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Framework

▶ L commodities

▶ Consumers: 1, . . . , I

Each consumer i = 1, . . . , I is characterized by:

▶ consumption set Xi ⊂ RL (usually Xi = RL
+)

▶ preference relation ≿i on Xi

▶ We assume that ≿i is complete and transitive for all i.

▶ Firms: 1, . . . , J

Each firm j = 1, . . . , J is characterized by:

▶ production set Yj ⊂ RL

▶ We assume that Yj is nonempty and closed for all j.

▶ Initial endowments: ω̄ = (ω̄1, . . . , ω̄L) ∈ RL

1 / 51



Feasible Allocations

▶ Allocation:
(x, y) = ((x1, . . . , xI), (y1, . . . , yJ)) ∈

∏I
i=1Xi ×

∏J
j=1 Yj

▶ xi ∈ Xi: consumer i’s consumption vector

▶ yj ∈ Yj : firm j’s production vector

▶ (
∏I

i=1 Xi = X1 × · · · ×XI ,
∏J

j=1 Yj = Y1 × · · · × YJ)

Definition 7.1
An allocation (x, y) is feasible if

∑
i xi = ω̄ +

∑
j yj .

▶ Denote the set of all feasible allocations by A.
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Pareto Efficiency

Definition 7.2

1. For x, x′ ∈
∏I

i=1Xi, x
′ Pareto dominates x if

x′i ≿i xi for all i = 1, . . . , I,

x′i ≻i xi for some i = 1, . . . , I.

2. A feasible allocation (x, y) ∈ A is Pareto efficient if
there exists no feasible allocation (x′, y′) ∈ A such that
x′ Pareto dominates x.
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Private Ownership Economies

▶ A private ownership economy:
E = ((Xi,≿i)

I
i=1, (Yj)

J
j=1, (ωi, θi1, . . . , θiJ)

I
i=1) where:

▶ (Xi,≿i): consumer i’s preference relation

▶ Yj : firm j’s production set

▶ ωi ∈ Xi: consumer i’s initial endowment, where ω̄ =
∑

i ωi

▶ θij ∈ [0, 1]: share of consumer i’s claim to the profit of firm j,
where

∑
i θij = 1 for all j
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Definition 7.3
A Walrasian equilibrium of a private ownership economy E is
(p∗, ((x∗i )

I
i=1, (y

∗
j )

J
j=1)) ∈ RL ×

∏
iXi ×

∏
j Yj such that

1. [Profit maximization]
for every j = 1, . . . , J , y∗j maximizes the profit p∗ · yj in Yj ,

i.e., y∗j ∈ Yj and p∗ · y∗j ≥ p∗ · yj for all yj ∈ Yj ;

2. [Preference maximality]
for every i = 1, . . . , I, x∗i is maximal for ≿i in the budget set

Bi = {xi ∈ Xi | p∗ · xi ≤ p∗ · ωi +
∑

j θij(p
∗ · y∗j )},

i.e., x∗i ∈ Bi and x∗i ≿i xi for all xi ∈ Bi;

3. [Market clearing]∑
i x

∗
i =

∑
i ωi +

∑
j y

∗
j .
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Pure Exchange Economies

▶ A private ownership economy
E = ((Xi,≿i)

I
i=1, (Yj)

J
j=1, (ωi, θi)

I
i=1) is called a pure

exchange economy if Xi = RL
+ for all i, and J = 1 and

Y1 = −RL
+.

▶ ((xi)
I
i=1, y1) is feasible for some yj ∈ Yj if and only if∑

i xi −
∑

i ωi ≤ 0.

▶ If yj(p) ̸= ∅, then it must be that p ≥ 0 and πj(p) = 0.

▶ We denote a pure exchange economy by
E ′ = ((≿i)

I
i=1, (ωi)

I
i=1).

