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Consumption

▶ Commodities ℓ = 1, . . . , L

▶ Consumption set X ⊂ RL

In most cases, we assume X = RL
+.

▶ x =

x1
...
xL

 ∈ X: consumption vector/bundle
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Budget Sets

▶ p =

p1
...
pL

 ∈ RL: price vector

In most cases, we assume p ∈ RL
++, or p ≫ 0

(i.e., pℓ > 0 for all ℓ = 1, . . . , L).

▶ w ∈ R: wealth level

We assume w > 0.

▶ Budget sets:

Bp,w = {x ∈ X | p · x ≤ w} (p ≫ 0, w > 0)

2 / 25



Two Approaches

▶ This chapter: choice-based

▶ B = {Bp,w | p ≫ 0, w > 0}
▶ Choice rule is given

▶ Next chapter: preference-based

▶ ≿ on X

▶ Choice rule is derived by preference (or utility) maximization
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Demand Correspondences/Functions
▶ Choice rule: x(p, w) ⊂ Bp,w

· · · Walrasian demand correspondence

▶ If x(p, w) is a singleton set for all (p, w), we refer to it as
a Walrasian demand function.

Definition 2.1
Demand correspondence x(p, w) is homogeneous of degree zero if
for any p ≫ 0 and w > 0, we have x(αp, αw) = x(p, w) for all
α > 0.

▶ For any α > 0, Bαp,αw = Bp,w.

Definition 2.2
Demand correspondence x(p, w) satisfies Walras’ law if
for any p ≫ 0 and w > 0, we have p · x = w for all x ∈ x(p, w).
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Comparative Statics

▶ In the following, we assume that x(p, w) is a function and is
differentiable.

▶ Wealth effects:

Dwx(p, w) =


∂x1
∂x (p, w)

...
∂xL
∂x (p, w)

 ∈ RL×1

▶ Price effects:

Dpx(p, w) =


∂x1
∂p1

(p, w) · · · ∂x1
∂pL

(p, w)
...

. . .
...

∂xL
∂p1

(p, w) · · · ∂xL
∂pL

(p, w)

 ∈ RL×L
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Implication of Homogeneity

Proposition 2.1

If the demand function x(p, w) is homogeneous of degree zero,
then for any p ≫ 0 and w > 0,

L∑
k=1

∂xℓ
∂pk

(p, w)pk +
∂xℓ
∂w

(p, w)w = 0 (ℓ = 1, . . . , L),

or in matrix notation,

Dpx(p, w)p+Dwx(p, w)w = 0.
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Implications of Walras’ Law

Proposition 2.2

If the demand function x(p, w) satisfies Walras’ law,
then for any p ≫ 0 and w > 0,

xk(p, w) +

L∑
ℓ=1

pℓ
∂xℓ
∂pk

(p, w) = 0 (k = 1, . . . , L),

or in matrix notation,

x(p, w)T + pTDpx(p, w) = 0T.

▶ “AT” denotes the transpose of a matrix A.
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Implications of Walras’ Law

Proposition 2.3

If the demand function x(p, w) satisfies Walras’ law,
then for any p ≫ 0 and w > 0,

L∑
ℓ=1

pℓ
∂xℓ
∂w

(p, w) = 1,

or in matrix notation,

pTDwx(p, w) = 1.
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Weak Axiom of Revealed Preference (WARP)

▶ Recall:

(B, C) satisfies WARP if and only if the following holds:

For any x, y ∈ X and any B,B′ ∈ B,
if x, y ∈ B ∩B′, x ∈ C(B′), and y ∈ C(B), then y ∈ C(B′)
(and x ∈ C(B)).

▶ Suppose that the choice rule x(p, w) is singleton-valued.

