7. General Equilibrium

Daisuke Oyama

Microeconomics I

June 26, July 3, 10, 2025

Framework

- ▶ *L* commodities
- ightharpoonup Consumers: $1, \ldots, I$

Each consumer $i = 1, \dots, I$ is characterized by:

- $lackbox{ consumption set } X_i \subset \mathbb{R}^L \qquad \text{ (usually } X_i = \mathbb{R}^L_+ \text{)}$
- ▶ preference relation \succeq_i on X_i
- ▶ We assume that \succeq_i is complete and transitive for all i.
- Firms: $1, \ldots, J$

Each firm $j = 1, \dots, J$ is characterized by:

- lacksquare production set $Y_j \subset \mathbb{R}^L$
- $lackbox{ We assume that } Y_j \text{ is nonempty and closed for all } j.$
- ▶ Initial endowments: $\bar{\omega} = (\bar{\omega}_1, \dots, \bar{\omega}_L) \in \mathbb{R}^L$

Feasible Allocations

Allocation:

$$(x,y) = ((x_1,\ldots,x_I),(y_1,\ldots,y_J)) \in \prod_{i=1}^{I} X_i \times \prod_{j=1}^{J} Y_j$$

- $x_i \in X_i$: consumer i's consumption vector
- ▶ $y_j \in Y_j$: firm j's production vector
- $(\prod_{i=1}^{I} X_i = X_1 \times \cdots \times X_I, \prod_{j=1}^{J} Y_j = Y_1 \times \cdots \times Y_J)$

Definition 7.1

An allocation (x,y) is feasible if $\sum_i x_i = \bar{\omega} + \sum_j y_j$.

▶ Denote the set of all feasible allocations by *A*.

Pareto Efficiency

Definition 7.2

1. For $x, x' \in \prod_{i=1}^{I} X_i$, x' Pareto dominates x if

$$x_i' \succsim_i x_i$$
 for all $i = 1, \dots, I$, $x_i' \succ_i x_i$ for some $i = 1, \dots, I$.

2. A feasible allocation $(x,y) \in A$ is Pareto efficient if there exists no feasible allocation $(x',y') \in A$ such that x' Pareto dominates x.

Private Ownership Economies

- ► A private ownership economy:
 - $\mathcal{E} = ((X_i, \succeq_i)_{i=1}^I, (Y_j)_{j=1}^J, (\omega_i, \theta_{i1}, \dots, \theta_{iJ})_{i=1}^I)$ where:
 - (X_i, \succsim_i) : consumer i's preference relation
 - $ightharpoonup Y_i$: firm j's production set
 - $\omega_i \in X_i$: consumer i's initial endowment, where $\bar{\omega} = \sum_i \omega_i$
 - $heta_{ij} \in [0,1]$: share of consumer i's claim to the profit of firm j, where $\sum_i \theta_{ij} = 1$ for all j

Definition 7.3

A Walrasian equilibrium of a private ownership economy $\mathcal E$ is $(p^*,((x_i^*)_{i=1}^I,(y_j^*)_{j=1}^J))\in\mathbb R^L\times\prod_i X_i\times\prod_j Y_j$ such that

- 1. [Profit maximization] for every $j=1,\ldots,J$, y_j^* maximizes the profit $p^*\cdot y_j$ in Y_j , i.e., $y_j^*\in Y_j$ and $p^*\cdot y_j^*\geq p^*\cdot y_j$ for all $y_j\in Y_j$;
- 2. [Preference maximality] for every i = 1, ..., I, x_i^* is maximal for \succeq_i in the budget set

$$B_i = \{ x_i \in X_i \mid p^* \cdot x_i \le p^* \cdot \omega_i + \sum_j \theta_{ij} (p^* \cdot y_j^*) \},$$

i.e., $x_i^* \in B_i$ and $x_i^* \succsim_i x_i$ for all $x_i \in B_i$;

3. [Market clearing] $\sum_i x_i^* = \sum_i \omega_i + \sum_j y_j^*.$

Pure Exchange Economies

- A private ownership economy $\mathcal{E} = ((X_i,\succsim_i)_{i=1}^I, (Y_j)_{j=1}^J, (\omega_i,\theta_i)_{i=1}^I) \text{ is called a pure exchange economy if } X_i = \mathbb{R}_+^L \text{ for all } i, \text{ and } J = 1 \text{ and } Y_1 = -\mathbb{R}_+^L.$
 - $((x_i)_{i=1}^I, y_1) \text{ is feasible for some } y_j \in Y_j \text{ if and only if } \sum_i x_i \sum_i \omega_i \leq 0.$
 - ▶ If $y_j(p) \neq \emptyset$, then it must be that $p \geq 0$ and $\pi_j(p) = 0$.
- We denote a pure exchange economy by $\mathcal{E}' = ((\succsim_i)_{i=1}^I, (\omega_i)_{i=1}^I).$
- We define Walrasian equilibrium of a pure exchange economy $\mathcal{E}' = ((\succsim_i)_{i=1}^I, (\omega_i)_{i=1}^I)$ as follows. \to

