Homework 4

Due on May 15

- 1. MWG Exercise 3.D.5.
- 2. MWG Exercise 3.E.2.
- **3.** MWG Exercise 3.E.4.
- 4. MWG Exercise 3.E.6.
- **5.** MWG Exercise 3.E.8.
- **6.** MWG Exercise 3.G.1.
- 7. MWG Exercise 3.G.2.
- 8. MWG Exercise 3.G.12.
- 9. MWG Exercise 3.G.14.
- 10. Let a list of pairs $(p^1, w^1), \ldots, (p^N, w^N)$ be given, where $p^n \in \mathbb{R}_{++}^L$ and $w^n \in \mathbb{R}_{++}$ for each $n=1,\ldots,N$. In addition to the L commodities $1,\ldots,L$, there is another commodity labeled 0 whose price is normalized to 1. Suppose that the consumer's consumption when the prices are given by p^n and the wealth level is w^n is $x^n \in \mathbb{R}_+^L$ for the commodities $1,\ldots,L$ and $w^n-p^n\cdot x^n$ for commodity 0. We denote $x_0^n=w^n-p^n\cdot x^n$. Assume that $x^m \neq x^n$ for $m \neq n$.

Consider the following conditions:

Condition 1. For any (distinct) $n_1, \ldots, n_k \in \{1, \ldots, N\}$,

$$p^{n_1} \cdot (x^{n_2} - x^{n_1}) + \dots + p^{n_{k-1}} \cdot (x^{n_k} - x^{n_{k-1}}) + p^{n_k} \cdot (x^{n_1} - x^{n_k}) > 0.$$

Condition 2. For any (distinct) $n_1, \ldots, n_k \in \{1, \ldots, N\}$, if $x_0^{n_{i+1}} + p^{n_i} \cdot x^{n_{i+1}} \le w^{n_i}$ for all $i = 1, \ldots k - 1$, then $x_0^{n_1} + p^{n_k} \cdot x^{n_1} > w^{n_k}$.

- (1) Show that Condition 1 implies Condition 2.
- (2) Show that Condition 1 holds if there exists a function $\phi \colon \mathbb{R}_+^L \to \mathbb{R}$ such that for any $w \in \mathbb{R}$, $(w p^n \cdot x^n) + \phi(x^n) > (w p^n \cdot x^m) + \phi(x^m)$ for all $n = 1, \ldots, N$ and all $m \neq n$.
- (3) Show that if Condition 1 holds, then there exists a concave function $\phi \colon \mathbb{R}^L_+ \to \mathbb{R}$ such that for any $w \in \mathbb{R}$, $(w p^n \cdot x^n) + \phi(x^n) > (w p^n \cdot x^m) + \phi(x^m)$ for all $n = 1, \ldots, N$ and all $m \neq n$. (Construct such a function ϕ .)