3. Classical Demand Theory

Daisuke Oyama

Microeconomics I

May 1, 2025

Consumption

- Commodities $\ell = 1, \dots, L$
- ▶ Consumption set $X \subset \mathbb{R}^L$

In most cases, we assume $X = \mathbb{R}^L_+$.

•
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_L \end{pmatrix} \in X$$
: consumption vector/bundle

For $x, y \in X$:

•
$$x \ge y \iff x_{\ell} \ge y_{\ell}$$
 for all $\ell = 1, \dots, L$
• $x \gg y \iff x_{\ell} > y_{\ell}$ for all $\ell = 1, \dots, L$
• $\|x\| = \sqrt{(x_1)^2 + \dots + (x_L)^2}$

Preference Relations

 \blacktriangleright \gtrsim : preference relation on X

$$\blacktriangleright \ x \succ y \iff x \succeq y \text{ and } y \not\succsim x$$

$$\blacktriangleright \ x \sim y \iff x \succsim y \text{ and } y \succsim x$$

• We assume that \succeq is complete and transitive.

- Completeness: for all $x, y \in X$, $x \succeq y$ or $y \succeq x$
- ▶ Transitivity: for all $x, y, z \in X$, if $x \succeq y$ and $y \succeq z$, then $x \succeq z$.

Monotonicity

Definition 3.1

Let $X \subset \mathbb{R}^L$ be such that if $x \in X$ and $y \ge x$, then $y \in X$.

- ▶ \succ on X is weakly monotone if $x \succeq y$ whenever $x \ge y$.
- \blacktriangleright \succeq on X is monotone if $x \succ y$ whenever $x \gg y$.
- ▶ \gtrsim on X is strictly monotone if $x \succ y$ whenever $x \ge y$ and $x \ne y$.

Definition 3.2

 \succeq on X is locally nonsatiated if for any $x \in X$ and any $\varepsilon > 0$, there exists $y \in X$ such that $||y - x|| \le \varepsilon$ and $y \succ x$.

▶ \succ strictly monotone \Rightarrow \succ monotone \Rightarrow \succeq locally nonsatiated

Convexity

Definition 3.3 Let $X \subset \mathbb{R}^L$ be a convex set.

- ► \succeq on X is convex if $\alpha y + (1 \alpha)z \succeq x$ for all $\alpha \in [0, 1]$ whenever $y \succeq x$ and $z \succeq x$.
- ► \succeq on X is strictly convex if $\alpha y + (1 \alpha)z \succ x$ for all $\alpha \in (0, 1)$ whenever $y \succeq x$, $z \succeq x$, and $y \neq z$.

Utility Representation

• Let $X \subset \mathbb{R}^L$ be such that if $x \in X$ and $y \ge x$, then $y \in X$.

Proposition 3.1

Suppose that \succeq on X is represented by a utility function u. Then \succeq is weakly monotone (strictly monotone) if and only if u is nondecreasing (strictly increasing).

• Let
$$X \subset \mathbb{R}^L$$
 be a convex set.

Proposition 3.2

Suppose that \succeq on X is represented by a utility function u. Then \succeq is convex (strictly convex) if and only if u is quasi-concave (strictly quasi-concave).

Existence of a Utility Function

- If X is a finite set, then a complete and transitive preference relation on X has a utility representation.
- But for infinite X, completeness and transitivity do not guarantee utility representation in general.

• Lexicographic preference relation: $X = \mathbb{R}^2_+$

 $x\succ y \iff x_1>y_1 \text{ or } [x_1=y_1 \text{ and } x_2>y_2]$

▶ If there was a utility function u that represents this \succeq , then the intervals $(u(x_1, 0), u(x_1, 100))$, $x_1 \in \mathbb{R}_+$, are nonempty and disjoint,

and hence we could assign different rational numbers $q \in (u(x_1, 0), u(x_1, 100))$ for different real numbers $x_1 \in \mathbb{R}_+$, which is impossible mathematically.

Definition 3.4

 \succeq on X is continuous if for any sequences $\{x^m\}$ and $\{y^m\}$ in X such that $x^m \succeq y^m$ for all m, $\lim_{m\to\infty} x^m = x \in X$, and $\lim_{m\to\infty} y^m = y \in X$, we have $x \succeq y$.

Proposition 3.3

 \succeq on X is continuous if and only if for all $x \in X$, $\{y \in X \mid y \succeq x\}$ and $\{y \in X \mid x \succeq y\}$ are closed (relative to X).

