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Contingent Commodities

▶ ℓ = 1, . . . , L: physical commodities

▶ i = 1, . . . , I: consumers

▶ j = 1, . . . , J : firms

▶ s = 1, . . . , S: states of the world

▶ State-contingent commodity (ℓ, s):

a title to receive a unit of commodity ℓ when state s is
realized.

▶ State-contingent commodity vector:
x = (x11, . . . , xL1, . . . , x1S , . . . , xLS) ∈ RLS
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▶ Endowments for consumer i:
ωi = (ω11, . . . , ωL1, . . . , ω1S , . . . , ωLS) ∈ RLS

▶ ≿i: consumer i’s preference relation on a consumption set
Xi ⊂ RLS

▶ Yj ⊂ RLS : firm j’s production set

▶ yj ∈ Yj : state-contingent production plan

▶ θij : share of firm j owned by consumer i
(state independent, for simplicity)
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Assumption

▶ For every contingent commodity (ℓ, s), there is a market with
price pℓs.

▶ These markets open before uncertainty is resolved.
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Arrow-Debreu Equilibrium

Definition 8.1
(p∗, (x∗i )

I
i=1, (y

∗
j )

J
j=1) ∈ RLS ×

∏I
i=1Xi ×

∏J
j=1 Yj

is an Arrow-Debreu equilibrium if

1. for each j, p∗ · y∗j ≥ p∗ · yj for all yj ∈ Yj ;

2. for each i, x∗i ≿i xi for all
xi ∈ {xi ∈ Xi | p∗ · xi ≤ p∗ · ωi +

∑J
j=1 θijp

∗ · y∗j }; and

3.
∑I

i=1 x
∗
i =

∑J
j=1 y

∗
j +

∑I
i=1 ωi.

▶ This is just a particular case of Walrasian equilibrium.

The Welfare Theorems hold under the usual assumptions.
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Example 1

▶ I = 2 (i = A,B), L = 1, S = {1, 2}

▶ ωA = (ω1A, ω2A) = (1, 0)
ωB = (ω1B, ω2B) = (0, 1)

▶ ω̄s = ωsA + ωsB = 1 for all s ∈ S

· · · There is no aggregate uncertainty

▶ ≿i is represented by

π1iui(x1i) + π2iui(x2i)

▶ πsi: i’s subjective probability of state s ∈ S

▶ u′
i > 0, u′′

i < 0

▶ MRS 12i(x1i, x2i) =
π1iu

′
i(x1i)

π2iu′
i(x2i)
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▶ maxπ1iui(x1i) + π2iui(x2i)

subject to p1x1i + p2x1i ≤ p1ω1i + p2ω2i

▶ Equilibrium conditions:

▶ π1A

π2A

u′
A(x1A)

u′
A(x2A)

=
p1
p2

=
π1B

π2B

u′
B(x1B)

u′
B(x2B)

▶ x1A + x1B = ω̄1 (= 1)

x2A + x2B = ω̄2 (= 1)
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Case (a):
π1A
π2A

=
π1B
π2B

▶ On the contract curve:

u′A(x1A)

u′A(x2A)
=

u′B(ω̄1 − x1A)

u′B(ω̄2 − x2A)
, ω̄1 = ω̄2 = 1

⇒ x1A = x2A

▶ In the equilibrium:

p∗1
p∗2

=
π1A
π2A

=
π1B
π2B

x∗1i = x∗2i · · · consumers insure completely
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Case (b):
π1A
π2A

<
π1B
π2B

▶ On 45 degree line:

MRS 12i =
π1i
π2i

▶ In the equilibrium:

π1A
π2A

<
p∗1
p∗2

<
π1B
π2B

x∗1A < x∗2A, x
∗
1B > x∗2B

· · · consumer’s consumption is higher in the state he thinks
more likely (relative to the other’s beliefs)
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Example 2

▶ Same as in Example 1 Case (a) except:

ωA = (ω1A, ω2A) = (2, 0)
ωB = (ω1B, ω2B) = (0, 1)

▶ ω̄1 = 2 > ω̄2 = 1

· · · There is aggregate uncertainty

▶ π1A
π2A

=
π1B
π2B

=
π1
π2
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▶ On the contract curve:

MRS 12i <
π1
π2

for each i = A,B

▶ On the contract curve:

π1

π2

u′
A(x1A)

u′
A(x2A)

=
π1

π2

u′
B(ω̄1 − x1A)

u′
B(ω̄2 − x2A)

▶ If x1A ≤ x2A:

▶ u′
A(x1A)

u′
A(x2A)

≥ 1 (by concavity)

▶ ω̄1 − x1A > (ω̄2 − x2A (since ω̄1 > ω̄2)

⇒ u′
B(ω̄1 − x1A)

u′
B(ω̄2 − x2A)

< 1 (by concavity)

▶ Therefore, x1A > x2A, and hence
u′
A(x1A)

u′
A(x2A)

< 1 (by concavity)

▶ In the equilibrium:
p∗1
p∗2

<
π1
π2

▶ In particular, if π1 = π2, then p∗1 < p∗2
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Asset Markets

▶ ℓ = 1, . . . , L: physical commodities

▶ i = 1, . . . , I: consumers

▶ s = 1, . . . , S: states of the world

▶ ≿i: i’s preference relation on RLS
+

with a utility function representation Ui

(assumed to be strongly monotone)

▶ After uncertainty is resolved, spot markets open at t = 1.

