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Notations

▶ N = {1, 2, 3, . . .}: the set of natural numbers

▶ R: the set of real numbers

▶ R+: the set of nonnegative real numbers

▶ R++: the set of positive real numbers

▶ RN : the set of N -dimensional vectors

▶ RN
+ : the set of N -dimensional nonnegative vectors

▶ RN
++: the set of N -dimensional positive vectors
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▶ For x = (x1, . . . , xN ) ∈ RN ,

∥x∥ =
√

(x1)2 + · · ·+ (xN )2.

▶ For p = (p1, . . . , pN ) ∈ RN and x = (x1, . . . , xN ) ∈ RN ,

p · x = p1x1 + · · ·+ pNxN .

(Sometimes written as “px” without “·”)
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Maximum/Minimum and Supremum/Infimum

▶ For A ⊂ R, A ̸= ∅,
▶ x ∈ R is the maximum of A, denoted maxA, if

▶ x ∈ A, and

▶ y ≤ x for all y ∈ A;

▶ x ∈ R is the minimum of A, denoted minA, if

▶ x ∈ A, and

▶ x ≤ y for all y ∈ A.
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▶ Supremum
= “generalization” of maximum (least upper bound)

▶ Infimum
= “generalization” of minimum (greatest lower bound)

▶ Example:

▶ For A = [0, 1]: supA = 1

(Note supA ∈ A, so supA = maxA)

▶ For A = [0, 1): supA = 1

(A has no maximum.)

▶ For A = [0,∞): A has no supremum.

(Sometimes we write supA = ∞.)
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▶ Any nonempty subset A of R that is bounded above has
a (finite) supremum.

▶ Any nonempty subset A of R that is bounded below has
a (finite) infimum.

▶ In general supA /∈ A, but supA can be “approached
arbitrarily closely” by elements of A.
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Convergence in RN

▶ A sequence in RN is a function from N to RN .

A sequence is denoted by {xm}∞m=1, or simply {xm}, or xm.

Definition 0.1
A sequence {xm}∞m=1 converges to x̄ ∈ RN if
for any ε > 0, there exists M ∈ N such that

∥xm − x̄∥ < ε for all m ≥ M.

In this case, we write limm→∞ xm = x̄ or xm → x̄ (as m → ∞).

▶ x̄ is called the limit of {xm}∞m=1.

▶ A sequence that converges to some x̄ ∈ RN is said to be convergent.
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Examples/Properties

▶ The sequence
{

1
m

}∞
m=1

in R converges to 0.

▶ For sequences {xm}∞m=1 and {ym}∞m=1 in RN ,

if xm → x and ym → y, then xm + ym → x+ y and
cxm → cx for any c ∈ R.

▶ For sequences {xm}∞m=1, {ym}∞m=1, and {zm}∞m=1 in R,
▶ if xm ≤ ym for all m and if xm → x and ym → y,

then x ≤ y;

▶ if xm ≤ ym ≤ zm for all m and if xm → x and zm → x,
then ym → x.
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Open Sets and Closed Sets in RN

▶ For x ∈ RN , the ε-open ball around x:

Bε(x) = {y ∈ RN | ∥y − x∥ < ε}.

Definition 0.2
▶ A ⊂ RN is an open set if for any x ∈ A, there exists ε > 0

such that Bε(x) ⊂ A.

▶ A ⊂ RN is a closed set if RN \A is an open set.
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Examples

▶ In R,
▶ (0, 1): open

▶ [0, 1]: closed

▶ (0, 1]: not open, not closed

▶ In RN , ∅ and RN are open and closed.

▶ In RN , RN
+ is closed.

▶ For p = (p1, . . . , pN ) ∈ RN and w ∈ R,

{x ∈ RN
+ | p · x ≤ w}

is a closed set.
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Relative Openness and Relative Closedness

Definition 0.3
For X ⊂ RN ,

▶ A ⊂ X is an open set relative to X if for any x ∈ A,
there exists ε > 0 such that (Bε(x) ∩X) ⊂ A.

▶ A ⊂ X is a closed set relative to X if X \A is an open set
relative to X.
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Characterization of Closed Sets

Proposition 0.1

The following statements are equivalent:

1. A ⊂ RN is a closed set.

2. For any sequence {xm}∞m=1 in A with xm → x̄ ∈ RN ,
we have x̄ ∈ A.
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Proof

1 ⇒ 2

▶ We prove its contrapositive “not 2 ⇒ not 1”.

▶ Suppose that there exist a sequence {xm} in A and x̄ ∈ RN

such that xm → x̄ and x̄ /∈ A (i.e., x̄ ∈ RN \A).

▶ Since xm → x̄, for any ε > 0 we have xm ∈ Bε(x̄) for some
m, where xm ∈ A.

▶ This means that Bε(x̄) ∩A ̸= ∅, i.e., Bε(x̄) ̸⊂ RN \A.

▶ We have shown that there exists some x̄ ∈ RN \A such that
Bε(x̄) ̸⊂ RN \A for any ε > 0.