Definition 7.4

A Walrasian equilibrium of a pure exchange economy \mathcal{E}' is $(p^*,(x_i^*)_{i=1}^I,)\in\mathbb{R}^L\times(\mathbb{R}_+^L)^I$ such that

- 1. $p^* \ge 0$;
- 2. for every $i=1,\ldots,I$, x_i^* is maximal for \succsim_i in the budget set $B_i=\{x_i\in X_i\mid p^*\cdot x_i\leq p^*\cdot \omega_i\}$, i.e., $x_i^*\in B_i$ and $x_i^*\succsim_i x_i$ for all $x_i\in B_i$;
- 3. $\sum_i x_i^* \leq \sum_i \omega_i$ and $p^* \cdot (\sum_i x_i^* \sum_i \omega_i) = 0$.

▶ Given $p^* \geq 0$, an equivalent expression of condition 3 is: $\sum_i x_i^* \leq \sum_i \omega_i \text{, and } p_\ell^* = 0 \text{ if } \sum_i x_{i\ell}^* < \sum_i \omega_{i\ell}.$

Proposition 7.1

 $(p^*,(x_i^*)_{i=1}^I)$ is a Walrasian equilibrium of \mathcal{E}' if and only if $(p^*,(x_i^*)_{i=1}^I,y_1^*)$ is a Walrasian equilibrium of \mathcal{E} for some y_1^* .

Proof of the "only if" part

- ▶ Suppose that $(p^*, (x_i^*)_{i=1}^I)$ is a Walrasian equilibrium of \mathcal{E}' .
- ► Let $y_1^* = \sum_{i=1}^I x_i^* \sum_{i=1}^I \omega_i$ (≤ 0).
- ▶ Then $y_1^* \in Y_1$ and $p^* \cdot y_1^* = 0$, so $y_1^* \in y_1(p^*)$.

Example: Edgeworth Box

Example: One-Consumer, One-Producer Economy

- ▶ L=2▶ $\ell=1$: leisure (price w)

 ▶ $\ell=2$: consumption good (price p)

 ▶ J=1: production function y=f(z)▶ $\ell=1$: input (z)▶ $\ell=2$: output (y)
- $I=1: \mbox{ utility function } u(x_1,x_2) \\ \mbox{ Endowment: } \omega_1=(\bar{L},0)$

Exercise 15.C.2

- $f(z) = z^{\frac{1}{2}}$
- $u(x_1, x_2) = \log x_1 + \log x_2$
- ightharpoonup $\bar{L}=1$

First Fundamental Theorem of Welfare Economics

- "A Walrasian equilibrium allocation is Pareto efficient."
- ▶ The assumption of local nonsatiation is necessary.

Proposition 7.2

In a private ownership economy

 $\mathcal{E} = ((X_i, \succsim_i)_{i=1}^I, (Y_j)_{j=1}^J, (\omega_i, \theta_i)_{i=1}^I)$, assume that for each i, \succsim_i is locally nonsatiated.

If $(p^*, ((x_i^*)_{i=1}^I, (y_j^*i)_{j=1}^J))$ is a Walrasian equilibrium of \mathcal{E} , then $((x_i^*)_{i=1}^I, (y_j^*)_{j=1}^J)$ is Pareto efficient.

Lemma 7.3

Assume that \succsim_i is locally nonsatiated. If x_i^* is maximal for \succsim_i in $B(p,w_i)$, then $p\cdot x_i\geq w_i$ whenever $x_i\succsim_i x_i^*$.

Proof

- ▶ If $p \cdot x_i < w_i$, then by local nonsatiation, there exists some \tilde{x}_i close to x_i such that $p \cdot \tilde{x}_i < w_i$ and $\tilde{x}_i \succ_i x_i$.
- ▶ By preference maximality, $x_i^* \succsim_i \tilde{x}_i$, and hence $x_i^* \succ_i x_i$.

Proof of Proposition 7.2

Suppose that $(p^*,((x_i^*)_{i=1}^I,(y_j^*)_{j=1}^J))$ is a Walrasian equilibrium of $\mathcal E$.

Step 1

- ► Write $w_i^* = p^* \cdot \omega_i + \sum_{j=1}^J \theta_{ij} (p^* \cdot y_j^*)$.
- ► Then

$$\sum_{i} w_{i}^{*} = \sum_{i} p^{*} \cdot \omega_{i} + \sum_{j} \underbrace{\sum_{i} \theta_{ij}}_{=1} (p^{*} \cdot y_{j}^{*})$$
$$= \sum_{i} p^{*} \cdot \omega_{i} + \sum_{j} p^{*} \cdot y_{j}^{*}.$$

