1. Preference and Choice

Daisuke Oyama

Microeconomics I

April 17, 2025

Theory of Individual Decision Making

- X: Set of alternatives
- Two approaches:
 - Preference-based
 - Choice-based

Under certain conditions, these approaches are equivalent.

Preference Relations

 \blacktriangleright : Preference relation on X $\triangleright x \succeq y$ \cdots "x is at least as good as y", "x is weakly preferred to y" \triangleright >: Strict preference relation, defined by $x \succ y \iff x \succeq y \text{ and } y \nvDash x$ $\blacktriangleright x \succ y \cdots "x$ is (strictly) preferred to y" \triangleright ~: Indifference relation, defined by $x \sim y \iff x \succeq y \text{ and } y \succeq x$ $\blacktriangleright x \sim y \cdots x$ is indifferent to y

Definition 1.1

- 1. \succeq is complete if for all $x, y \in X$, $x \succeq y$ or $y \succeq x$.
- 2. \succeq is transitive if for all $x, y, z \in X$, $x \succeq y$ and $y \succeq z$ imply $x \succeq z$.

• If \succeq is complete and transitive, then it is said to be *rational*.

Proposition 1.1

Suppose that \succeq is complete and transitive.

- 1. \succ is irreflexive: $x \not\succ x$ for all $x \in X$.
- 2. \succ is transitive: If $x \succ y$ and $y \succ z$, then $x \succ z$.
- 3. \succ is asymmetric: If $x \succ y$, then $y \not\succ x$.
- 4. ~ is reflexive: $x \sim x$ for all $x \in X$.
- 5. \sim is transitive: If $x \sim y$ and $y \sim z$, then $x \sim z$.
- 6. ~ is symmetric: If $x \sim y$, then $y \sim x$.

7. If
$$x \succ y$$
 and $y \succeq z$, then $x \succ z$.
If $x \succeq y$ and $y \succ z$, then $x \succ z$.

Utility Representation

Definition 1.2

A function $u\colon X\to \mathbb{R}$ is a utility function representing \succsim if for all $x,y\in X$,

$$x\succsim y\iff u(x)\ge u(y).$$

▶ If *u* represents \succeq , then for any strictly increasing function $f : \mathbb{R} \to \mathbb{R}$, the function $v : X \to \mathbb{R}$ defined by v(x) = f(u(x)) also represents \succeq .

Proposition 1.2

If \succeq is represented by some utility function, then it is complete and transitive.

Proposition 1.3

Suppose that X is a finite set. If \succeq is complete and transitive, then there exists a utility function representing \succeq .

For $x \in X$, define $L(x) = \{y \in X \mid x \succeq y\}$.

For any $x, y \in X$, we have $L(x) \subset L(y)$ of $L(x) \supset L(y)$ by completeness and transitivity. —Why?

▶ Define $u: X \to \mathbb{R}$ by u(x) = |L(x)| (the number of elements of L(x)).

- Prove that this function u represents \succeq .
- ► For infinite X, completeness and transitivity are generally not sufficient to guarantee the existence of a utility function (e.g., lexicographic preference relation on ℝ²).

Choice Rules

• Choice structure (\mathcal{B}, C) :

- $\mathcal{B} \subset 2^X \setminus \{\emptyset\}$: Set of "budget sets"
- $C \colon \mathcal{B} \to 2^X$ such that $C(B) \subset B$: Choice rule

For B ∈ B, C(B) ⊂ B is the set of the alternatives that the DM might choose from B, or the set of her acceptable alternatives in B.

Example:

$$\blacktriangleright X = \mathbb{R}^L_+$$

 $\textbf{B} \text{ consists of the sets } \{x \in X \mid p \cdot x \leq w\}, \ p \in \mathbb{R}_{++}^L, \\ w \in \mathbb{R}_{++}.$

WARP

Definition 1.3

 (\mathcal{B}, C) satisfies the weak axiom of revealed preference (WARP) if the following condition holds:

For any $x, y \in X$, if there exists $B \in \mathcal{B}$ such that $x, y \in B$ and $y \in C(B)$, then for any $B' \in \mathcal{B}$ such that $x, y \in B'$ and $x \in C(B')$, we have $y \in C(B')$.

Example:

Suppose (\mathcal{B}, C) satisfies WARP. If $C(\{x, y\}) = \{x\}$, then we must have $y \notin C(\{x, y, z\})$. Why?

Proposition 1.4

The following statements are equivalent:

- \blacktriangleright (\mathcal{B}, C) satisfies WARP.
- (\mathcal{B}, C) satisfies the following condition:

For any $x, y \in X$ and any $B, B' \in \mathcal{B}$, if $x, y \in B \cap B'$, $x \in C(B')$, and $y \notin C(B')$, then $y \notin C(B)$.

• (\mathcal{B}, C) satisfies the following condition:

For any $x, y \in X$ and any $B, B' \in \mathcal{B}$, if $x, y \in B \cap B'$, $x \in C(B')$, and $y \in C(B)$, then $y \in C(B')$ (and $x \in C(B)$).

Relationship between the Two Approaches

- 1. Does a complete and transitive preference relation generate a choice rule that satisfies WARP?
- 2. Is a choice rule that satisfies WARP rationalized by a complete and transitive preference relation?