▶ A price vector at state s is denoted by ps ∈ RL,
and the overall price vector by p ∈ RLS .
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Assets

Asset markets open at t = 0.

We consider real assets,
where returns are in units of commodity 1.

▶ An asset is identified with its return vector:

r = (r1, . . . , rS)
′ ∈ RS .

(Here we always consider vectors as column vectors.)

▶ Examples:

▶ 1 = (1, . . . , 1)′: “commodity futures”

▶ es = (0, . . . , 0, 1, 0, . . . , 0)′ (sth unit vector):
called an “Arrow security”.
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Example: Derivative Assets

▶ The call option on an asset r ∈ RS (“primary asset”)
at the strike price c ∈ R:

r(c) = (max{0, r1 − c}, . . . ,max{0, rS − c})′.

It gives the option to buy a unit of r at price c
after the state is realized.

▶ For example, if S = 4 and r = (4, 3, 2, 1)′,

r(3.5) = (0.5, 0, 0, 0)′,

r(2.5) = (1.5, 0.5, 0, 0)′,

r(1.5) = (2.5, 1.5, 0.5, 0)′.
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Return Matrix

▶ We fix K assets, r1, . . . , rK ∈ RS , as given.

We assume that rk ≥ 0, rk ̸= 0 for all k.

▶ The S ×K matrix

R =
(
r1 · · · rK

)
=

r11 · · · r1K
...

. . .
...

rS1 · · · rSK


is called the return matrix.

▶ A vector of trades in these assets, z = (z1, . . . , zK)′ ∈ RK , is
called a portfolio.

▶ An asset price vector is denoted by q = (q1, . . . , qK)′ ∈ RK .
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Equilibrium

Definition 8.2
(q, p, (z∗i )

I
i=1, (x

∗
i )

I
i=1) ∈ RK × RLS × (RK)I × (RLS

+ )I

is a Radner equilibrium if:

(i) for all i, (z∗i , x
∗
i ) solves

max
zi∈RK , xi∈RLS

+

Ui(xi)

s.t.
∑

k qkzki ≤ 0

p′sxsi ≤ p′sωsi +
∑

k p1szkirsk for all s;

(ii)
∑

i z
∗
i ≤ 0 and

∑
i x

∗
i ≤

∑
i ωi.
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Price Normalization and Budget Constraint

▶ Normalize p1s = 1 for all s.

▶ Budget constraint of i:

Bi(q, p,R) = {xi ∈ RLS
+ | ∃ zi ∈ RK s.t.

q′zi ≤ 0 and mi ≤ Rzi},

where

mi = (p′1(x1i − ω1i), . . . , p
′
S(xSi − ωSi))

′ ∈ RS .
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State Prices

Proposition 8.1

If q ∈ RK is an asset price vector in a Radner equilibrium,
then there exists µ ∈ RS

++ such that q′ = µ′R.

▶ µ is called a state price vector.

▶ µs is the shadow price of the state-contingent commodity for
state s.

▶ q′ = µ′R ⇐⇒

(
q1 · · · qK

)
=

(
µ1 · · · µS

)r11 · · · r1K
...

. . .
...

rS1 · · · rSK


=

(∑
s µsrs1 · · ·

∑
s µsrsK

)
.
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Proof 1 (1/2)
▶ q ∈ RK is arbitrage free if there is no portfolio z ∈ RK

such that q′z ≤ 0, Rz ≥ 0, and [q′z ̸= 0 or Rz ̸= 0].

▶ Under our assumption that rk ≥ 0, rk ̸= 0 for all k,
an arbitrage free price vector must be strictly positive, and hence
the above definition is equivalent to the definition in MWG:

q ∈ RK is arbitrage free if and only if there is no portfolio z ∈ RK

such that q′z ≤ 0, Rz ≥ 0, and Rz ̸= 0.

(I.e., there is no portfolio that is budgetarily feasible and
that yields a nonnegative return in every state and

a strictly positive return in some state.)

▶ Under strongly monotone preferences,
an equilibrium asset price vector q ∈ RK is arbitrage free.

▶ Proposition 8.1 follows from the following lemma.
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Proof 1 (2/2)

Lemma 8.2
For any R ∈ RS×K ,
q ∈ RK is arbitrage free if and only if
there exists µ ∈ RS

++ such that q′ = µ′R.