▶ We define Walrasian equilibrium of a pure exchange economy
E ′ = ((≿i)

I
i=1, (ωi)

I
i=1) as follows. →
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Definition 7.4
A Walrasian equilibrium of a pure exchange economy E ′ is
(p∗, (x∗i )

I
i=1, ) ∈ RL × (RL

+)
I such that

1. p∗ ≥ 0;

2. for every i = 1, . . . , I, x∗i is maximal for ≿i in the budget set
Bi = {xi ∈ Xi | p∗ · xi ≤ p∗ · ωi},

i.e., x∗i ∈ Bi and x∗i ≿i xi for all xi ∈ Bi;

3.
∑

i x
∗
i ≤

∑
i ωi and p∗ · (

∑
i x

∗
i −

∑
i ωi) = 0.

▶ Given p∗ ≥ 0, an equivalent expression of condition 3 is:∑
i x

∗
i ≤

∑
i ωi, and p∗ℓ = 0 if

∑
i x

∗
iℓ <

∑
i ωiℓ.
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Proposition 7.1

(p∗, (x∗i )
I
i=1) is a Walrasian equilibrium of E ′ if and only if

(p∗, (x∗i )
I
i=1, y

∗
1) is a Walrasian equilibrium of E for some y∗1.

Proof of the “only if” part

▶ Suppose that (p∗, (x∗i )
I
i=1) is a Walrasian equilibrium of E ′.

▶ Let y∗1 =
∑I

i=1 x
∗
i −

∑I
i=1 ωi (≤ 0).

▶ Then y∗1 ∈ Y1 and p∗ · y∗1 = 0, so y∗1 ∈ y1(p
∗).
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Example: Edgeworth Box
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Example: One-Consumer, One-Producer Economy

▶ L = 2
▶ ℓ = 1: leisure (price w)
▶ ℓ = 2: consumption good (price p)

▶ J = 1: production function y = f(z)
▶ ℓ = 1: input (z)
▶ ℓ = 2: output (y)

▶ I = 1: utility function u(x1, x2)
Endowment: ω1 = (L̄, 0)
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Exercise 15.C.2

▶ f(z) = z
1
2

▶ u(x1, x2) = log x1 + log x2

▶ L̄ = 1
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First Fundamental Theorem of Welfare Economics

▶ “A Walrasian equilibrium allocation is Pareto efficient.”

▶ The assumption of local nonsatiation is necessary.

Proposition 7.2

In a private ownership economy
E = ((Xi,≿i)

I
i=1, (Yj)

J
j=1, (ωi, θi)

I
i=1), assume that for each i, ≿i

is locally nonsatiated.
If (p∗, ((x∗i )

I
i=1, (y

∗
j i)

J
j=1)) is a Walrasian equilibrium of E , then

((x∗i )
I
i=1, (y

∗
j )

J
j=1) is Pareto efficient.
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Lemma 7.3
Assume that ≿i is locally nonsatiated.
If x∗i is maximal for ≿i in B(p, wi), then p · xi ≥ wi whenever
xi ≿i x

∗
i .

Proof

▶ If p · xi < wi, then by local nonsatiation, there exists some x̃i
close to xi such that p · x̃i < wi and x̃i ≻i xi.

▶ By preference maximality, x∗i ≿i x̃i, and hence x∗i ≻i xi.
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Proof of Proposition 7.2

Suppose that (p∗, ((x∗i )
I
i=1, (y

∗
j )

J
j=1)) is a Walrasian equilibrium of

E .

Step 1

▶ Write w∗
i = p∗ · ωi +

∑J
j=1 θij(p

∗ · y∗j ).

▶ Then∑
iw

∗
i =

∑
i p

∗ · ωi +
∑

j

∑
i θij︸ ︷︷ ︸
=1

(p∗ · y∗j )

=
∑

i p
∗ · ωi +

∑
j p

∗ · y∗j .
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Step 2
If an allocation ((xi)

I
i=1, (yj)

J
j=1) Parato dominates

((x∗i )
I
i=1, (y

∗
j )

J
j=1) and (yj)

J
j=1 is feasible (i.e., yj ∈ Yj for all j),

then

I∑
i=1

p∗ · xi >
I∑

i=1

p∗ · ωi +

J∑
j=1

p∗ · yj .