If an allocation $((x_i)_{i=1}^I, (y_j)_{j=1}^J)$ Parato dominates $((x_i^*)_{i=1}^I, (y_j^*)_{j=1}^J)$ and $(y_j)_{j=1}^J$ is feasible (i.e., $y_j \in Y_j$ for all j), then

$$\sum_{i=1}^{I} p^* \cdot x_i > \sum_{i=1}^{I} p^* \cdot \omega_i + \sum_{j=1}^{J} p^* \cdot y_j.$$

- By definition,
 - (i) $x_i \succeq_i x_i^*$ for all i, and
 - (ii) $x_i \succ_i x_i^*$ for some i.

ightharpoonup By maximality of x_i^* in $B(p^*, w_i^*)$,

$$x_i \succ_i x_i^* \Rightarrow p^* \cdot x_i > w_i^*.$$

▶ By maximality of x_i^* in $B(p^*, w_i^*)$ and local nonsatiation of \succsim_i ,

$$x_i \succsim_i x_i^* \Rightarrow p^* \cdot x_i \ge w_i^*$$

(by Lemma 7.3).

- ► Therefore, by (i) and (ii),
 - (i') $p^* \cdot x_i \ge w_i^*$ for all i, and
 - (ii') $p^* \cdot x_i > w_i^*$ for some i.

► Hence, we have

$$\sum_{i} p^* \cdot x_i > \sum_{i} w_i^* = \sum_{i} p^* \cdot \omega_i + \sum_{j} p^* \cdot y_j^*.$$

- ▶ By optimality of y_j^* and $y_j \in Y_j$, we have $p^* \cdot y_j^* \ge p^* \cdot y_j$ for all j.
- ► Therefore, we have

$$\sum_{i} p^* \cdot x_i > \sum_{i} p^* \cdot \omega_i + \sum_{j} p^* \cdot y_j.$$

▶ But for any feasible allocation $((x_i)_{i=1}^I, (y_j)_{j=1}^J)$, we must have

$$\sum_{i} p^* \cdot x_i = \sum_{i} p^* \cdot \omega_i + \sum_{j} p^* \cdot y_j.$$

- ▶ Hence, Step 2 implies that if allocation $((x_i)_{i=1}^I, (y_j)_{j=1}^J)$ Parato dominates $((x_i^*)_{i=1}^I, (y_j^*)_{j=1}^J)$, then it is not feasible.
- ▶ Thus, we have shown that $((x_i^*)_{i=1}^I, (y_j^*)_{j=1}^J)$ is Pareto efficient.

Equilibrium Concepts

Definition 7.5

A price equilibrium with transfers of $((X_i,\succsim_i)_{i=1}^I,(Y_j)_{j=1}^J,\bar{\omega})$ is $(p^*,((x_i^*)_{i=1}^I,(y_j^*)_{j=1}^J))\in\mathbb{R}^L\times\prod_i X_i\times\prod_j Y_j$ such that there exists (w_1,\ldots,w_I) with $\sum_i w_i=p^*\cdot\bar{\omega}+\sum_j p^*\cdot y_j^*$ such that

- 1. [Profit maximization] for every $j=1,\ldots,J$, y_j^* maximizes the profit $p^*\cdot y_j$ in Y_j ;
- 2. [Preference maximality] for every $i=1,\ldots,I$, x_i^* is maximal for \succsim_i in the budget set

$$\{x_i \in X_i \mid p^* \cdot x_i \le w_i\},\$$

or equivalently, $p^* \cdot x_i^* \leq w_i$, and if $x_i \succ_i x_i^*$, then $p^* \cdot x_i > w_i$;

3. [Market clearing] $\sum_i x_i^* = \bar{\omega} + \sum_j y_j^*.$

- If $(p^*, ((x_i^*)_{i=1}^I, (y_j^*)_{j=1}^J))$ is a Walrasian equilibrium of $((X_i, \succsim_i)_{i=1}^I, (Y_j)_{j=1}^J, (\omega_i, \theta_i)_{i=1}^I)$, then it is a price equilibrium with transfers of $((X_i, \succsim_i)_{i=1}^I, (Y_j)_{j=1}^J, \bar{\omega})$ (where $\bar{\omega} = \sum_i \omega_i$).
 - Let $w_i = p^* \cdot \omega_i + \sum_{j=1}^J \theta_{ij} (p^* \cdot y_j^*)$.
- ➤ The proof of Proposition 7.2 in fact proves that (under local nonsatiation) the allocation of a price equilibrium with transfers is Pareto efficient.

Definition 7.6

A price quasi-equilibrium with transfers of $((X_i,\succsim_i)_{i=1}^I,(Y_j)_{j=1}^J,\bar{\omega})$ is $(p^*,((x_i^*)_{i=1}^I,(y_j^*)_{j=1}^J))\in\mathbb{R}^L\times\prod_i X_i\times\prod_j Y_j$ such that there exists (w_1,\ldots,w_I) with $\sum_i w_i=p^*\cdot\bar{\omega}+\sum_j p^*\cdot y_j^*$ such that

- 1. [Profit maximization] for every $j=1,\ldots,J$, y_j^* maximizes the profit $p^*\cdot y_j$ in Y_j ;
- 2. for every $i=1,\ldots,I$, $p^*\cdot x_i^*\leq w_i$, and if $x_i\succ_i x_i^*$, then $p^*\cdot x_i\geq w_i$;
- 3. [Market clearing] $\sum_{i} x_{i}^{*} = \bar{\omega} + \sum_{j} y_{j}^{*}.$

▶ If $(p^*, ((x_i^*)_{i=1}^I, (y_j^*)_{j=1}^J))$ is a price equilibrium with transfers, then it is a price quasi-equilibrium with transfers.

