits nonincreasing returns to scale
if and only if it is a convex cone.
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Constant Returns to Scale

Proposition 2

If Y ⊂ RL is convex and 0 ∈ Y , then there is a constant returns,
convex production set Y ′ ⊂ RL+1 such that
Y = {y ∈ RL | (y,−1) ∈ Y ′}.

I Decreasing returns reflect the scarcity of some underlying,
unlisted input (“entrepreneurial factor”).

Proof

I Let
Y ′ = {y′ ∈ RL+1 | y′ = α(y,−1) for some y ∈ Y and α ≥ 0}.
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Profit Maximization

max
y

p · y

s. t. y ∈ Y

I Supply correspondence:

y(p) = argmax
y∈Y

p · y

= {y ∈ RL | y ∈ Y and p · y ≥ p · y′ for all y′ ∈ Y }

I Profit function:

π(p) = max
y∈Y

p · y

I Analogous to expenditure minimization!
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Properties of π and y
Proposition 3

Suppose Y is nonempty and closed.

1. π is homogeneous of degree one.

2. π is convex.

3. If Y is convex and satisfies free disposal, then
Y = {y ∈ RL | p · y ≤ π(p) for all p ≥ 0}.

4. y is homogeneous of degree zero.

5. If Y is convex, then y(p) is a convex set for all p. If Y is
strictly convex, then y(p) is single-valued (if nonempty).

6. [Hotelling’s lemma] If y(p) is a singleton, then ∇π(p) = y(p).

7. If y is a continuously differentiable function, then Dy(p) is
symmetric and positive semi-definite, and Dy(p)p = 0.
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Cost Minimization

f : Production function

min
z≥0

w · z

s. t. f(z) ≥ q

I Conditional factor demand correspondence:

z(w, q) = argmin{w · z | f(z) ≥ q}

I Cost function:

c(w, z) = min{w · z | f(z) ≥ q}

I Analogous to expenditure minimization!
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Properties of c and z
Proposition 4

1. c is homogeneous of degree one in w and nondecreasing in q.

2. c is concave in w.

3. If f is nondecreasing and quasi-concave, then
Y = {(−z, q) | z ≥ 0 and w · z ≤ c(w, q) for all w � 0}.

4. z is homogeneous of degree zero in w.

5. If f is quasi-concave, then z(w, q) is a convex set. If f is
strictly quasi-concave, then z(w, q) is single-valued.

6. [Shepard’s lemma] If z(w, q) is a singleton, then
∇wc(w, q) = z(w, q).

7. If z is a continuously differentiable function, then Dwz(w, q)
is symmetric and negative semi-definite, and Dwz(w, q)w = 0.
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8. If f is homogeneous of degree one (i.e., exhibits constant
returns to scale), then c and z are homogeneous of degree one
in q.

9. If f is concave, then c is convex in q.
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