▶ By definition,

(i) xi ≿i x
∗
i for all i, and

(ii) xi ≻i x
∗
i for some i.
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▶ By maximality of x∗i in B(p∗, w∗
i ),

xi ≻i x
∗
i ⇒ p∗ · xi > w∗

i .

▶ By maximality of x∗i in B(p∗, w∗
i ) and local nonsatiation of ≿i,

xi ≿i x
∗
i ⇒ p∗ · xi ≥ w∗

i

(by Lemma 7.3).

▶ Therefore, by (i) and (ii),

(i′) p∗ · xi ≥ w∗
i for all i, and

(ii′) p∗ · xi > w∗
i for some i.

16 / 51



▶ Hence, we have∑
i p

∗ · xi >
∑

iw
∗
i =

∑
i p

∗ · ωi +
∑

j p
∗ · y∗j .

▶ By optimality of y∗j and yj ∈ Yj ,

we have p∗ · y∗j ≥ p∗ · yj for all j.

▶ Therefore, we have∑
i p

∗ · xi >
∑

i p
∗ · ωi +

∑
j p

∗ · yj .
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Step 3

▶ But for any feasible allocation ((xi)
I
i=1, (yj)

J
j=1), we must

have∑
i p

∗ · xi =
∑

i p
∗ · ωi +

∑
j p

∗ · yj .

▶ Hence, Step 2 implies that

if allocation ((xi)
I
i=1, (yj)

J
j=1) Parato dominates

((x∗i )
I
i=1, (y

∗
j )

J
j=1), then it is not feasible.

▶ Thus, we have shown that ((x∗i )
I
i=1, (y

∗
j )

J
j=1) is Pareto

efficient.
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Equilibrium Concepts

Definition 7.5
A price equilibrium with transfers of ((Xi,≿i)

I
i=1, (Yj)

J
j=1, ω̄) is

(p∗, ((x∗i )
I
i=1, (y

∗
j )

J
j=1)) ∈ RL ×

∏
iXi ×

∏
j Yj such that there

exists (w1, . . . , wI) with
∑

iwi = p∗ · ω̄ +
∑

j p
∗ · y∗j such that

1. [Profit maximization]
for every j = 1, . . . , J , y∗j maximizes the profit p∗ · yj in Yj ;

2. [Preference maximality]
for every i = 1, . . . , I, x∗i is maximal for ≿i in the budget set

{xi ∈ Xi | p∗ · xi ≤ wi},

or equivalently, p∗ ·x∗i ≤ wi, and if xi ≻i x
∗
i , then p∗ ·xi > wi;

3. [Market clearing]∑
i x

∗
i = ω̄ +

∑
j y

∗
j .
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▶ If (p∗, ((x∗i )
I
i=1, (y

∗
j )

J
j=1)) is a Walrasian equilibrium of

((Xi,≿i)
I
i=1, (Yj)

J
j=1, (ωi, θi)

I
i=1), then it is a price equilibrium

with transfers of ((Xi,≿i)
I
i=1, (Yj)

J
j=1, ω̄)

(where ω̄ =
∑

i ωi).

▶ Let wi = p∗ · ωi +
∑J

j=1 θij(p
∗ · y∗j ).

▶ The proof of Proposition 7.2 in fact proves that (under local
nonsatiation) the allocation of a price equilibrium with
transfers is Pareto efficient.
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Definition 7.6
A price quasi-equilibrium with transfers of ((Xi,≿i)

I
i=1, (Yj)

J
j=1, ω̄)

is (p∗, ((x∗i )
I
i=1, (y

∗
j )

J
j=1)) ∈ RL ×

∏
iXi ×

∏
j Yj such that there

exists (w1, . . . , wI) with
∑

iwi = p∗ · ω̄ +
∑

j p
∗ · y∗j such that

1. [Profit maximization]
for every j = 1, . . . , J , y∗j maximizes the profit p∗ · yj in Yj ;

2. for every i = 1, . . . , I, p∗ · x∗i ≤ wi, and if xi ≻i x
∗
i , then

p∗ · xi ≥ wi;

3. [Market clearing]∑
i x

∗
i = ω̄ +

∑
j y

∗
j .