Second Fundamental Theorem of Welfare Economics

Under convexity assumptions,

"any Pareto efficient allocation is supported as a price quasi-equilibrium with transfers".

Proposition 7.4

In an economy $\mathcal{E}=((X_i,\succsim_i)_{i=1}^I,(Y_j)_{j=1}^J,ar{\omega})$, assume that

- for every j = 1, ..., J, Y_j is convex; and
- for every i = 1, ..., I, X_i is convex and \succsim_i is convex and locally nonsatiated.

Then for any Pareto efficient feasible allocation $((x_i^*)_{i=1}^I, (y_j^*)_{j=1}^J)$, there exists $p^* \neq 0$ such that $(p^*, ((x_i^*)_{i=1}^I, (y_j^*)_{j=1}^J))$ is a price quasi-equilibrium with transfers of \mathcal{E} .

Proof

▶ Suppose that feasible allocation $((x_i^*)_{i=1}^I, (y_j^*)_{j=1}^J)$ is Pareto efficient.

Step 1

► For each *i*, define

$$V_i = \{x_i \in X_i \mid x_i \succ_i x_i^*\}.$$

- $ightharpoonup V_i$ is a convex set:
 - ▶ Take any $x_i, x_i' \in V_i$ and $\alpha \in [0, 1]$, where $x_i \succ_i x_i^*$ and $x_i' \succ_i x_i^*$.
 - ▶ By completeness, $x_i \succsim_i x_i'$ or $x_i' \succsim_i x_i$. Assume the former without loss of generality.
 - ▶ By convexity of \succsim_i , we have $\alpha x_i + (1 \alpha)x_i' \succsim_i x_i'$.
 - By transitivity, we have $\alpha x_i + (1 \alpha)x_i' \succ_i x_i^*$; thus $\alpha x_i + (1 \alpha)x_i' \in V_i$.

Define

$$V = \sum_{i} V_i = \{ \sum_{i} x_i \in \mathbb{R}^L \mid x_1 \in V_1, \dots, x_I \in V_I \},$$

which is a convex set (it is the sum of convex sets).

Define

$$Y = \sum_{j} Y_{j} = \{ \sum_{j} y_{j} \in \mathbb{R}^{L} \mid y_{1} \in Y_{1}, \dots, y_{J} \in Y_{J} \},$$

which is a convex set by convexity of Y_1, \ldots, Y_J .

- $V \cap (\{\bar{\omega}\} + Y) = \emptyset:$
 - ▶ Suppose $V \cap (\{\bar{\omega}\} + Y) \neq \emptyset$, and let $z \in V \cap (\{\bar{\omega}\} + Y)$.
 - Then we have $z=\sum_i x_i$ for some $x_1\in V_1,\ldots,x_I\in V_I$ and $z=\bar{\omega}+\sum_j y_j$ for some $y_1\in Y_1,\ldots,y_J\in Y_J$, which means that there exists a feasible allocation $((x_i)_{i=1}^I,(y_j)_{j=1}^J)$ that Pareto dominates $((x_i^*)_{i=1}^I,(y_j^*)_{j=1}^J)$.
 - ▶ This contradicts Pareto efficiency of $((x_i^*)_{i=1}^I, (y_i^*)_{i=1}^J)$.

Step 4

▶ Since X and $\{\bar{\omega}\} + Y$ are convex sets and $V \cap (\{\bar{\omega}\} + Y) = \emptyset$, by the Separating Hyperplane Theorem (Proposition 6.6), there exist $p^* \neq 0$ and c such that

$$p^* \cdot z \le c \le p^* \cdot z'$$
 for all $z \in \{\bar{\omega}\} + Y$ and $z' \in V$. (*)

- ▶ If $x_i \succsim_i x_i^*$ for all i, then $p^* \cdot \sum_i x_i \ge c$:
 - ▶ Suppose that $x_i \succsim_i x_i^*$ for all i.
 - ▶ By local nonsatiation, for each i there exists $\hat{x}_i \in X_i$ arbitrarily close to x_i such that $\hat{x}_i \succ_i x_i$.
 - ▶ By transitivity, $\hat{x}_i \succ_i x_i^*$, i.e., $\hat{x}_i \in V_i$.
 - ▶ Thus, $\sum_i \hat{x}_i \in V$, and $p^* \cdot \sum_i \hat{x}_i \geq c$ by (*).
 - ▶ Letting $\hat{x}_i \to x_i$, we have $p^* \cdot \sum_i x_i \ge c$.