▶ Hence, RN \A is not open, i.e., A is not closed.
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2 ⇒ 1

▶ We prove its contrapositive “not 1 ⇒ not 2”.

▶ Suppose that A is not closed, i.e., RN \A is not open.

▶ Then there exists some x̄ ∈ RN \A such that for any ε > 0,
we have Bε(x̄) ̸⊂ RN \A, i.e., Bε(x̄) ∩A ̸= ∅.

▶ For each m ∈ N, take any xm ∈ B 1
m
(x̄) ∩A.

▶ Then {xm} is a sequence in A and converges to x̄ /∈ A.

▶ We have shown that there exists a convergent sequence in A
whose limit is not in A.
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Characterization of (Relative) Closed Sets

Proposition 0.2

For X ⊂ RN , the following statements are equivalent:

1. A ⊂ X is a closed set relative to X.

2. For any sequence {xm}∞m=1 in A with xm → x̄ ∈ X,
we have x̄ ∈ A.
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Compact Sets

▶ A ⊂ RN is bounded if there exists r ∈ R such that ∥x∥ < r
for all x ∈ A.

Definition 0.4
A ⊂ RN is compact if it is bounded and closed.

Examples:

▶ [0, 1] ⊂ R is compact.

▶ [0,∞) ⊂ R is not compact.

▶ (0, 1] ⊂ R is not compact.

▶ For p ∈ RN
++, {x ∈ RN

+ | p · x ≤ w} is compact.

15 / 23



Characterizations of Compact Sets

Proposition 0.3

For A ⊂ RN , the following statements are equivalent:

1. A is compact.

2. For every sequence {xm} ⊂ A,
there exist a subsequence {xm(k)} of {xm} and a point x ∈ A
such that xm(k) → x.
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Characterizations of Compact Sets

▶ A family {Fλ}λ∈Λ of subsets of RN satisfies
the finite intersection property if for any finite subfamily
{Fλi

}i=1,...,k of {Fλ}λ∈Λ, we have
∩k

i=1 Fλi
̸= ∅.

Proposition 0.4

For A ⊂ RN , the following statements are equivalent:

1. A ⊂ RN is compact.

2. For any family {Fλ}λ∈Λ of closed (relative to A) subsets of A
that satisfies the finite intersection property, we have∩

λ∈Λ Fλ ̸= ∅.
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Continuous Functions

Let X be a nonempty subset of RN .

Definition 0.5
▶ A function f : X → RK is continuous at x̄ ∈ X if

for any sequence {xm} ⊂ X such that xm → x̄ as m → ∞,
we have f(xm) → f(x̄) as m → ∞

(i.e., limm→∞ f(xm) = f(limm→∞ xm)).

▶ f : X → RK is continuous if it is continuous at all x̄ ∈ X.
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Examples/Properties

▶ For p ∈ RN , the function f : RN → R defined by f(x) = p · x
is continuous.

▶ Suppose that f : X → R is a continuous function.

For any c ∈ R,
▶ {x ∈ X | f(x) ≥ c} and {x ∈ X | f(x) ≤ c} are closed sets

relative to X.

▶ {x ∈ X | f(x) > c} and {x ∈ X | f(x) < c} are open sets
relative to X.
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▶ Proof of closedness of A = {x ∈ X | f(x) ≥ c}:
▶ Take any sequence {xm} in A, and assume that xm → x̄ ∈ X.

▶ Then f(xm) ≥ c for all m, but by the continuity of f , we have
f(xm) → f(x̄).

▶ Therefore, we have f(x̄) ≥ c, which means that x̄ ∈ A.

▶ Therefore, A is a closed set (relative to X).
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Extreme Value Theorem

Proposition 0.5

If X ⊂ RN is a nonempty compact set and
f : X → R is a continuous function,
then f has a maximizer and a minimizer, i.e.,
there exist x∗, x∗∗ ∈ X such that f(x∗∗) ≤ f(x) ≤ f(x∗) ∀x ∈ X.
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Proof

▶ For each x ∈ X, define

Fx = {y ∈ X | f(y) ≥ f(x)}.

▶ By the continuity of f , Fx is a closed set (relative to X) for
each x ∈ X.

▶ {Fx}x∈X satisfies the finite intersection property:

▶ Take any finite subset {x1, . . . , xk} of X.

▶ Let i∗ = 1, . . . , k be such that
f(xi∗) = max{f(x1), . . . , f(xk)}.

▶ Then xi∗ ∈ Fxi for all i = 1, . . . , k.

▶ Therefore,
∩k

i=1 Fxi ̸= ∅.
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▶ Since X is a compact set, we therefore have
∩

x∈X Fx ̸= ∅ by
Proposition 0.4.

▶ Take any x∗ ∈
∩

x∈X Fx.

It satisfies x∗ ∈ X and f(x∗) ≥ f(x) for all x ∈ X,
which means that it is a maximizer of f on X.
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