▶ If (p∗, ((x∗i )
I
i=1, (y

∗
j )

J
j=1)) is a price equilibrium with transfers,

then it is a price quasi-equilibrium with transfers.
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Second Fundamental Theorem of Welfare Economics

▶ Under convexity assumptions,

“any Pareto efficient allocation is supported as a price
quasi-equilibrium with transfers”.

Proposition 7.4

In an economy E = ((Xi,≿i)
I
i=1, (Yj)

J
j=1, ω̄), assume that

▶ for every j = 1, . . . , J , Yj is convex; and

▶ for every i = 1, . . . , I, Xi is convex and ≿i is convex and
locally nonsatiated.

Then for any Pareto efficient feasible allocation ((x∗i )
I
i=1, (y

∗
j )

J
j=1),

there exists p∗ ̸= 0 such that (p∗, ((x∗i )
I
i=1, (y

∗
j )

J
j=1)) is

a price quasi-equilibrium with transfers of E .
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Proof
▶ Suppose that feasible allocation ((x∗i )

I
i=1, (y

∗
j )

J
j=1) is

Pareto efficient.

Step 1

▶ For each i, define

Vi = {xi ∈ Xi | xi ≻i x
∗
i }.

▶ Vi is a convex set:

▶ Take any xi, x
′
i ∈ Vi and α ∈ [0, 1], where xi ≻i x

∗
i and

x′
i ≻i x

∗
i .

▶ By completeness, xi ≿i x
′
i or x

′
i ≿i xi.

Assume the former without loss of generality.

▶ By convexity of ≿i, we have αxi + (1− α)x′
i ≿i x

′
i.

▶ By transitivity, we have αxi + (1− α)x′
i ≻i x

∗
i ; thus

αxi + (1− α)x′
i ∈ Vi.
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Step 2

▶ Define

V =
∑

i Vi = {
∑

i xi ∈ RL | x1 ∈ V1, . . . , xI ∈ VI},

which is a convex set (it is the sum of convex sets).

▶ Define

Y =
∑

j Yj = {
∑

j yj ∈ RL | y1 ∈ Y1, . . . , yJ ∈ YJ},

which is a convex set by convexity of Y1, . . . , YJ .
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Step 3

▶ V ∩ ({ω̄}+ Y ) = ∅:
▶ Suppose V ∩ ({ω̄}+ Y ) ̸= ∅, and let z ∈ V ∩ ({ω̄}+ Y ).

▶ Then we have z =
∑

i xi for some x1 ∈ V1, . . . , xI ∈ VI and
z = ω̄ +

∑
j yj for some y1 ∈ Y1, . . . , yJ ∈ YJ ,

which means that there exists a feasible allocation
((xi)

I
i=1, (yj)

J
j=1) that Pareto dominates ((x∗

i )
I
i=1, (y

∗
j )

J
j=1).

▶ This contradicts Pareto efficiency of ((x∗
i )

I
i=1, (y

∗
j )

J
j=1).

Step 4

▶ Since X and {ω̄}+Y are convex sets and V ∩ ({ω̄}+Y ) = ∅,
by the Separating Hyperplane Theorem (Proposition 6.6),
there exist p∗ ̸= 0 and c such that

p∗ · z ≤ c ≤ p∗ · z′ for all z ∈ {ω̄}+ Y and z′ ∈ V . (∗)
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Step 5

▶ If xi ≿i x
∗
i for all i, then p∗ ·

∑
i xi ≥ c:

▶ Suppose that xi ≿i x
∗
i for all i.

▶ By local nonsatiation, for each i there exists x̂i ∈ Xi arbitrarily
close to xi such that x̂i ≻i xi.

▶ By transitivity, x̂i ≻i x
∗
i , i.e., x̂i ∈ Vi.

▶ Thus,
∑

i x̂i ∈ V , and p∗ ·
∑

i x̂i ≥ c by (∗).
▶ Letting x̂i → xi, we have p∗ ·

∑
i xi ≥ c.