Step 6

- - ▶ By Step 5, $p^* \cdot \sum_i x_i^* \ge c$.
 - ▶ By (*), $p^* \cdot (\bar{\omega} + \sum_j y_j^*) \le c$.
 - ▶ By feasibility, $p^* \cdot \sum_i x_i^* = p^* \cdot (\bar{\omega} + \sum_j y_j^*)$.

- ▶ For every j, $p^* \cdot y_j \le p^* \cdot y_i^*$ for all $y_j \in Y_j$:
 - Fix any j and take any $y_j \in Y_j$.
 - ▶ Since $y_j + \sum_{h \neq j} y_h^* \in Y$, by (*) and Step 6 we have

$$p^* \cdot (\bar{\omega} + y_j + \sum_{h \neq j} y_h^*) \le c = p^* \cdot (\bar{\omega} + y_j^* + \sum_{h \neq j} y_h^*),$$

and hence $p^* \cdot y_j \leq p^* \cdot y_j^*$.

Step 8

- ▶ For every i, if $x_i \succ_i x_i^*$, then $p^* \cdot x_i \ge p^* \cdot x_i^*$:
 - Fix any i and suppose that $x_i \succ_i x_i^*$.
 - By Steps 5 and 6, we have

$$p^* \cdot (x_i + \sum_{k \neq i} x_k^*) \ge c = p^* \cdot (x_i^* + \sum_{k \neq i} x_k^*),$$

and hence $p^* \cdot x_i \ge p^* \cdot x_i^*$.

- With $w_i = p^* \cdot x_i^*$ for all i, $(p^*, ((x_i^*)_{i=1}^I, (y_j^*)_{j=1}^J))$ is a price quasi-equilibrium with transfers:
 - Condition 1 follows from Step 7.
 - ► Condition 2 follows from Step 8.
 - ► Condition 3 follows from feasibility of $((x_i^*)_{i=1}^I, (y_i^*)_{i=1}^J)$.

Equilibrium versus Quasi-Equilibrium

- A price equilibrium with transfers is a price quasi-equilibrium with transfers, but the converse does not hold in general.
- ▶ The converse holds, for example if for all i, $p^* \cdot x_i^* > 0$ and $0 \in X_i$.
- More generally:

Proposition 7.5

Assume that X_i is convex and \succsim_i is continuous. Let $x_i^* \in X_i$, p, and w_i be such that $x_i \succ_i x_i^* \Rightarrow p \cdot x_i \geq w_i$. Then if there exists $x_i' \in X_i$ such that $p \cdot x_i' < w_i$, then $x_i \succ_i x_i^* \Rightarrow p \cdot x_i > w_i$.

Proof

- Assume that for some $x_i \in X_i$, we have $x_i \succ_i x_i^*$ and $p \cdot x_i \leq w_i$.
- Then by continuity of \succsim_i , for $\alpha < 1$ sufficiently close to 1 we have $\alpha x_i + (1 \alpha) x_i' \succ_i x_i^*$ (where $\alpha x_i + (1 \alpha) x_i' \in X_i$ by convexity of X_i).
- But then we have

$$p \cdot (\alpha x_i + (1 - \alpha)x_i') = \alpha(p \cdot x_i) + (1 - \alpha)(p \cdot x_i') < w_i,$$

which contradicts " $x_i \succ_i x_i^* \Rightarrow p \cdot x_i \geq w_i$ ".

Economies with Quasi-Linear Preferences

- Commodities: $1, \dots, L$ consumption $x_i \in \mathbb{R}^L$, production $y_j \in \mathbb{R}^L$
- ► Commodity 0 (numeraire for all consumers) consumption $m_i \in \mathbb{R}$, input $z_i \in \mathbb{R}$
- Preferences: for each i, \succeq_i is represented by $u_i(m_i, x_i) = m_i + \phi_i(x_i) \quad (m_i \in \mathbb{R}, x_i \in X_i \subset \mathbb{R}^L)$
 - ► Locally nonsatiated ⇒ Walras' law
 - Strictly increasing in $m_i \Rightarrow$ Any Walrasian equilibrium price of commodity 0 must be strictly positive.
 - We will normalize prices so that $p_0 = 1$.
- ▶ Endowments: $(\omega_{i0}, \omega_i) \in \mathbb{R} \times X_i$
- ▶ Production: for each j, $Y_j \subset \mathbb{R}^{1+L}$ production vector $(-z_j, y_j) \in Y_j$

Equilibrium

Proposition 7.6

 $\begin{array}{l} ((1,p^*),((m_i^*,x_i^*)_{i=1}^I,(-z_j^*,y_j^*)_{j=1}^J)\in\mathbb{R}^{1+L}\times\prod_i(\mathbb{R}\times X_i)\times\prod_jY_j \\ \text{is a price equilibrium with transfers if and only if there exists} \\ (w_1,\ldots,w_I) \text{ with } \sum_iw_i=(\bar{\omega}_0+p^*\cdot\bar{\omega})+\sum_j(-z_j^*+p^*\cdot y_j^*) \text{ such that} \end{array}$

- 1. for every j, $(-z_j^*, y_j^*)$ solves $\max_{(-z_j, y_j) \in Y_j} -z_j + p^* \cdot y_j$;
- 2. for every i, x_i^* solves $\max_{x_i \in X_i} \phi_i(x_i) p^* \cdot x_i$, and $m_i^* = w_i p^* \cdot x_i^*$;
- 3. $\sum_{i} x_{i}^{*} = \bar{\omega} + \sum_{j} y_{j}^{*}$.