The lexicographic preference relation is not continuous.

Proposition 3.4

If \succeq on X is continuous, then there exists a continuous utility function $u: X \to \mathbb{R}$ that represents \succeq .

Proof under Monotonicity

- Assume that X = ℝ^L₊, and ≿ is complete, transitive, continuous, and monotone.
- Then it is weakly monotone, i.e., if $x \ge y$, then $x \succeq y$.
- Take any $x \in X$.

By weak monotonicity, $x \succeq 0$.

- ► For sufficiently large $\bar{\alpha} > 0$, we have $\alpha \mathbf{1} \gg x$, hence $\alpha \mathbf{1} \succeq x$ by monotonicity (where $\mathbf{1} = (1, ..., 1) \in \mathbb{R}^L$).
- $\blacktriangleright \text{ Let } A^+ = \{ \alpha \in \mathbb{R}_+ \mid \alpha \mathbf{1} \succsim x \} \text{ and } A^- = \{ \alpha \in \mathbb{R}_+ \mid x \succsim \alpha \mathbf{1} \}.$
 - $\bar{\alpha} \in A^+$ and $\bar{\alpha} \in A^-$.
 - By completeness, $\mathbb{R}_+ = A^+ \cup A^-$.
 - By continuity, A^+ and A^- are closed.
 - Hence, by the connectedness of \mathbb{R}_+ , $A^+ \cap A^- \neq \emptyset$.
 - By transitivity and monotonicity, $A^+ \cap A^-$ is a singleton set.

- Let u(x) denote the unique element of $A^+ \cap A^-$.
- The function $x \mapsto u(x)$ represents \succeq :
 - Suppose that $u(x) \ge u(y)$.

Then by weak monotonicity, $u(x)\mathbf{1} \succeq u(y)\mathbf{1}$, where $u(x)\mathbf{1} \sim x$ and $u(y)\mathbf{1} \sim y$.

Therefore, by transitivity, $x \succeq y$.

Suppose that $x \succeq y$.

Then by transitivity $u(x)\mathbf{1} \succeq u(y)\mathbf{1}$.

Therefore, by monotonicity, $u(x) \ge u(y)$.

- The function $x \mapsto u(x)$ is continuous:
 - Take any sequence $\{x^m\}$ in X, and suppose that $x^m \to \bar{x} \in X$.

 $\{x^m\} \text{ is bounded: there are } \alpha^0 \text{ and } \alpha^1 \text{ such that } \\ \alpha^1 \mathbf{1} \geq x^m \geq \alpha^0 \mathbf{1} \text{ for all } m.$

- ► Take any subsequence of $\{u(x^m)\}$, denoted again by $\{u(x^m)\}$. $\{u(x^m)\}$ is bounded: $\alpha^1 \ge u(x^m) \ge \alpha^0$ for all m.
- Therefore, some subsequence $\{u(x^{m(k)})\}$ converges to some α' .
- By continuity, we have x̄ ~ α'1.
 But by uniqueness, we must have α' = u(x̄).
- ▶ Thus, we have shown that any subsequence of {*u*(*x^m*)} has a subsequence that converges to *u*(*x*).
- This implies that $\{u(x^m)\}$ itself converges to $u(\bar{x})$.

Homotheticity

Definition 3.5

Monotone \succeq on $X = \mathbb{R}^L_+$ is homothetic if $\alpha x \sim \alpha y$ for all $\alpha > 0$ whenever $x \sim y$.

- A function $f: \mathbb{R}^L_+ \to \mathbb{R}$ is homogeneous of degree k if $f(tx) = t^k f(x)$ for all $x \in \mathbb{R}^L_+$ and t > 0.
- f is homogeneous if it is homogeneous of degree 1.

Proposition 3.5

- 1. If monotone \succeq on \mathbb{R}^L_+ is represented by a homogeneous utility function, then it is homothetic.
- 2. Monotone, homothetic, and continuous \succeq on \mathbb{R}^L_+ is represented by some homogeneous utility function.

Verify that the utility function constructed in the proof of Proposition 3.4 under monotonicity is homogeneous when is homothetic.

