8. General Equilibrium under Uncertainty

Daisuke Oyama

Microeconomics I

July 17, 2025

Contingent Commodities

- $label{eq:lambda}
 label{eq:lambda}
 label{eq:$
- $i = 1, \dots, I$: consumers
- \triangleright $j=1,\ldots,J$: firms
- $ightharpoonup s=1,\ldots,S$: states of the world
- State-contingent commodity (ℓ, s) :
 a title to receive a unit of commodity ℓ when state s is realized.
- State-contingent commodity vector: $x = (x_{11}, \dots, x_{L1}, \dots, x_{1S}, \dots, x_{LS}) \in \mathbb{R}^{LS}$

- ► Endowments for consumer i: $\omega_i = (\omega_{11}, \dots, \omega_{L1}, \dots, \omega_{1S}, \dots, \omega_{LS}) \in \mathbb{R}^{LS}$
- $\triangleright z_i$: consumer *i*'s preference relation on a consumption set
- $X_i \subset \mathbb{R}^{LS}$
- $ightharpoonup Y_j \subset \mathbb{R}^{LS}$: firm j's production set
- ▶ $y_j \in Y_j$: state-contingent production plan
- θ_{ij} : share of firm j owned by consumer i (state independent, for simplicity)

Assumption

- For every contingent commodity (ℓ, s) , there is a market with price $p_{\ell s}$.
- ▶ These markets open before uncertainty is resolved.

Arrow-Debreu Equilibrium

Definition 8.1

$$(p^*,(x_i^*)_{i=1}^I,(y_j^*)_{j=1}^J)\in\mathbb{R}^{LS}\times\prod_{i=1}^IX_i\times\prod_{j=1}^JY_j$$
 is an Arrow-Debreu equilibrium if

- 1. for each j, $p^* \cdot y_j^* \ge p^* \cdot y_j$ for all $y_j \in Y_j$;
- 2. for each i, $x_i^* \succsim_i x_i$ for all $x_i \in \{x_i \in X_i \mid p^* \cdot x_i \leq p^* \cdot \omega_i + \sum_{j=1}^J \theta_{ij} p^* \cdot y_j^*\}$; and
- 3. $\sum_{i=1}^{I} x_i^* = \sum_{j=1}^{J} y_j^* + \sum_{i=1}^{I} \omega_i$.

▶ This is just a particular case of Walrasian equilibrium.

The Welfare Theorems hold under the usual assumptions.

Example 1

- $I = 2 \ (i = A, B), \ L = 1, \ S = \{1, 2\}$
- $\omega_A = (\omega_{1A}, \omega_{2A}) = (1, 0)$ $\omega_B = (\omega_{1B}, \omega_{2B}) = (0, 1)$
 - $\bar{\omega}_s = \omega_{sA} + \omega_{sB} = 1$ for all $s \in S$
 - · · · There is no aggregate uncertainty
- $ightharpoonup \gtrsim_i$ is represented by

$$\pi_{1i}u_i(x_{1i}) + \pi_{2i}u_i(x_{2i})$$

- $ightharpoonup \pi_{si}$: i's subjective probability of state $s \in S$
- $u_i' > 0, u_i'' < 0$
- $MRS_{12i}(x_{1i}, x_{2i}) = \frac{\pi_{1i}u_i'(x_{1i})}{\pi_{2i}u_i'(x_{2i})}$

- $\max \pi_{1i} u_i(x_{1i}) + \pi_{2i} u_i(x_{2i})$
subject to $p_1 x_{1i} + p_2 x_{1i} \le p_1 \omega_{1i} + p_2 \omega_{2i}$
- ► Equilibrium conditions:

$$x_{1A} + x_{1B} = \bar{\omega}_1 \ (= 1)$$

 $x_{2A} + x_{2B} = \bar{\omega}_2 \ (= 1)$

Case (a):
$$\frac{\pi_{1A}}{\pi_{2A}} = \frac{\pi_{1B}}{\pi_{2B}}$$

► On the contract curve:

$$\frac{u_A'(x_{1A})}{u_A'(x_{2A})} = \frac{u_B'(\bar{\omega}_1 - x_{1A})}{u_B'(\bar{\omega}_2 - x_{2A})}, \quad \bar{\omega}_1 = \bar{\omega}_2 = 1$$

$$\Rightarrow x_{1A} = x_{2A}$$

► In the equilibrium:

$$\frac{p_1^*}{p_2^*} = \frac{\pi_{1A}}{\pi_{2A}} = \frac{\pi_{1B}}{\pi_{2B}}$$

$$x_{1i}^* = x_{2i}^* \qquad \cdots \text{ consumers insure completely}$$

Case (b):
$$\frac{\pi_{1A}}{\pi_{2A}} < \frac{\pi_{1B}}{\pi_{2B}}$$

► On 45 degree line:

$$MRS_{12i} = \frac{\pi_{1i}}{\pi_{2i}}$$

► In the equilibrium:

$$\begin{split} \frac{\pi_{1A}}{\pi_{2A}} &< \frac{p_1^*}{p_2^*} < \frac{\pi_{1B}}{\pi_{2B}} \\ x_{1A}^* &< x_{2A}^*, \ x_{1B}^* > x_{2B}^* \end{split}$$

 \cdots consumer's consumption is higher in the state he thinks more likely (relative to the other's beliefs)

Example 2

► Same as in Example 1 Case (a) except:

$$\omega_A = (\omega_{1A}, \omega_{2A}) = (2, 0)$$

 $\omega_B = (\omega_{1B}, \omega_{2B}) = (0, 1)$

$$\bar{\omega}_1 = 2 > \bar{\omega}_2 = 1$$

· · · There is aggregate uncertainty

$$\qquad \qquad \frac{\pi_{1A}}{\pi_{2A}} = \frac{\pi_{1B}}{\pi_{2B}} = \frac{\pi_1}{\pi_2}$$

On the contract curve:

$$MRS_{12i} < \frac{\pi_1}{\pi_2}$$
 for each $i = A, B$

On the contract curve:

$$\frac{\pi_1}{\pi_2} \frac{u_A'(x_{1A})}{u_A'(x_{2A})} = \frac{\pi_1}{\pi_2} \frac{u_B'(\bar{\omega}_1 - x_{1A})}{u_B'(\bar{\omega}_2 - x_{2A})}$$

▶ If $x_{1A} \le x_{2A}$:

$$\qquad \qquad \frac{u_A'(x_{1A})}{u_A'(x_{2A})} \geq 1 \text{ (by concavity)}$$

$$\bar{\omega}_1 - x_{1A} > (\bar{\omega}_2 - x_{2A} \text{ (since } \bar{\omega}_1 > \bar{\omega}_2)$$

$$\Rightarrow \frac{u_B'(\bar{\omega}_1 - x_{1A})}{u_B'(\bar{\omega}_2 - x_{2A})} < 1 \text{ (by concavity)}$$

- ► Therefore, $x_{1A} > x_{2A}$, and hence $\frac{u'_A(x_{1A})}{u'_+(x_{2A})} < 1$ (by concavity)
- ▶ In the equilibrium: $\frac{p_1^*}{p_2^*} < \frac{\pi_1}{\pi_2}$
 - ▶ In particular, if $\pi_1 = \pi_2$, then $p_1^* < p_2^*$

Asset Markets

- $label{eq:lambda}
 label{eq:lambda}
 label{eq:lambda}
 label{eq:lambda} \ell = 1, \ldots, L: physical commodities$
- $i = 1, \dots, I$: consumers
- $ightharpoonup s=1,\ldots,S$: states of the world
- $ightharpoonup \succsim_i$: i's preference relation on \mathbb{R}_+^{LS} with a utility function representation U_i (assumed to be strongly monotone)
- ▶ After uncertainty is resolved, spot markets open at t = 1.
- A price vector at state s is denoted by $p_s \in \mathbb{R}^L$, and the overall price vector by $p \in \mathbb{R}^{LS}$.