- ▶ By Walras' law, the market clearing for commodity 0 is automatically satisfied.
- ▶ The components other than $(m_i^*)_{i=1}^I$ do not depend on the choice of (w_1, \ldots, w_I) .

Fundamental Theorems

- ▶ For each i, \succsim_i is locally nonsatiated.
- ▶ The First Fundamental Theorem holds.
- ► If
 - for every j, Y_j is a convex set, and
 - for every i, X_i is a convex set and ϕ_i is a concave function,

then the Second Fundamental Theorem holds.

Price equilibrium and price quasi-equilibrium are equivalent.

Two-Commodity Case—Partial Equilibrium Analysis

- Two commodities
 - ightharpoonup commodity $\ell \cdots$ price p
 - ightharpoonup commodity 0: numeraire ("the other commodities") \cdots price 1
- Production
 - $ightharpoonup c_j$: firm j's cost function

$$c'_j > 0$$
, $c''_j > 0$, $c_j(0) = 0$

$$Y_j = \{ (-z_j, q_j) \in \mathbb{R}^2 \mid z_j \ge c_j(q_j), \ q_j \ge 0 \}$$

▶ Profit maximization:
$$\max_{q_j} pq_j - c_j(q_j)$$

⇒ $p \le c'_j(q_j^*)$ with "=" if $q_j^* > 0$

▶ Supply function for ℓ :

$$y_i(p) = (c'_i)^{-1}(p) \text{ if } p > c'_i(0)$$

$$z_i^* = c_j(q_i^*)$$

Consumption

► Utility function:

$$u_i(m_i, x_i) = m_i + \phi_i(x_i)$$
 $(m_i \in \mathbb{R}, x_i \in \mathbb{R}_+)$
 $\phi'_j > 0, \phi''_j < 0, \phi_j(0) = 0$

- $\blacktriangleright \omega_{im} > 0, \, \omega_{i\ell} = 0$
- Utility maximization:

$$\begin{aligned} \max_{m_i, x_i} m_i + \phi_i(x_i) \\ \text{subject to } m_i + px_i &\leq \omega_{im} + \sum_j \theta_{ij} (pq_j^* - c_j(q_j^*)) \\ \Rightarrow \phi_i'(x_i^*) &\leq p \text{ with "=" if } x_i^* > 0 \end{aligned}$$

▶ Demand function for ℓ :

$$x_i(p) = (\phi_i')^{-1}(p) \text{ if } p < \phi_i'(0)$$

• $m_i^* = \omega_{im} + \sum_j \theta_{ij} (pq_j^* - c_j(q_j^*)) - px_i^*$

Equilibrium

- $\qquad \qquad (p^*,((x_i^*)_{i=1}^I,(q_j^*)_{j=1}^J)) \in \mathbb{R} \times \mathbb{R}_+^I \times \mathbb{R}_+^J \text{ is a price equilibrium with transfers if and only if }$
 - 1. for every j, $p^* \le c'_i(q^*_i)$ with "=" if $q^*_i > 0$;
 - 2. for every i, $\phi_i'(x_i^*) \leq p^*$ with "=" if $x_i^* > 0$;
 - 3. $\sum_{i} x_i^* = \sum_{j} q_j^*$.

Surplus Maximization

Consumer surplus of *i*:

$$CS_{i} = \int_{0}^{x_{i}^{*}} \phi'_{i}(x_{i}) dx_{i} - p^{*}x_{i}^{*}$$
$$= \phi_{i}(x_{i}^{*}) - \phi_{i}(0) - p^{*}x_{i}^{*} = \phi_{i}(x_{i}^{*}) - p^{*}x_{i}^{*}$$

► Total surplus:

$$\begin{split} & \sum_{i} (\phi_{i}(x_{i}^{*}) - p^{*}x_{i}^{*}) + \sum_{j} (p^{*}q_{j}^{*} - c_{j}(q_{j}^{*})) \\ & = \sum_{i} \phi_{i}(x_{i}^{*}) - \sum_{j} c_{j}(q_{j}^{*}) \quad \text{(by market clearing)} \end{split}$$

► Total surplus maximization:

$$\begin{aligned} \max \quad & \sum_i \phi_i(x_i) - \sum_j c_j(q_j) \\ \text{s.t.} \quad & \sum_i x_i - \sum_j q_j = 0 \\ & x_i \geq 0, \ q_j \geq 0 \end{aligned}$$

