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Consumption

» Commodities ¢ =1,...,L

» Consumption set X C R
In most cases, we assume X = ]Rf_.
I
» r=| @ | € X: consumption vector/bundle
T
» Forz,y € X:
> x>y < x>y foralld=1,... L
> >y <= x>y forall{=1,...,L
>zl = V(@) + -+ (z1)?
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Preference Relations

> ~: preference relation on X
> -y < zroyandy Zx
> r~y < zroyandy T
» We assume that - is complete and transitive.

» Completeness: for all z,y € X,z Z—yory =~ x

» Transitivity: for all z,y,z € X, if x 2y and y 7 z, then
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Monotonicity

Definition 3.1
Let X C R” be such that if z € X and y > z, then y € X.

» ~ on X is weakly monotone if 7~ y whenever = > y.
» >~ on X is monotone if z > y whenever z > y.

» >~ on X is strictly monotone if x > y whenever x > y and

Definition 3.2
>~ on X is locally nonsatiated if for any z € X and any € > 0,
there exists y € X such that ||y — z|| < e and y > z.

»  strictly monotone = 7 monotone = 7 locally nonsatiated

3/23



Convexity

Definition 3.3
Let X C RL be a convex set.

» > on X is convex if ay + (1 — a)z ZZ x for all « € [0, 1]
whenever y 7~ z and z 7~ x.

» =~ on X is strictly convex if ay + (1 — a))z > x for
all & € (0,1) whenever y Z z, z 77 x, and y # 2.
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Utility Representation

» Let X C R be such that if z € X and y > z, then y € X.

Proposition 3.1

Suppose that - on X is represented by a utility function wu.
Then - is weakly monotone (strictly monotone) if and only if u is
nondecreasing (strictly increasing).
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» Let X C RL be a convex set.

Proposition 3.2

Suppose that 7~ on X is represented by a utility function wu.
Then - is convex (strictly convex) if and only if u is quasi-concave
(strictly quasi-concave).
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Existence of a Utility Function

» If X is a finite set, then a complete and transitive preference
relation on X has a utility representation.

» But for infinite X, completeness and transitivity do not
guarantee utility representation in general.

» Lexicographic preference relation: X = Ri
T =y < w1 >y or [r1 =y1 and z3 > yo]

» If there was a utility function w that represents this -, then
the intervals (u(x1,0),u(x1,100)), z1 € R4, are nonempty
and disjoint,
and hence we could assign different rational numbers
q € (u(x1,0),u(z1,100)) for different real numbers z; € R,
which is impossible mathematically.
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Definition 3.4

> on X is continuous if for any sequences {z™} and {y"} in X
such that 2™ = y™ for all m, lim,, ,oc 2™ =z € X, and

lim,, 0o ¥y =y € X, we have x 77 y.

Proposition 3.3
= on X is continuous if and only if for all z € X, {y € X |y Z z}
and {y € X | = Z y} are closed (relative to X ).

» The lexicographic preference relation is not continuous.
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Proposition 3.4

If 7 on X is continuous, then there exists a continuous utility
function u: X — R that represents 7.
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Proof under Monotonicity

» Assume that X = RZ and = is complete, transitive,
continuous, and monotone.

» Then it is weakly monotone, i.e., if z >y, then = 77 y.

> Take any z € X.
By weak monotonicity, = - 0.
» For sufficiently large & > 0, we have a1 > x, hence al 77 =
by monotonicity (where 1 = (1,...,1) € RE).
> Llet At={a€eR;|al Za}and A~ ={a€Ry |z al}.
> ac At andac A™.
» By completeness, R, = AT U A™.
» By continuity, AT and A~ are closed.
> Hence, by the connectedness of Ry, AT N A~ # (.

» By transitivity and monotonicity, AT N A~ is a singleton set.
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» Let u(z) denote the unique element of AT N A™.
» The function x — u(x) represents 77

» Suppose that u(x) > u(y).

Then by weak monotonicity, u(x)1 = u(y)1, where u(z)1 ~ x
and u(y)l ~y.

Therefore, by transitivity, = =~ y.

» Suppose that = =~ y.
Then by transitivity u(z)1 77 u(y)1.
Therefore, by monotonicity, u(z) > u(y).
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» The function z — wu(x) is continuous:

>

Take any sequence {2™} in X, and suppose that
" > eX.

{z™} is bounded: there are o and a! such that
all > z™ > a1 for all m.