Preference-Maximizing Choice Rules

• Given \succeq on X and $\mathcal{B} \subset 2^X \setminus \{\emptyset\}$, define $C^*(\cdot, \succeq) \colon \mathcal{B} \to 2^X$ by

$$C^*(B, \succeq) = \{ x \in B \mid x \succeq y \text{ for all } y \in B \}$$

for $B \in \mathcal{B}$.

- $(\mathcal{B}, C^*(\cdot, \succeq))$: Choice structure generated by \succeq
- C^{*}(B,≿) ≠ Ø if B is a finite set (by completeness and transitivity).
 We need additional conditions to guarantee C^{*}(B,≿) ≠ Ø for any B.

Proposition 1.5

If \succeq is complete and transitive, then $(\mathcal{B}, C^*(\cdot, \succeq))$ satisfies WARP.

Proof

- Fix any x, y ∈ X, and suppose that there exists B ∈ B such that x, y ∈ B and y ∈ C^{*}(B, ≿).
- This implies that $y \succeq x$.
- Now take any $B' \in \mathcal{B}$ such that $x, y \in B'$ and $x \in C^*(B' \succeq)$.
- Then for all $z \in B'$, since $x \succeq z$, we have $y \succeq z$ by transitivity.
- ▶ Therefore, $y \in C^*(B' \succeq)$.
- This means that WARP is satisfied.

Revealed Preference Relations

• Given
$$(\mathcal{B}, C)$$
, define \succeq^* on X by

 $x \succsim^* y \iff$ there exists $B \in \mathcal{B}$ such that $x, y \in B$ and $x \in C(B)$

for $x, y \in X$.

▶ \succeq^* : Revealed preference relation

Rationalizability

• Given $\mathcal{B} \subset 2^X \setminus \{\emptyset\}$, \succeq rationalizes C relative to \mathcal{B} if $C(B) = \{x \in B \mid x \succeq y \text{ for all } y \in B\} \quad (= C^*(B, \succeq))$ for all $B \in \mathcal{B}$.

Proposition 1.6 Suppose that (\mathcal{B}, C) is such that

B includes all nonempty subsets of X of up to three elements;

•
$$C(B) \neq \emptyset$$
 for all $B \in \mathcal{B}$; and

WARP is satisfied.

Then \succeq^* is complete and transitive and rationalizes C relative to \mathcal{B} (i.e., $C(B) = C^*(B, \succeq^*)$ for all $B \in \mathcal{B}$).

Proof

- To prove completeness, take any $x, y \in X$.
- By assumption, $\{x, y\} \in \mathcal{B}$ and $C(\{x, y\}) \neq \emptyset$.
- ▶ Thus, $x \in C(\{x, y\})$ or $y \in C(\{x, y\})$, i.e., $x \succeq^* y$ or $y \succeq^* x$.

To prove transitivity,

take any $x, y, z \in X$, and suppose that $x \succeq^* y$ and $y \succeq^* z$, i.e., $x, y \in B$ and $x \in C(B)$ for some $B \in \mathcal{B}$ and $y, z \in B'$ and $z \in C(B')$ for some $B' \in \mathcal{B}$.

- ▶ By assumption, $\{x, y, z\} \in \mathcal{B}$ and $C(\{x, y, z\}) \neq \emptyset$.
- We want to show that $x \in C(\{x, y, z\})$.
 - If $y \in C(\{x, y, z\})$, then $x \in C(\{x, y, z\})$ by WARP.
 - ▶ If $z \in C(\{x, y, z\})$, then $y \in C(\{x, y, z\})$ by WARP, which implies $x \in C(\{x, y, z\})$ by WARP as above.

• To prove rationalizability, take any $B \in \mathcal{B}$.

▶ Recall: $x \in C^*(B, \succeq^*)$ $\iff x \in B \text{ and } \forall y \in B : x \succeq^* y$ $\iff x \in B \text{ and } \forall y \in B \exists B' \in \mathcal{B} : x, y \in B' \text{ and } x \in C(B')$

$$\blacktriangleright C(B) \subset C^*(B,\succsim^*):$$

• Let $x \in C(B)$, where $x \in B$.

- For any y ∈ B, we have x ≿* y (since x, y ∈ B and x ∈ C(B)).
- ► Hence, $x \in C^*(B, \succeq^*)$.

$\blacktriangleright C^*(B, \succeq^*) \subset C(B):$

- Let $x \in C^*(B, \succeq^*)$, where $x \in B$.
- ▶ By assumption, $C(B) \neq \emptyset$, i.e., there is some $y \in C(B)$ (⊂ B).

Since $x \in C^*(B, \succeq^*)$ and $y \in B$, we have $x \succeq^* y$, i.e., there exists some $B' \in \mathcal{B}$ such that $x, y \in B'$ and $x \in C(B')$.

• Then by WARP, we must have $x \in C(B)$.

Consumer Choice

 $\blacktriangleright X = \mathbb{R}^L_+$

- ▶ \mathcal{B} consists of the sets $\{x \in X \mid p \cdot x \leq w\}$, $p \in \mathbb{R}_{++}^L$, $w \in \mathbb{R}_{++}$.
- This B does not satisfy the assumption that "B includes all nonempty subsets of X of up to three elements".
- WARP alone does not guarantee the existence of a complete and transitive preference relation that rationalizes the choice rule.