Mathematics II Daisuke Oyama May 15, 2025

Homework 5

Due on May 22

1. MWG Exercise 3.I.3.

(There were errors in the lecture slides, corrected in the updated file.)

2. MWG Exercise 3.I.5.

3. Suppose that u(x) is homogeneous of degree one. Show that the Walrasian demand correspondence x(p, w) is homogeneous of degree one in w: i.e., $x(p, \alpha w) = \alpha x(p, w)$ for all $\alpha > 0$ (where $\alpha A = \{\alpha a \mid a \in A\}$).

- 4. MWG Exercise 3.D.5 4.D.5.
- 5. MWG Exercise 3.D.6 4.D.6.

6. [Advanced] Let a complete and transitive \succeq on $X = \mathbb{R}^L_+$ be given. Denote $X^0 = \{x \in X \mid x \succeq 0\}$ (where $0 \in \mathbb{R}^L_+$ is the zero consumption vector).

(1) Suppose that \succeq is continuous. Fix any $\bar{p} \gg 0$, and define the function $u: X \to \mathbb{R}$ by

 $u(x) = \min\{\bar{p} \cdot x' \mid x' \succeq x\}.$

Show that u represents \succeq on X^0 .

- (2) Suppose in addition that \succeq is locally nonsatiated. Show that u is continuous.
- (3) Define the function $\bar{v} \colon \mathbb{R}_{++}^L \times \mathbb{R}_{++} \to \mathbb{R}$ by

 $\bar{v}(p,w) = \min\{\bar{p} \cdot x' \mid x' \succeq x \text{ for some } x \in x(p,w)\},\$

where x(p, w) is the Walrasian demand correspondence. Show that \bar{v} is the indirect utility function for the utility function u.