Step 6

▶ p∗ ·
∑

i x
∗
i = p∗ · (ω̄ +

∑
j y

∗
j ) = c:

▶ By Step 5, p∗ ·
∑

i x
∗
i ≥ c.

▶ By (∗), p∗ · (ω̄ +
∑

j y
∗
j ) ≤ c.

▶ By feasibility, p∗ ·
∑

i x
∗
i = p∗ · (ω̄ +

∑
j y

∗
j ).
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Step 7

▶ For every j, p∗ · yj ≤ p∗ · y∗j for all yj ∈ Yj :

▶ Fix any j and take any yj ∈ Yj .

▶ Since yj +
∑

h̸=j y
∗
h ∈ Y , by (∗) and Step 6 we have

p∗ · (ω̄ + yj +
∑

h ̸=j y
∗
h) ≤ c = p∗ · (ω̄ + y∗j +

∑
h̸=j y

∗
h),

and hence p∗ · yj ≤ p∗ · y∗j .

Step 8

▶ For every i, if xi ≻i x
∗
i , then p∗ · xi ≥ p∗ · x∗i :

▶ Fix any i and suppose that xi ≻i x
∗
i .

▶ By Steps 5 and 6, we have

p∗ · (xi +
∑

k ̸=i x
∗
k) ≥ c = p∗ · (x∗

i +
∑

k ̸=i x
∗
k),

and hence p∗ · xi ≥ p∗ · x∗
i .
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Step 9

▶ With wi = p∗ · x∗i for all i, (p∗, ((x∗i )
I
i=1, (y

∗
j )

J
j=1)) is a price

quasi-equilibrium with transfers:

▶ Condition 1 follows from Step 7.

▶ Condition 2 follows from Step 8.

▶ Condition 3 follows from feasibility of ((x∗
i )

I
i=1, (y

∗
j )

J
j=1).
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Equilibrium versus Quasi-Equilibrium

▶ A price equilibrium with transfers is a price quasi-equilibrium
with transfers, but the converse does not hold in general.

▶ The converse holds, for example if for all i, p∗ · x∗i > 0 and
0 ∈ Xi.

▶ More generally:

Proposition 7.5

Assume that Xi is convex and ≿i is continuous.
Let x∗i ∈ Xi, p, and wi be such that xi ≻i x

∗
i ⇒ p · xi ≥ wi.

Then if there exists x′i ∈ Xi such that p · x′i < wi, then
xi ≻i x

∗
i ⇒ p · xi > wi.
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Proof

▶ Assume that for some xi ∈ Xi, we have xi ≻i x
∗
i and

p · xi ≤ wi.

▶ Then by continuity of ≿i, for α < 1 sufficiently close to 1
we have αxi + (1− α)x′i ≻i x

∗
i

(where αxi + (1− α)x′i ∈ Xi by convexity of Xi).

▶ But then we have

p · (αxi + (1− α)x′i) = α(p · xi) + (1− α)(p · x′i) < wi,

which contradicts “xi ≻i x
∗
i ⇒ p · xi ≥ wi”.

30 / 51



Economies with Quasi-Linear Preferences

▶ Commodities: 1, . . . , L
consumption xi ∈ RL, production yj ∈ RL

▶ Commodity 0 (numeraire for all consumers)
consumption mi ∈ R, input zj ∈ R

▶ Preferences: for each i, ≿i is represented by
ui(mi, xi) = mi + ϕi(xi) (mi ∈ R, xi ∈ Xi ⊂ RL)

▶ Locally nonsatiated ⇒ Walras’ law

▶ Strictly increasing in mi ⇒ Any Walrasian equilibrium price of
commodity 0 must be strictly positive.

▶ We will normalize prices so that p0 = 1.