Assets

Asset markets open at t = 0.

We consider real assets, where returns are in units of commodity 1.

▶ An asset is identified with its return vector:

$$r = (r_1, \ldots, r_S)' \in \mathbb{R}^S$$
.

(Here we always consider vectors as column vectors.)

- Examples:
 - ▶ $\mathbf{1} = (1, ..., 1)'$: "commodity futures"
 - $e_s = (0, \dots, 0, 1, 0, \dots, 0)'$ (sth unit vector): called an "Arrow security".

Example: Derivative Assets

▶ The *call option* on an asset $r \in \mathbb{R}^S$ ("primary asset") at the strike price $c \in \mathbb{R}$:

$$r(c) = (\max\{0, r_1 - c\}, \dots, \max\{0, r_S - c\})'.$$

It gives the option to buy a unit of r at price c after the state is realized.

▶ For example, if S = 4 and r = (4, 3, 2, 1)',

$$r(3.5) = (0.5, 0, 0, 0)',$$

$$r(2.5) = (1.5, 0.5, 0, 0)',$$

$$r(1.5) = (2.5, 1.5, 0.5, 0)'.$$

Return Matrix

- We fix K assets, $r_1, \ldots, r_K \in \mathbb{R}^S$, as given. We assume that $r_k \geq 0$, $r_k \neq 0$ for all k.
- ightharpoonup The $S \times K$ matrix

$$R = \begin{pmatrix} r_1 & \cdots & r_K \end{pmatrix} = \begin{pmatrix} r_{11} & \cdots & r_{1K} \\ \vdots & \ddots & \vdots \\ r_{S1} & \cdots & r_{SK} \end{pmatrix}$$

is called the return matrix.

- ▶ A vector of trades in these assets, $z = (z_1, ..., z_K)' \in \mathbb{R}^K$, is called a *portfolio*.
- ▶ An asset price vector is denoted by $q = (q_1, ..., q_K)' \in \mathbb{R}^K$.

Equilibrium

Definition 8.2

$$(q,p,(z_i^*)_{i=1}^I,(x_i^*)_{i=1}^I)\in\mathbb{R}^K\times\mathbb{R}^{LS}\times(\mathbb{R}^K)^I\times(\mathbb{R}_+^{LS})^I$$
 is a Radner equilibrium if:

(i) for all i, (z_i^*, x_i^*) solves

$$\begin{aligned} \max_{z_i \in \mathbb{R}^K,\, x_i \in \mathbb{R}_+^{LS}} & U_i(x_i) \\ \text{s.t.} \quad & \sum_k q_k z_{ki} \leq 0 \\ & p_s' x_{si} \leq p_s' \omega_{si} + \sum_k p_{1s} z_{ki} r_{sk} \text{ for all } s; \end{aligned}$$

(ii)
$$\sum_i z_i^* \le 0$$
 and $\sum_i x_i^* \le \sum_i \omega_i$.

Price Normalization and Budget Constraint

- Normalize $p_{1s} = 1$ for all s.
- ▶ Budget constraint of *i*:

$$B_i(q, p, R) = \{x_i \in \mathbb{R}_+^{LS} \mid \exists z_i \in R^K \text{ s.t.}$$

$$q'z_i \leq 0 \text{ and } m_i \leq Rz_i\},$$

where

$$m_i = (p'_1(x_{1i} - \omega_{1i}), \dots, p'_S(x_{Si} - \omega_{Si}))' \in \mathbb{R}^S.$$

State Prices

Proposition 8.1

If $q \in \mathbb{R}^K$ is an asset price vector in a Radner equilibrium, then there exists $\mu \in \mathbb{R}^S_{++}$ such that $q' = \mu' R$.