Lagrangian:

$$L = \sum_{i} \phi_i(x_i) - \sum_{j} c_j(q_j) + \mu(\sum_{j} q_j - \sum_{i} x_i)$$

KKT condition:

There exists μ such that

- 1. for every j, $\mu \le c'_j(q_j)$ with "=" if $q_j > 0$;
- 2. for every i, $\phi'_i(x_i) \leq \mu$ with "=" if $x_i > 0$;
- 3. $\sum_{i} x_i = \sum_{j} q_j.$
- ► Hence:

 $(p^*,((x_i^*)_{i=1}^I,(q_j^*)_{j=1}^J))$ is a price equilibrium for some p^* if and only if $((x_i^*)_{i=1}^I,(q_j^*)_{j=1}^J))$ is total surplus maximizing.

Pareto Efficiency

Consider the maximization problem:

$$\max \quad m_1 + \phi_1(x_1)$$
s. t.
$$m_i + \phi_i(x_i) \ge \bar{u}_i \quad (i = 2, \dots, I)$$

$$\sum_i x_i - \sum_j q_j \le 0$$

$$\sum_i m_i + \sum_j z_j \le \bar{\omega}_m$$

$$z_j \ge c_j(q_j) \quad (j = 1, \dots, J)$$

$$x_i \ge 0, \ q_j \ge 0$$

Lagrangian:

$$L = m_1 + \phi_1(x_1) + \sum_{i \neq 1} \lambda_i (m_i + \phi_i(x_i) - \bar{u}_i)$$

+ $\mu(\sum_j q_j - \sum_i x_i) + \eta(\bar{\omega}_m - \sum_i m_i - \sum_j z_j)$
+ $\sum_j \nu_j (z_j - c_j(q_j))$

KKT condition:

- $ightharpoonup 1 = \eta$
- $\lambda_i = \eta$ for all $i \neq 1$
- $\phi_1'(x_1) \le \mu \text{ with "=" if } x_1 > 0$
- $ightharpoonup \lambda_i \phi_i'(x_i) \le \mu$ with "=" if $x_i > 0$ for all $i \ne 1$
- $\blacktriangleright \mu \leq \nu_j c_j'(q_j)$ with "=" if $q_j > 0$ for all j

which is equivalent to:

- $1 = \eta = \lambda_2 = \cdots \lambda_I = \nu_1 = \cdots = \nu_J$
- $\phi_i'(x_i) \le \mu$ with "=" if $x_i > 0$ for all i
- \blacktriangleright $\mu \leq c_j'(q_j)$ with "=" if $q_j > 0$ for all j

► Hence:

 $\begin{array}{l} (p^*, ((x_i^*)_{i=1}^I, (q_j^*)_{j=1}^J)) \text{ is a price equilibrium for some } p^* \\ \text{if and only if } ((m_i^*, x_i^*)_{i=1}^I, (z_j^*, q_j^*)_{j=1}^J)) \text{ is Pareto efficient for some } (m_i^*)_{i=1}^I \text{ and } (z_j^*)_{j=1}^J)). \end{array}$

Existence of Walrasian Equilibrium

- We only consider a simple case of a pure exchange economy $\mathcal{E} = ((\succsim_i)_{i=1}^I, (\omega_i)_{i=1}^I)$:
 - For each i, \succsim_i is a complete and transitive preference relation on $X_i = \mathbb{R}_+^L$.
 - Assume that $\sum_i \omega_i \gg 0$.
- $lackbox{(}p^*,(x_i^*)_{i=1}^I,)\in\mathbb{R}^L imes(\mathbb{R}_+^L)^I$ is a Walrasian equilibrium of $\mathcal E$ if
 - ▶ $p^* \ge 0$;
 - for every $i=1,\ldots,I$, x_i^* is maximal for \succsim_i in the budget set $B_i(p^*,p^*\cdot\omega_i)$;
 - $ightharpoonup \sum_i x_i^* \le \sum_i \omega_i \text{ and } p^* \cdot (\sum_i x_i^* \sum_i \omega_i) = 0.$

Assumptions

In the following, we assume:

- (a) For each i, \succeq_i is continuous and strictly convex.
 - \Rightarrow Demand function $x_i(\cdot)$ is well defined and continuous for $p\gg 0$.
- (b) For each i, \succeq_i is locally nonsatiated.
 - \Rightarrow Walras' law holds: $p \cdot (x_i(p, p \cdot \omega_i) \omega_i) = 0$ for any $p \gg 0$.

Excess Demand Functions

Excess demand function of *i*:

$$z_i(p) = x_i(p, p \cdot \omega_i) - \omega_i \qquad (p \gg 0)$$

► (Aggregate) excess demand function:

$$z(p) = \sum_{i} z_{i}(p) = \sum_{i} x_{i}(p, p \cdot \omega_{i}) - \sum_{i} \omega_{i}$$
 $(p \gg 0)$

- Properties:
 - 1. $z(\cdot)$ is continuous.
 - 2. $z(\cdot)$ is homogeneous of degree zero.
 - 3. $p \cdot z(p) = 0$ for all $p \gg 0$ (Walras' law).