▶ Endowments: (ωi0, ωi) ∈ R×Xi

▶ Production: for each j, Yj ⊂ R1+L

production vector (−zj , yj) ∈ Yj
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Equilibrium
Proposition 7.6

((1, p∗), ((m∗
i , x

∗
i )

I
i=1, (−z∗j , y

∗
j )

J
j=1) ∈ R1+L×

∏
i(R×Xi)×

∏
j Yj

is a price equilibrium with transfers if and only if there exists
(w1, . . . , wI) with

∑
iwi = (ω̄0 + p∗ · ω̄) +

∑
j(−z∗j + p∗ · y∗j ) such

that

1. for every j, (−z∗j , y
∗
j ) solves max(−zj ,yj)∈Yj

−zj + p∗ · yj ;

2. for every i, x∗i solves maxxi∈Xi ϕi(xi)− p∗ · xi, and
m∗

i = wi − p∗ · x∗i ;

3.
∑

i x
∗
i = ω̄ +

∑
j y

∗
j .

▶ By Walras’ law, the market clearing for commodity 0 is
automatically satisfied.

▶ The components other than (m∗
i )

I
i=1 do not depend on

the choice of (w1, . . . , wI).
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Fundamental Theorems

▶ For each i, ≿i is locally nonsatiated.

▶ The First Fundamental Theorem holds.

▶ If

▶ for every j, Yj is a convex set, and

▶ for every i, Xi is a convex set and ϕi is a concave function,

then the Second Fundamental Theorem holds.

▶ Price equilibrium and price quasi-equilibrium are equivalent.
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Two-Commodity Case—Partial Equilibrium Analysis

▶ Two commodities

▶ commodity ℓ · · · price p

▶ commodity 0: numeraire (“the other commodities”) · · · price 1

▶ Production

▶ cj : firm j’s cost function

c′j > 0, c′′j > 0, cj(0) = 0

▶ Yj = {(−zj , qj) ∈ R2 | zj ≥ cj(qj), qj ≥ 0}
▶ Profit maximization: maxqj pqj − cj(qj)

⇒ p ≤ c′j(q
∗
j ) with “=” if q∗j > 0

▶ Supply function for ℓ:

yi(p) = (c′j)
−1(p) if p > c′j(0)

▶ z∗j = cj(q
∗
j )
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▶ Consumption

▶ Utility function:
ui(mi, xi) = mi + ϕi(xi) (mi ∈ R, xi ∈ R+)

ϕ′
j > 0, ϕ′′

j < 0, ϕj(0) = 0

▶ ωim > 0, ωiℓ = 0

▶ Utility maximization:

maxmi,xi
mi + ϕi(xi)

subject to mi + pxi ≤ ωim +
∑

j θij(pq
∗
j − cj(q

∗
j ))

⇒ ϕ′
i(x

∗
i ) ≤ p with “=” if x∗

i > 0

▶ Demand function for ℓ:

xi(p) = (ϕ′
i)

−1(p) if p < ϕ′
i(0)

▶ m∗
i = ωim +

∑
j θij(pq

∗
j − cj(q

∗
j ))− px∗

i
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Equilibrium

▶ (p∗, ((x∗i )
I
i=1, (q

∗
j )

J
j=1)) ∈ R× RI

+ × RJ
+ is a price equilibrium

with transfers if and only if

1. for every j, p∗ ≤ c′j(q
∗
j ) with “=” if q∗j > 0;

2. for every i, ϕ′
i(x

∗
i ) ≤ p∗ with “=” if x∗

i > 0;

3.
∑

i x
∗
i =

∑
j q

∗
j .
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Surplus Maximization
▶ Consumer surplus of i:

CS i =

∫ x∗
i

0
ϕ′
i(xi)dxi − p∗x∗i

= ϕi(x
∗
i )− ϕi(0)− p∗x∗i = ϕi(x

∗
i )− p∗x∗i

▶ Total surplus:∑
i(ϕi(x

∗
i )− p∗x∗i ) +

∑
j(p

∗q∗j − cj(q
∗
j ))

=
∑

i ϕi(x
∗
i )−

∑
j cj(q

∗
j ) (by market clearing)

▶ Total surplus maximization:

max
∑

i ϕi(xi)−
∑

j cj(qj)

s. t.
∑

i xi −
∑

j qj = 0

xi ≥ 0, qj ≥ 0
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▶ Lagrangian:

L =
∑

i ϕi(xi)−
∑

j cj(qj) + µ(
∑

j qj −
∑

i xi)

▶ KKT condition:

There exists µ such that

1. for every j, µ ≤ c′j(qj) with “=” if qj > 0;

2. for every i, ϕ′
i(xi) ≤ µ with “=” if xi > 0;

3.
∑

i xi =
∑

j qj .