Take any subsequence of {u(x2™)}, denoted again by {u(z™)}.
{u(z™)} is bounded: a! > u(z™) > o for all m.

Therefore, some subsequence {u(z™(*))} converges to some

o

By continuity, we have T ~ o'1.
But by uniqueness, we must have o/ = u(Z).

Thus, we have shown that any subsequence of {u(z™)} has
a subsequence that converges to u(Z).

This implies that {u(z™)} itself converges to u(Z).
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Homotheticity

Definition 3.5
Monotone - on X = R is homothetic if ax ~ ay for all a > 0
whenever x ~ y.

» A function f: Ri — R is homogeneous of degree k if

f(tz) =tk f(z) for all z € REL and ¢ > 0.

> f is homogeneous if it is homogeneous of degree 1.
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Proposition 3.5

1. If monotone 7, on Ri is represented by a homogeneous utility
function, then it is homothetic.

2. Monotone, homothetic, and continuous - on RE is
represented by some homogeneous utility function.

» Verify that the utility function constructed in the proof of
Proposition 3.4 under monotonicity is homogeneous when =~
is homothetic.
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Quasi-Linearity

Definition 3.6
~on X =Rx RJL;I is quasi-linear with respect to commodity 1 if

1. z 4+ aey ~ y + aey for all & € R whenever z ~ y, and

2. x+ae; = x forallz € X and a > 0.

» e; =(1,0,...,0) € RF
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» A function f: RY — R is quasi-linear with respect to
the first coordinate if it is written as f(z) = x1 + ¢(z_1) for
some function ¢

(where z_1 = (29,...,21) € RL71).

Proposition 3.6

1. If 7 onR x Ri_l is represented by a quasi-linear utility
function, then it is quasi-linear.

2. Quasi-linear and continuous 7 on R x RJLfl is represented by
some quasi-linear utility function.
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Proof

» By quasi-linearity and continuity, for each z € RJLF_I,
there exists a unique o € R such that (0, z) ~ ae;.

(Requires some topological argument.)
Let ¢(2) = a.
» Define the function u: R x ]Rf__l — Rby u(x) =z1+¢(x_1).
» This function u represents 77
Ty
— (z1+ P(x—1))er Z (y1 + d(y—1))er (by transitivity)

= z1+d(x-1) >y + d(y—1) (by quasi-linearity (ii))
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Utility Maximization Problem

» In the following, we assume X = R_LF
» Suppose that 7~ on X is represented by a utility function w.

» For p > 0 and w > 0, consider the utility maximization
problem:

max u(x) (UMP)

L
$€R+

s.t. prxzlw.

» Solution correspondence x(p,w) --- Walrasian demand
correspondence
» Optimal value function v(p,w) --- indirect utility function
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Proposition 3.7

Suppose that u is continuous.
Then for any p > 0 and w > 0, (UMP) has a solution.

» Since p > 0 and w > 0, the budget set
By = {z € RY | p- 2 < w} is nonempty and compact.

» By the continuity of u, there is a maximizer by the Extreme
Value Theorem.
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Properties of Walrasian Demand Correspondences

Proposition 3.8
1. Homogeneity of degree zero:
z(ap, aw) = z(p,w) for all (p,w) and o > 0.
2. Walras’ law:

If 7 is locally nonsatiated, then p - x = w for all x € x(p,w).

3. Convexity/uniqueness:
If 7~ is convex, then x(p,w) is a convex set.

If 7= is strictly convex, then z(p,w) consists of at most one
element.
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Proof of Walras' law

» Suppose that p-z < w.

» Then by local nonsatiation, there exists some z’ € X close
enough to z that p- 2/ < w and 2’ > x.

» Thus such x cannot be in z(p, w).
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Properties of Indirect Utility Functions

Proposition 3.9
1. v(ap,aw) = v(p,w).
2. v(p,w) is nonincreasing in py for all ¢ and nondecreasing in w.

If = is locally nonsatiated, then v(p,w) is strictly increasing in
w.

3. v(p,w) is quasi-convex in (p,w).

4. If 7 is continuous, then v(p,w) is continuous in (p,w).
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Proof of Quasi-Convexity

» We want to show that {(p,w) | v(p,w) <t} is a convex set
for all ¢.

> We have
v(p,w) <t <= [p-xz <w=u(zr) <t
— [u(z) >t=p-z>w.
» Thus,

{(pw) [v(pw) <t} = () {pw)|p-2>uw}

zu(x)>t

which is convex, since it is the intersection of convex sets
{(p,w) |p- x> w}.
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