4. Aggregate Demand

Daisuke Oyama

Microeconomics I

May 15, 2025

Aggregate Demand and Aggregate Wealth

• I consumers (i = 1, ..., I)

► ≿_i: complete, transitive, continuous, and locally nonsatiated Represented by a continuous utility function u_i

► w_i: wealth level

- ► \Rightarrow $x_i(p, w_i)$: individual Walrasian demand function
- Aggregate demand function: $x(p, w_1, \ldots, w_I) = \sum_i x_i(p, w_i)$
- When can we write it as $x(p, \sum_i w_i)$?
- ► ⇒ Aggregate demand must be independent of the wealth distribution.

Gorman Form

Suppose that the indirect utility function of each consumer i is written, with a common b(p), as

 $v_i(p, w_i) = a_i(p) + b(p)w_i.$

• By Roy's identity, for each commodity ℓ ,

$$x_{\ell i}(p, w_i) = -\frac{\frac{\partial a_i}{\partial p_\ell}(p) + \frac{\partial b}{\partial p_\ell}(p)w_i}{b(p)}.$$

Thus,

$$\sum_{i} x_{\ell i}(p, w_i) = -\frac{\sum_{i} \frac{\partial a_i}{\partial p_\ell}(p) + \frac{\partial b}{\partial p_\ell}(p) \sum_{i} w_i}{b(p)}.$$

 \cdots Depends only on $\sum_i w_i$, not on (w_1, \ldots, w_I) .

This aggregate demand function is derived from the "representative consumer" with indirect utility function

$$v(p,w) = \sum_{i} a_i(p) + b(p)w.$$

▶ It is known that the Gorman form is the only case where $\sum_i x_i(p, w_i)$ is written as a function of $\sum_i w_i$.

Example: Quasi-Linear Preference Relations

Suppose that the utility function of each i is given by

$$u_i(x) = x_1 + \phi_i(x_2, \dots, x_L).$$

 \blacktriangleright $x_{\ell i}(p, w_i)$ does not depend on w_i for $\ell \neq 1$, and

$$x_{1i}(p, w_i) = \frac{1}{p_1} w_i - \frac{1}{p_1} \sum_{\ell \neq 1} p_\ell x_{\ell i}(p).$$

Thus i's indirect utility function is written in the form

$$v_i(p, w_i) = \frac{1}{p_1}w_i + a_i(p).$$

Example: Identical Homethetic Preference Relations

Suppose that all consumers have an identical homothetic preference relation, which is represented by a homogeneous utility function u.

Then

 $v(p, w_i) = w_i v(p, 1).$

• Let
$$b(p) = v(p, 1)$$
 (= $u(x(p, 1))$ and $a_i(p) = 0$.

Representative Consumer

Fix a wealth distribution rule $(w_1(p, w), \ldots, w_I(p, w))$:

 $\blacktriangleright \sum_{i} w_i(p, w) = w$

• $w_i(p, w)$: continuous, homogeneous of degree one

Aggregate demand function:

$$x(p,w) = \sum_{i} x_i(p,w_i(p,w))$$

continuous, homogeneous of degree one, Walras' law

Definition 4.1 A positive representative consumer exists if there exists a complete and transitive \succeq on \mathbb{R}^L_+ that rationalizes x(p, w). Social welfare function W: ℝ^I → ℝ strictly increasing, continuous

• $W(u_1, \ldots, u_I)$: "Social utility index" for a profile (u_1, \ldots, u_I) of individual utility levels

Definition 4.2

The positive representative consumer is a normative representative consumer relative to W if for all $p \gg 0$ and w > 0, $(w_1(p,w),\ldots,w_I(p,w))$ is a solution to

$$\max_{w_1,\dots,w_I} W(v_1(p,w_1),\dots,v_I(p,w_I))$$

s.t.
$$\sum_i w_i \le w.$$

Proposition 4.1

Suppose that the positive representative consumer is a normative representative consumer relative to W. Define $u \colon \mathbb{R}^L_+ \to \mathbb{R}$ by

$$u(x) = \max_{x_1, \dots, x_I} \{ W(u_1(x_1), \dots, u_I(x_I)) \mid \sum_i x_i \le x \}.$$

Then u rationalizes x(p, w).

Proof

► Fix (p, w).
Let $\bar{v}(p, w) = \max_{w_1, \dots, w_I} \{ W(v_1(p, w_1), \dots, v_I(p, w_I)) \mid \sum_i w_i \leq w \}$ $= W(v_1(p, w_1(p, w)), \dots, v_I(p, w_I(p, w))).$

▶ We want to show:

- 1. $p \cdot x \le w \Rightarrow u(x) \le \overline{v}(p, w)$,
- 2. $u(x(p,w)) \ge \overline{v}(p,w)$.

1.

- Suppose that $p \cdot x \leq w$.
- Take any $(x_i)_{i \in I}$ such that $\sum_i x_i \leq x$.

▶ Let
$$w_i = p \cdot x_i$$
.
Then $\sum_i w_i = p \cdot \sum_i x_i \le p \cdot x \le w$.
▶ Then we have

$$\begin{split} W(u_1(x_1), \dots, u_I(x_I)) \\ &\leq W(v_1(p, w_1), \dots, v_I(p, w_I)) \\ &\leq \bar{v}(p, w) \quad \text{(by definition of } \bar{v}). \end{split}$$

▶ Therefore, we have $u(x) \leq \bar{v}(p, w)$ (by definition of u).

2.

▶ By
$$\sum_i x_i(p, w_i(p, w)) = x(p, w)$$
, we have
 $u(x(p, w)) \ge W(u_1(x_1(p, w_1(p, w))), \dots, u_I(x_I(p, w_I(p, w))))$
(by definition of u)
 $= W(v_1(p, w_1(p, w)), \dots, v_I(p, w_I(p, w)))$
 $= \overline{v}(p, w)$ (by normative representative consumer).

Gorman Form

Suppose that the indirect utility function of each consumer i is written, with a common b(p), as

 $v_i(p, w_i) = a_i(p) + b(p)w_i.$

- ▶ In this case, there is a positive representative consumer, with indirect utility $v(p, w) = \sum_i a_i(p) + b(p)w$.
- Consider the "utilitarian" social welfare function $\overline{W}(u_1, \ldots, u_I) = \sum_i u_i.$

► Then for any
$$(w_1, \ldots, w_I)$$
 such that $\sum_i w_i \leq w$,
 $\overline{W}(v_1(p, w_1), \ldots, v_I(p, w_I)) = \sum_i a_i(p) + b(p) \sum_i w_i$
 $\leq \sum_i a_i(p) + b(p) w.$

▶ Thus, for any distribution rule $w_i(p, w_i)$, the positive representative consumer is a normative representative consumer with respect to \overline{W} .