- $\blacktriangleright \mu$ is called a *state price vector*.
- \blacktriangleright μ_s is the shadow price of the state-contingent commodity for state s.
- $ightharpoonup q' = \mu' R \iff$

$$(q_1 \cdots q_K) = (\mu_1 \cdots \mu_S) \begin{pmatrix} r_{11} \cdots r_{1K} \\ \vdots & \ddots & \vdots \\ r_{S1} \cdots & r_{SK} \end{pmatrix}$$
$$= (\sum_s \mu_s r_{s1} \cdots \sum_s \mu_s r_{sK}).$$

Proof 1 (1/2)

- ▶ $q \in \mathbb{R}^K$ is arbitrage free if there is no portfolio $z \in \mathbb{R}^K$ such that $q'z \leq 0$, $Rz \geq 0$, and $[q'z \neq 0 \text{ or } Rz \neq 0]$.
- Under our assumption that $r_k \ge 0$, $r_k \ne 0$ for all k, an arbitrage free price vector must be strictly positive, and hence the above definition is equivalent to the definition in MWG:

 $q \in \mathbb{R}^K$ is arbitrage free if and only if there is no portfolio $z \in \mathbb{R}^K$ such that $q'z \leq 0$, $Rz \geq 0$, and $Rz \neq 0$.

(I.e., there is no portfolio that is budgetarily feasible and that yields a nonnegative return in every state and a strictly positive return in some state.)

- ▶ Under strongly monotone preferences, an equilibrium asset price vector $q \in \mathbb{R}^K$ is arbitrage free.
- ▶ Proposition 8.1 follows from the following lemma.

Proof 1 (2/2)

Lemma 8.2

For any $R \in \mathbb{R}^{S \times K}$, $q \in \mathbb{R}^K$ is arbitrage free if and only if there exists $\mu \in \mathbb{R}^S_{++}$ such that $q' = \mu' R$.

Proof by "Stiemke's Lemma".

Proof 2 (1/2)

- Choose any consumer i. Assume that U_i has a representation $U_i(x_{1i},\ldots,x_{Si})=\sum_s \pi_{si}u_{si}(x_{si})$ $(\pi_{si}>0)$ where u_{si} are concave, strictly increasing, and differentiable.
- ▶ Denote by v_{si} the indirect utility function derived from u_{si} .
- Let q, p be the equilibrium prices, and consider

$$\begin{aligned} & \max_{z_i \in \mathbb{R}^K} & \sum_{s} \pi_{si} v_{si} (p_s, p_s' \omega_{si} + \sum_{k} r_{sk} z_{ki}) \\ & \text{s.t.} & \sum_{k} q_k z_{ki} \leq 0. \end{aligned}$$

The equilibrium portfolio plan z_i^* must satisfy the FOC with some $\alpha_i > 0$ (Lagrange multiplier):

$$\sum_s \pi_{si} \frac{\partial v_{si}}{\partial w_{si}}(p_s, w_{si}^*) \, r_{sk} = \alpha_i q_k \text{ for all } k,$$
 where $w_{si}^* = p_s' \omega_{si} + \sum_k r_{sk} z_{ki}^*$.

Proof 2 (2/2)

ightharpoonup Define $\mu \in \mathbb{R}^S_{++}$ by

$$\mu_s = \frac{\pi_{si}}{\alpha_i} \frac{\partial v_{si}}{\partial w_{si}} (p_s, w_{si}^*).$$

- ▶ This satisfies $q' = \mu' R$.
- Note: choice of a different consumer may lead to a different μ .

Complete Markets

Definition 8.3

An asset structure with an $S \times K$ return matrix R is complete if $\operatorname{rank} R = S$, i.e.,

$$\{v \in \mathbb{R}^S \mid v = Rz \text{ for some } z \in \mathbb{R}^K\} = \mathbb{R}^S.$$

Example:

$$R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(where all the Arrow securities are available) is complete.

Example:

$$R = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

is not complete.

No portfolio can give, for example, a return vector (0,0,1)'.

Equivalence between Radner and Arrow-Debreu Equilibria

Proposition 8.3

Assume that the asset structure is complete.