Then WARP is translated into:

For any (p, w) and (p′, w′), if x(p′, w′) ∈ Bp,w and
x(p, w) ∈ Bp′,w′ , then x(p, w) = x(p′, w′).
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Definition 2.3
The demand function x(p, w) satisfies the WARP if the following
condition holds:
For any (p, w) and (p′, w′), if p′ · x(p, w) ≤ w′ and
x(p, w) ̸= x(p′, w′), then p · x(p′, w′) > w.
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Proposition 2.4

Suppose that the demand function x(p, w) satisfies Walras’ law.
Then x(p, w) satisfies the WARP if and only if the following
condition holds:
For any (p, w) and (p′, w′), if p′ · x(p, w) = w′ and
x(p, w) ̸= x(p′, w′), then p · x(p′, w′) > w.
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Proof

▶ Assume:

For any (p, w) and (p′, w′),

p′ · x(p, w) = w′, p · x(p′, w′) ≤ w ⇒ x(p, w) = x(p′, w′).

Call this condition “WARP*”.

▶ We want to show that WARP holds:

For any (p, w) and (p′, w′),

p′ · x(p, w) ≤ w′, p · x(p′, w′) ≤ w ⇒ x(p, w) = x(p′, w′).

▶ Fix any (p, w) and (p′, w′), and write x = x(p, w) and
x′ = x(p′, w′).

Suppose that p′ · x ≤ w′ and p · x′ ≤ w hold.
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▶ We show that under Walras’ law and WARP*, we cannot have
p′ · x < w′ (and we cannot have p · x′ < w),

i.e., we must have p′ · x = w′ (and p · x′ = w).

▶ Then WARP* implies that x = x′.

▶ Suppose that p′ · x < w′ holds.

▶ If p · x′ = w, then by WARP*, we would have x = x′ and
p′ · x′ < w′, which contradicts Walras’ law.

▶ Therefore, we have p · x′ < w.

▶ Let α ∈ (0, 1) be such that

(αp+ (1− α)p′) · x = (αp+ (1− α)p′) · x′.

(I.e., let α = p′·x′−p′·x
(p·x−p·x′)+(p′·x′−p′·x) ∈ (0, 1).)

(p · x = w and p′ · x′ = w′ by Walras’ law.)
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▶ Let

p′′ = αp+ (1− α)p′,

w′′ = p′′ · x (= p′′ · x′).

▶ Write x′′ = x(p′′, w′′).

▶ If p · x′′ ≥ w and p′ · x′′ ≥ w′, we would have

p′′ · x′′ = (αp+ (1− α)p′) · x′′

≥ αw + (1− α)w′

> α(p · x) + (1− α)(p′ · x)
(by p′ · x < w′ and α < 1)

= p′′ · x = w′′,

which contradicts p′′ · x′′ ≤ w′′.
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▶ Therefore, we have p · x′′ < w or p′ · x′′ < w′.

▶ If p · x′′ < w, then combined with p′′ · x = w′′,
WARP* implies that x = x′′, and therefore, p · x < w,

which contradicts Walras’ law.

▶ If p′ · x′′ < w′, then combined with p′′ · x′ = w′′,
WARP* implies that x′ = x′′, and therefore, p′ · x′ < w′,

which contradicts Walras’ law.
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Compensated Law of Demand

Proposition 2.5

Suppose that the demand function x(p, w) satisfies Walras’ law.
Then x(p, w) satisfies the WARP if and only if the following
condition (the “compensated law of demand”) holds:
For any (p, w) and (p′, w′) where w′ = p′ · x(p, w), we have

(p′ − p) · (x(p′, w′)− x(p, w)) ≤ 0, (∗)

with strict inequality whenever x(p, w) ̸= x(p′, w′).

▶ In particular, if p′ℓ > pℓ and p′k = pk for all k ̸= ℓ, then
xℓ(p

′, w′) ≤ xℓ(p, w).
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▶ The compensated law of demand is equivalently written as

if p′ · x(p, w) = w′, then p · x(p′, w′) > p · x(p, w) whenever
x(p, w) ̸= x(p′, w′).