▶ Proof by “Stiemke’s Lemma”.
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Proof 2 (1/2)
▶ Choose any consumer i. Assume that Ui has a representation

Ui(x1i, . . . , xSi) =
∑

s πsiusi(xsi) (πsi > 0)
where usi are concave, strictly increasing, and differentiable.

▶ Denote by vsi the indirect utility function derived from usi.

▶ Let q, p be the equilibrium prices, and consider

max
zi∈RK

∑
s πsivsi(ps, p

′
sωsi +

∑
k rskzki)

s.t.
∑

k qkzki ≤ 0.

▶ The equilibrium portfolio plan z∗i must satisfy the FOC with
some αi > 0 (Lagrange multiplier):∑

s πsi
∂vsi
∂wsi

(ps, w
∗
si) rsk = αiqk for all k,

where w∗
si = p′sωsi +

∑
k rskz

∗
ki.
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Proof 2 (2/2)

▶ Define µ ∈ RS
++ by

µs =
πsi
αi

∂vsi
∂wsi

(ps, w
∗
si).

▶ This satisfies q′ = µ′R.

▶ Note: choice of a different consumer may lead to a different µ.
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Complete Markets

Definition 8.3
An asset structure with an S ×K return matrix R is complete if
rankR = S, i.e.,

{v ∈ RS | v = Rz for some z ∈ RK} = RS .

▶ Example:

R =

1 0 0
0 1 0
0 0 1


(where all the Arrow securities are available) is complete.
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▶ Example:

R =

1 0 1
0 1 1
0 1 1


is not complete.

No portfolio can give, for example, a return vector (0, 0, 1)′.

23 / 28



Equivalence between Radner and Arrow-Debreu Equilibria

Proposition 8.3

Assume that the asset structure is complete.

(i) If (p, x∗) ∈ RLS
++ × (RLS

+ )I is an Arrow-Debreu equilibrium,
then there q ∈ RK

++ and z∗ ∈ (RK)I such that
(q, p, z∗, x∗) is a Radner equilibrium.

(ii) If (q, p, z∗, x∗) ∈ RK
++ × RLS

++ × (RK)I × (RLS
+ )I is

a Radner equilibrium,
then there exists µ ∈ RS

++ such that
((µ1p1, . . . , µSpS), x

∗) is an Arrow-Debreu equilibrium.
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Sketch of the Proof (1/4)

▶ Denote

BAD
i (p) = {xi ∈ RLS

+ |
∑

s p
′
s(xsi − ωsi) ≤ 0}

and

BR
i (q, p) = {xi ∈ RLS

+ | ∃ zi ∈ RK s.t.

q′zi ≤ 0 and mi ≤ ΛRzi},

where

mi = (p′1(x1i − ω1i), . . . , p
′
S(xSi − ωSi))

′ ∈ RS .
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Sketch of the Proof (2/4)

(i) Let (p, x∗) be an Arrow-Debreu equilibrium.

▶ Denote

Λ =

p11 0
. . .

0 p1S

 .

Then

ΛR =

p11r11 · · · p11r1K
...

. . .
...

p1SrS1 · · · p1SrSK

 .

Let

q′ = 1′ΛR ( ⇐⇒ qk =
∑

s p1srsk ∀ k).
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Sketch of the Proof (3/4)

▶ WTS: x∗i ∈ BR
i (q, p) and xi ∈ BR

i (q, p) ⇒ xi ∈ BAD
i (p).

▶ Let

m∗
i = (p′1(x

∗
1i − ω1i), . . . , p

′
S(x

∗
Si − ωSi))

′ ∈ RS .

▶ Since rankΛR = S by completeness,
for each i = 1, . . . , I − 1, there exists z∗i such that

m∗
i = ΛRz∗i .

Define

z∗I = −(z∗1 + · · ·+ z∗I−1).

▶ Show x∗i ∈ BR
i (q, p).
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Sketch of the Proof (4/4)
(ii) Let (q, p, z∗, x∗) be a Radner equilibrium.

Assume without loss of generality that p1s = 1 for all s.

▶ By Proposition 8.1, there exists µ ∈ RS
++ such that q′ = µ′R.

▶ WTS: x∗i ∈ BAD
i (µ1p1, . . . , µSpS) and

xi ∈ BAD
i (µ1p1, . . . , µSpS) ⇒ xi ∈ BR

i (q, p).

▶ For the former,∑
s µsp

′
s(xsi − ωsi) ≤

∑
s µs(Rzi)s = µ′Rzi = q′zi ≤ 0.

▶ For the latter,
by the completeness, there exists zi such that mi = Rzi.

Then,

q′zi = µ′Rzi = µ′mi ≤ 0.
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