- (i) If $(p, x^*) \in \mathbb{R}_{++}^{LS} \times (\mathbb{R}_{+}^{LS})^I$ is an Arrow-Debreu equilibrium, then there $q \in \mathbb{R}_{++}^K$ and $z^* \in (\mathbb{R}^K)^I$ such that (q, p, z^*, x^*) is a Radner equilibrium.
- (ii) If $(q, p, z^*, x^*) \in \mathbb{R}_{++}^K \times \mathbb{R}_{++}^{LS} \times (\mathbb{R}^K)^I \times (\mathbb{R}_+^{LS})^I$ is a Radner equilibrium, then there exists $\mu \in \mathbb{R}_{++}^S$ such that $((\mu_1 p_1, \dots, \mu_S p_S), x^*)$ is an Arrow-Debreu equilibrium.

Sketch of the Proof (1/4)

Denote

$$B_i^{\mathrm{AD}}(p) = \{x_i \in \mathbb{R}_+^{LS} \mid \sum_s p_s'(x_{si} - \omega_{si}) \le 0\}$$

and

$$B_i^{\mathrm{R}}(q,p) = \{ x_i \in \mathbb{R}_+^{LS} \mid \exists z_i \in R^K \text{ s.t.}$$
$$q'z_i \le 0 \text{ and } m_i \le \Lambda R z_i \},$$

where

$$m_i = (p'_1(x_{1i} - \omega_{1i}), \dots, p'_S(x_{Si} - \omega_{Si}))' \in \mathbb{R}^S.$$

Sketch of the Proof (2/4)

- (i) Let (p, x^*) be an Arrow-Debreu equilibrium.
 - Denote

$$\Lambda = \begin{pmatrix} p_{11} & 0 \\ & \ddots & \\ 0 & p_{1S} \end{pmatrix}.$$

Then

$$\Lambda R = \begin{pmatrix} p_{11}r_{11} & \cdots & p_{11}r_{1K} \\ \vdots & \ddots & \vdots \\ p_{1S}r_{S1} & \cdots & p_{1S}r_{SK} \end{pmatrix}.$$

Let

$$q' = \mathbf{1}' \Lambda R$$
 $(\iff q_k = \sum_s p_{1s} r_{sk} \ \forall \ k).$

Sketch of the Proof (3/4)

- ▶ WTS: $x_i^* \in B_i^{\mathrm{R}}(q,p)$ and $x_i \in B_i^{\mathrm{R}}(q,p) \Rightarrow x_i \in B_i^{\mathrm{AD}}(p)$.
- Let

$$m_i^* = (p_1'(x_{1i}^* - \omega_{1i}), \dots, p_S'(x_{Si}^* - \omega_{Si}))' \in \mathbb{R}^S.$$

Since $\operatorname{rank} \Lambda R = S$ by completeness, for each $i=1,\ldots,I-1$, there exists z_i^* such that

$$m_i^* = \Lambda R z_i^*.$$

Define

$$z_I^* = -(z_1^* + \dots + z_{I-1}^*).$$

▶ Show $x_i^* \in B_i^{\mathbf{R}}(q, p)$.

Sketch of the Proof (4/4)

(ii) Let (q, p, z^*, x^*) be a Radner equilibrium.

Assume without loss of generality that $p_{1s} = 1$ for all s.

- ▶ By Proposition 8.1, there exists $\mu \in \mathbb{R}_{++}^S$ such that $q' = \mu' R$.
- ► WTS: $x_i^* \in B_i^{\mathrm{AD}}(\mu_1 p_1, \dots, \mu_S p_S)$ and $x_i \in B_i^{\mathrm{AD}}(\mu_1 p_1, \dots, \mu_S p_S) \Rightarrow x_i \in B_i^{\mathrm{R}}(q, p)$.
- For the former,

$$\sum_{s} \mu_{s} p'_{s}(x_{si} - \omega_{si}) \le \sum_{s} \mu_{s}(Rz_{i})_{s} = \mu' Rz_{i} = q'z_{i} \le 0.$$

▶ For the latter, by the completeness, there exists z_i such that $m_i = Rz_i$.

Then,

$$q'z_i = \mu' R z_i = \mu' m_i \le 0.$$