▶ Under Walras’ law, this is equivalent to WARP by
Proposition 2.4.
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Slutsky Matrix

▶ Take any v ∈ RL and t > 0.

Let p′ = p+ tv and w′ = p′ · x(p, w) (= (p+ tv) · x(p, w)).

▶ Then by (∗)÷ t2, we have

1

t
v · (x(p+ tv, (p+ tv) · x(p, w))− x(p, w)) ≤ 0.

▶ Let t → 0. Then we have

∂

∂t
v · (x(p+ tv, (p+ tv) · x(p, w))− x(p, w))

∣∣∣∣
t=0

≤ 0.
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▶ The left hand side is equal to

v · S(p, w)v,

where

S(p, w) = Dpx(p, w) +Dwx(p, w)x(p, w)
T ∈ RL×L.

· · · Slutsky matrix

▶ (ℓ, k)th entry:

sℓk(p, w) =
∂xℓ

∂pk
(p, w) +

∂xℓ

∂w
(p, w)xk(p, w)

▶ Thus, we have

v · S(p, w)v ≤ 0 for all v ∈ RL,

or S(p, w) is negative semi-definite.
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Proposition 2.6

If the demand function x(p, w) satisfies Walras’ law and WARP,
then for any (p, w), the Slutsky matrix S(p, w) is negative
semi-definite (i.e., v · S(p, w)v ≤ 0 for all v ∈ RL).
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Proposition 2.7

If the demand function x(p, w) is homogeneous of degree zero and
satisfies Walras’ law, then for any (p, w), S(p, w)p = 0 and
pTS(p, w) = 0T.

▶ Recall from Propositions 2.1 (homogeneity), 2.2 and 2.3
(Walras’ law):

▶ Dpx(p, w)p+Dwx(p, w)w = 0

▶ x(p, w)T + pTDpx(p, w) = 0T

▶ pTDwx(p, w) = 1
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▶ If L = 2, this proposition says that for all (p, w),(
s11 s12
s21 s22

)(
p1
p2

)
=

(
0
0

)
,

(
p1 p2

)(s11 s12
s21 s22

)
=

(
0 0

)
,

which implies that s12 = s21.

I.e., S(p, w) is symmetric if L = 2.

▶ For L > 2, S(p, w) is not necessarily symmetric.
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Exercise 2.E.1
L = 3

x1(p, w) =
p2

p1 + p2 + p3

w

p1

x1(p, w) =
p3

p1 + p2 + p3

w

p2

x1(p, w) =
p1

p1 + p2 + p3

w

p3

▶ Verify that x(p, w) is homogeneous of degree zero and
satisfies Walras’ law.

▶ Compute s12 and s21 (where sℓk = ∂xℓ
∂pk

+ ∂xℓ
∂w xk).

s12 =

2p3
p1

+ 1

(p1 + p2 + p3)2
w

s21 =

p3
p1

− p3
p2

(p1 + p2 + p3)2
w
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Choice-Based versus Preference-Based

▶ Choice-based approach:

1. Under homogeneity and Walras’ law, WARP is equivalent to
the compensated law of demand.

2. It implies negative semi-definiteness of S(p, w).

3. These assumptions do not imply symmetry of S(p, w), except
in the case of L = 2.

▶ Preference-based approach:

We will show that symmetry of S(p, w) is derived by
preference maximization.
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Example 2.F.1

w = 8

p1 = (2, 1, 2), x1 = (1, 2, 2)

p2 = (2, 2, 1), x2 = (2, 1, 2)

p3 = (1, 2, 2), x3 = (2, 2, 1)

▶ Consistent with WARP
(xi ∈ Bpj ,w, x

j ̸= xi ⇒ xj /∈ Bpi,w, i ̸= j)

▶ Revealed preference relation ≿∗ violates transitivity:

x2 ≻∗ x1, x3 ≻∗ x2, x1 ≻∗ x3
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