Proposition 7.7

Assume (a) and (b). $p^*\gg 0$ is a Walrasian equilibrium price vector if and only if $z(p^*)\leq 0$.

Proof of the "if" part

- ▶ Suppose that $z(p^*) \le 0$.
- Let $x_i^* = x_i^*(p^*, p^* \cdot \omega_i)$ for each i.

Equilibrium Existence: Version 1

We strengthen (b) to:

- (c) For each i, \succsim_i is strongly monotone.
 - $\Rightarrow p^*$ is a Walrasian equilibrium price vector if and only if $p^* \gg 0$ and $z(p^*) = 0$.

Proposition 7.8

Assume (a) and (c).

Then a Walrasian equilibrium of $\mathcal E$ exists.

Proof: See the proof of Proposition 17.C.1 in MWG, which uses "Kakutani's fixed point theorem".

Equilibrium Existence: Version 2

We drop (c) and assume:

- (d) For each i, $z_i(p)$ is well defined for all $p \in \mathbb{R}_+^L \setminus \{0\}$ and is continuous on $\mathbb{R}_+^L \setminus \{0\}$.
 - \Rightarrow Walras' law holds for all $p \in \mathbb{R}_+^L \setminus \{0\}$. $p^* \in \mathbb{R}_+^L \setminus \{0\} \text{ is a Walrasian equilibrium price vector if and only if } z(p^*) \leq 0.$

Proposition 7.9

Assume (a), (b), and (d).

Then a Walrasian equilibrium of \mathcal{E} exists.

▶ For proof, we will use "Brouwer's fixed point theorem".

Brouwer's Fixed Point Theorem

Proposition 7.10 (Brouwer's Fixed Point Theorem)

Suppose that $X \subset \mathbb{R}^N$ is a nonempty, compact, and convex set, and that $f \colon X \to X$ is a continuous function from X into itself. Then f has a fixed point, i.e., there exists $x \in X$ such that x = f(x).

- ▶ What if *X* is not compact?
- ▶ What if *X* is not convex?
- ▶ What if *f* is not continuous?

Proof of Proposition 7.9

- ▶ We want to show that there exists $p^* \in \mathbb{R}_+^L \setminus \{0\}$ such that $z(p^*) \leq 0$.
- Let $\Delta = \{ p \in \mathbb{R}_+^L \mid p_1 + \dots + p_L = 1 \}$, which is nonempty, compact, and convex.
- It suffices to show that there exists $p^* \in \Delta$ such that $z(p^*) \leq 0$.
- ▶ Define the function $z^+(p) = (z_1^+(p), \dots, z_L^+(p))$ by $z_{\ell}^+(p) = \max\{z_{\ell}(p), 0\}.$
- $ightharpoonup z^+(p)$ is a continuous function.
- ▶ Define the function $f: \Delta \to \Delta$ by

$$f_{\ell}(p) = \frac{p_{\ell} + z_{\ell}^{+}(p)}{\sum_{k=1}^{L} (p_{k} + z_{k}^{+}(p))}$$
 $(\ell = 1, \dots, L).$

- f is a continuous function from the nonempty, compact, and convex set Δ to Δ .
- ▶ Thus, by Brouwer's fixed point theorem, f has a fixed point $p^* \in \Delta$:

$$p_{\ell}^* = \frac{p_{\ell}^* + z_{\ell}^+(p^*)}{\sum_{k=1}^L (p_k^* + z_k^+(p^*))} \qquad (\ell = 1, \dots, L).$$

▶ We show that p^* satisfies $z(p^*) \le 0$.

By Walras' law, we have

$$\begin{split} 0 &= \sum_{\ell} p_{\ell}^* z_{\ell}(p^*) = \frac{\sum_{\ell} (p_{\ell}^* z_{\ell}(p^*) + z_{\ell}^+(p^*) z_{\ell}(p^*))}{\sum_{k=1}^L (p_k^* + z_k^+(p^*))} \\ &= \frac{\sum_{\ell} z_{\ell}^+(p^*) z_{\ell}(p^*)}{\sum_{k=1}^L (p_k^* + z_k^+(p^*))}, \end{split}$$

and therefore $\sum_{\ell} z_{\ell}^{+}(p^{*}) z_{\ell}(p^{*}) = 0$.

Since

$$z_{\ell}^{+}(p^{*})z_{\ell}(p^{*}) = \begin{cases} z_{\ell}(p^{*})^{2} > 0 & \text{if } z_{\ell}(p^{*}) > 0, \\ 0 & \text{if } z_{\ell}(p^{*}) \leq 0, \end{cases}$$

it follows from $\sum_{\ell} z_{\ell}^+(p^*) z_{\ell}(p^*) = 0$ that $z_{\ell}(p^*) \leq 0$ for all $\ell = 1, \ldots, L$, as desired.