Homework 10

Due on July 19 17

- 1. MWG Exercise 10.C.2.
- 2. MWG Exercise 10.D.2.
- **3.** MWG Exercise 10.D.3.
- **4.** [Advanced] In the class, we proved that Brouwer's Fixed Point Theorem implies the following:
- (*) For any continuous function $z\colon X\to\mathbb{R}^L$, where $X=\mathbb{R}^L_+\setminus\{0\}$, such that
 - (a) $z(\alpha p) = z(p)$ for all $p \in X$ and all $\alpha > 0$, and
 - (b) $p \cdot z(p) = 0$ for all $p \in X$,

there exists $p^* \in X$ such that $z(p^*) \leq 0$.

Here, we want to show that (*) in fact implies Brouwer's Fixed Point Theorem. Suppose that (*) holds, and prove the following:

(**) For any continuous function $f : \Delta \to \Delta$, where $\Delta = \{ p \in \mathbb{R}_+^L \mid \sum_{\ell=1}^L p_\ell = 1 \}$, there exists $p^* \in \Delta$ such that $f(p^*) = p^*$.

Hint. Given f, consider the function $z: X \to \mathbb{R}^L$ given by

$$z(p) = f\left(\frac{p}{\|p\|_1}\right) - \frac{p \cdot f\left(\frac{p}{\|p\|_1}\right)}{p \cdot p} p,$$

where $||p||_1 = \sum_{\ell=1}^{L} p_{\ell}$.