▶ Hence:

(p∗, ((x∗i )
I
i=1, (q

∗
j )

J
j=1)) is a price equilibrium for some p∗

if and only if ((x∗i )
I
i=1, (q

∗
j )

J
j=1)) is total surplus maximizing.
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Pareto Efficiency

▶ Consider the maximization problem:

max m1 + ϕ1(x1)

s. t. mi + ϕi(xi) ≥ ūi (i = 2, . . . , I)∑
i xi −

∑
j qj ≤ 0∑

imi +
∑

j zj ≤ ω̄m

zj ≥ cj(qj) (j = 1, . . . , J)

xi ≥ 0, qj ≥ 0

▶ Lagrangian:

L = m1 + ϕ1(x1) +
∑

i ̸=1 λi(mi + ϕi(xi)− ūi)

+ µ(
∑

j qj −
∑

i xi) + η(ω̄m −
∑

imi −
∑

j zj)

+
∑

j νj(zj − cj(qj))
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▶ KKT condition:

▶ 1 = η

▶ λi = η for all i ̸= 1

▶ ϕ′
1(x1) ≤ µ with “=” if x1 > 0

▶ λiϕ
′
i(xi) ≤ µ with “=” if xi > 0 for all i ̸= 1

▶ µ ≤ νjc
′
j(qj) with “=” if qj > 0 for all j

▶ η = νj for all j

▶ which is equivalent to:

▶ 1 = η = λ2 = · · ·λI = ν1 = · · · = νJ

▶ ϕ′
i(xi) ≤ µ with “=” if xi > 0 for all i

▶ µ ≤ c′j(qj) with “=” if qj > 0 for all j
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▶ Hence:

(p∗, ((x∗i )
I
i=1, (q

∗
j )

J
j=1)) is a price equilibrium for some p∗

if and only if ((m∗
i , x

∗
i )

I
i=1, (z

∗
j , q

∗
j )

J
j=1)) is Pareto efficient for

some (m∗
i )

I
i=1 and (z∗j )

J
j=1)).
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Existence of Walrasian Equilibrium

▶ We only consider a simple case of a pure exchange economy
E = ((≿i)

I
i=1, (ωi)

I
i=1):

▶ For each i, ≿i is a complete and transitive preference relation
on Xi = RL

+.

▶ Assume that
∑

i ωi ≫ 0.

▶ (p∗, (x∗i )
I
i=1, ) ∈ RL× (RL

+)
I is a Walrasian equilibrium of E if

▶ p∗ ≥ 0;

▶ for every i = 1, . . . , I, x∗
i is maximal for ≿i in the budget set

Bi(p
∗, p∗ · ωi);

▶ ∑
i x

∗
i ≤

∑
i ωi and p∗ · (

∑
i x

∗
i −

∑
i ωi) = 0.
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Assumptions

In the following, we assume:

(a) For each i, ≿i is continuous and strictly convex.

⇒ Demand function xi(·) is well defined and continuous for
p ≫ 0.

(b) For each i, ≿i is locally nonsatiated.

⇒ Walras’ law holds: p · (xi(p, p · ωi)− ωi) = 0 for any p ≫ 0.
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Excess Demand Functions

▶ Excess demand function of i:

zi(p) = xi(p, p · ωi)− ωi (p ≫ 0)

▶ (Aggregate) excess demand function:

z(p) =
∑

i zi(p) =
∑

i xi(p, p · ωi)−
∑

i ωi (p ≫ 0)

▶ Properties:

1. z(·) is continuous.
2. z(·) is homogeneous of degree zero.

3. p · z(p) = 0 for all p ≫ 0 (Walras’ law).
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Proposition 7.7

Assume (a) and (b).
p∗ ≫ 0 is a Walrasian equilibrium price vector if and only if
z(p∗) ≤ 0.