Quasi-Linearity

Definition 3.6 \gtrsim on $X = \mathbb{R} \times \mathbb{R}^{L-1}_+$ is quasi-linear with respect to commodity 1 if 1. $x + \alpha e_1 \sim y + \alpha e_1$ for all $\alpha \in \mathbb{R}$ whenever $x \sim y$, and 2. $x + \alpha e_1 \succ x$ for all $x \in X$ and $\alpha > 0$. $\blacktriangleright e_1 = (1, 0, \dots, 0) \in \mathbb{R}^L$ • A function $f: \mathbb{R}^L \to \mathbb{R}$ is quasi-linear with respect to the first coordinate if it is written as $f(x) = x_1 + \phi(x_{-1})$ for some function ϕ

(where $x_{-1} = (x_2, \dots, x_L) \in \mathbb{R}^{L-1}$).

Proposition 3.6

- 1. If \succeq on $\mathbb{R} \times \mathbb{R}^{L-1}_+$ is represented by a quasi-linear utility function, then it is quasi-linear.
- 2. Quasi-linear and continuous \succeq on $\mathbb{R} \times \mathbb{R}^{L-1}_+$ is represented by some quasi-linear utility function.

Proof

By quasi-linearity and continuity, for each $z \in \mathbb{R}^{L-1}_+$, there exists a unique $\alpha \in \mathbb{R}$ such that $(0, z) \sim \alpha e_1$.

(Requires some topological argument.)

Let $\phi(z) = \alpha$.

• Define the function $u \colon \mathbb{R} \times \mathbb{R}^{L-1}_+ \to \mathbb{R}$ by $u(x) = x_1 + \phi(x_{-1})$.

• This function u represents \succeq :

$$\begin{array}{l} x \gtrsim y \\ \iff (x_1 + \phi(x_{-1}))e_1 \succeq (y_1 + \phi(y_{-1}))e_1 \qquad (\text{by transitivity}) \\ \iff x_1 + \phi(x_{-1}) \ge y_1 + \phi(y_{-1}) \qquad (\text{by quasi-linearity (ii)}) \\ \iff u(x) \ge u(y). \end{array}$$

Utility Maximization Problem

- In the following, we assume $X = \mathbb{R}^L_+$.
- Suppose that \succeq on X is represented by a utility function u.
- For p ≫ 0 and w > 0, consider the utility maximization problem:

$$\max_{x \in \mathbb{R}^L_+} u(x) \tag{UMP}$$
s.t. $p \cdot x \le w$.

- Solution correspondence $x(p, w) \cdots$ Walrasian demand correspondence
- ▶ Optimal value function $v(p, w) \cdots$ indirect utility function

Proposition 3.7

Suppose that u is continuous. Then for any $p \gg 0$ and w > 0, (UMP) has a solution.

- Since $p \gg 0$ and w > 0, the budget set $B_{p,w} = \{x \in \mathbb{R}^L_+ \mid p \cdot x \le w\}$ is nonempty and compact.
- By the continuity of u, there is a maximizer by the Extreme Value Theorem.

Properties of Walrasian Demand Correspondences

Proposition 3.8

1. Homogeneity of degree zero:

 $x(\alpha p,\alpha w)=x(p,w) \text{ for all } (p,w) \text{ and } \alpha>0.$

2. Walras' law:

If \succeq is locally nonsatiated, then $p \cdot x = w$ for all $x \in x(p, w)$.

3. Convexity/uniqueness:

If \succeq is convex, then x(p, w) is a convex set.

If \succeq is strictly convex, then x(p,w) consists of at most one element.

Proof of Walras' law

- Suppose that $p \cdot x < w$.
- ▶ Then by local nonsatiation, there exists some $x' \in X$ close enough to x that $p \cdot x' < w$ and $x' \succ x$.
- Thus such x cannot be in x(p, w).

Properties of Indirect Utility Functions

Proposition 3.9

- 1. $v(\alpha p, \alpha w) = v(p, w).$
- 2. v(p,w) is nonincreasing in p_{ℓ} for all ℓ and nondecreasing in w. If \succeq is locally nonsatiated, then v(p,w) is strictly increasing in w.
- 3. v(p,w) is quasi-convex in (p,w).
- 4. If \succeq is continuous, then v(p, w) is continuous in (p, w).

Proof of Quasi-Convexity

We want to show that {(p, w) | v(p, w) ≤ t} is a convex set for all t.

► We have

$$v(p,w) \le t \iff [p \cdot x \le w \Rightarrow u(x) \le t]$$
$$\iff [u(x) > t \Rightarrow p \cdot x > w].$$

$$\{(p,w) \mid v(p,w) \le t\} = \bigcap_{x:u(x) > t} \{(p,w) \mid p \cdot x > w\},\$$

which is convex, since it is the intersection of convex sets $\{(p,w) \mid p \cdot x > w\}.$