Proof of the “if” part

▶ Suppose that z(p∗) ≤ 0.

▶ Let x∗i = x∗i (p
∗, p∗ · ωi) for each i.

▶ ∑
i x

∗
i ≤

∑
i ωi holds by assumption,

while p∗ · (
∑

i x
∗
i −

∑
i ωi) = 0 holds by Walras’ law.
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Equilibrium Existence: Version 1

We strengthen (b) to:

(c) For each i, ≿i is strongly monotone.

⇒ p∗ is a Walrasian equilibrium price vector if and only if p∗ ≫ 0
and z(p∗) = 0.

Proposition 7.8

Assume (a) and (c).
Then a Walrasian equilibrium of E exists.

▶ Proof: See the proof of Proposition 17.C.1 in MWG,

which uses “Kakutani’s fixed point theorem”.
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Equilibrium Existence: Version 2

We drop (c) and assume:

(d) For each i, zi(p) is well defined for all p ∈ RL
+ \ {0} and is

continuous on RL
+ \ {0}.

⇒ Walras’ law holds for all p ∈ RL
+ \ {0}.

p∗ ∈ RL
+ \ {0} is a Walrasian equilibrium price vector if and

only if z(p∗) ≤ 0.

Proposition 7.9

Assume (a), (b), and (d).
Then a Walrasian equilibrium of E exists.

▶ For proof, we will use “Brouwer’s fixed point theorem”.
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Brouwer’s Fixed Point Theorem

Proposition 7.10 (Brouwer’s Fixed Point Theorem)

Suppose that X ⊂ RN is a nonempty, compact, and convex set,
and that f : X → X is a continuous function from X into itself.
Then f has a fixed point, i.e., there exists x ∈ X such that
x = f(x).

▶ What if X is not compact?

▶ What if X is not convex?

▶ What if f is not continuous?

48 / 51



Proof of Proposition 7.9
▶ We want to show that there exists p∗ ∈ RL

+ \ {0} such that
z(p∗) ≤ 0.

▶ Let ∆ = {p ∈ RL
+ | p1 + · · ·+ pL = 1},

which is nonempty, compact, and convex.

▶ It suffices to show that there exists p∗ ∈ ∆ such that
z(p∗) ≤ 0.

▶ Define the function z+(p) = (z+1 (p), . . . , z
+
L (p)) by

z+ℓ (p) = max{zℓ(p), 0}.

▶ z+(p) is a continuous function.

▶ Define the function f : ∆ → ∆ by

fℓ(p) =
pℓ + z+ℓ (p)∑L

k=1(pk + z+k (p))
(ℓ = 1, . . . , L).
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▶ f is a continuous function from the nonempty, compact, and
convex set ∆ to ∆.

▶ Thus, by Brouwer’s fixed point theorem, f has a fixed point
p∗ ∈ ∆:

p∗ℓ =
p∗ℓ + z+ℓ (p

∗)∑L
k=1(p

∗
k + z+k (p

∗))
(ℓ = 1, . . . , L).

▶ We show that p∗ satisfies z(p∗) ≤ 0.
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▶ By Walras’ law, we have

0 =
∑

ℓ p
∗
ℓzℓ(p

∗) =

∑
ℓ(p

∗
ℓzℓ(p

∗) + z+ℓ (p
∗)zℓ(p

∗))∑L
k=1(p

∗
k + z+k (p

∗))

=

∑
ℓ z

+
ℓ (p

∗)zℓ(p
∗)∑L

k=1(p
∗
k + z+k (p

∗))
,

and therefore
∑

ℓ z
+
ℓ (p

∗)zℓ(p
∗) = 0.

▶ Since

z+ℓ (p
∗)zℓ(p

∗) =

{
zℓ(p

∗)2 > 0 if zℓ(p
∗) > 0,

0 if zℓ(p
∗) ≤ 0,

it follows from
∑

ℓ z
+
ℓ (p

∗)zℓ(p
∗) = 0 that zℓ(p

∗) ≤ 0 for
all ℓ = 1, . . . , L, as desired.
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