0. Basic Mathemetics

Daisuke Oyama

Microeconomics I

April 10, 2025

Notations

• $\mathbb{N} = \{1, 2, 3, \ldots\}$: the set of natural numbers

- \blacktriangleright \mathbb{R} : the set of real numbers
- \mathbb{R}_+ : the set of nonnegative real numbers
- \mathbb{R}_{++} : the set of positive real numbers
- \mathbb{R}^N : the set of *N*-dimensional vectors
- ▶ \mathbb{R}^N_+ : the set of *N*-dimensional nonnegative vectors
- ▶ \mathbb{R}^{N}_{++} : the set of *N*-dimensional positive vectors

(Sometimes written as "px" without ".")

Maximum/Minimum and Supremum/Infimum

- For $A \subset \mathbb{R}$, $A \neq \emptyset$,
 - $x \in \mathbb{R}$ is the maximum of A, denoted max A, if
 - $\blacktriangleright \ x \in A \text{, and}$
 - $y \leq x$ for all $y \in A$;
 - $x \in \mathbb{R}$ is the minimum of A, denoted min A, if
 - $\blacktriangleright \ x \in A, \text{ and }$
 - $\blacktriangleright \ x \le y \text{ for all } y \in A.$

Supremum

= "generalization" of maximum (least upper bound)

- Infimum
 - = "generalization" of minimum (greatest lower bound)

Example:

For A = [0, 1]: sup A = 1
(Note sup A ∈ A, so sup A = max A)

• For
$$A = [0, 1)$$
: sup $A = 1$

(A has no maximum.)

For $A = [0, \infty)$: A has no supremum.

(Sometimes we write $\sup A = \infty$.)

- Any nonempty subset A of ℝ that is bounded above has a (finite) supremum.
- Any nonempty subset A of ℝ that is bounded below has a (finite) infimum.
- In general sup A ∉ A, but sup A can be "approached arbitrarily closely" by elements of A.

Convergence in \mathbb{R}^N

• A sequence in \mathbb{R}^N is a function from \mathbb{N} to \mathbb{R}^N .

A sequence is denoted by $\{x^m\}_{m=1}^{\infty}$, or simply $\{x^m\}$, or x^m .

Definition 0.1

A sequence $\{x^m\}_{m=1}^{\infty}$ converges to $\bar{x} \in \mathbb{R}^N$ if for any $\varepsilon > 0$, there exists $M \in \mathbb{N}$ such that

$$||x^m - \bar{x}|| < \varepsilon$$
 for all $m \ge M$.

In this case, we write $\lim_{m\to\infty} x^m = \bar{x}$ or $x^m \to \bar{x}$ (as $m \to \infty$).

• \bar{x} is called the *limit* of $\{x^m\}_{m=1}^{\infty}$.

A sequence that converges to some $\bar{x} \in \mathbb{R}^N$ is said to be *convergent*.

Examples/Properties

- The sequence $\left\{\frac{1}{m}\right\}_{m=1}^{\infty}$ in \mathbb{R} converges to 0.
- For sequences $\{x^m\}_{m=1}^{\infty}$ and $\{y^m\}_{m=1}^{\infty}$ in \mathbb{R}^N , if $x^m \to x$ and $y^m \to y$, then $x^m + y^m \to x + y$ and $cx^m \to cx$ for any $c \in \mathbb{R}$.
- ▶ For sequences $\{x^m\}_{m=1}^{\infty}$, $\{y^m\}_{m=1}^{\infty}$, and $\{z^m\}_{m=1}^{\infty}$ in \mathbb{R} ,
 - if $x^m \leq y^m$ for all m and if $x^m \to x$ and $y^m \to y$, then $x \leq y$;
 - if $x^m \leq y^m \leq z^m$ for all m and if $x^m \to x$ and $z^m \to x$, then $y^m \to x$.

Open Sets and Closed Sets in \mathbb{R}^N

For $x \in \mathbb{R}^N$, the ε -open ball around x:

$$B_{\varepsilon}(x) = \{ y \in \mathbb{R}^N \mid ||y - x|| < \varepsilon \}.$$

Definition 0.2

- $A \subset \mathbb{R}^N$ is an open set if for any $x \in A$, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset A$.
- $A \subset \mathbb{R}^N$ is a closed set if $\mathbb{R}^N \setminus A$ is an open set.

Examples

► In ℝ,

 \blacktriangleright (0,1): open

 \blacktriangleright [0,1]: closed

 \blacktriangleright (0,1]: not open, not closed

▶ In \mathbb{R}^N , Ø and \mathbb{R}^N are open and closed.

▶ In
$$\mathbb{R}^N$$
, \mathbb{R}^N_+ is closed.

• For
$$p = (p_1, \dots, p_N) \in \mathbb{R}^N$$
 and $w \in \mathbb{R}$,

$$\{x \in \mathbb{R}^N_+ \mid p \cdot x \le w\}$$

is a closed set.

Relative Openness and Relative Closedness

Definition 0.3 For $X \subset \mathbb{R}^N$,

- A ⊂ X is an open set relative to X if for any x ∈ A, there exists ε > 0 such that (B_ε(x) ∩ X) ⊂ A.
- A ⊂ X is a closed set relative to X if X \ A is an open set relative to X.

Characterization of Closed Sets

Proposition 0.1

The following statements are equivalent:

- 1. $A \subset \mathbb{R}^N$ is a closed set.
- 2. For any sequence $\{x^m\}_{m=1}^{\infty}$ in A with $x^m \to \bar{x} \in \mathbb{R}^N$, we have $\bar{x} \in A$.

Proof

$1 \Rightarrow 2$

- We prove its contrapositive "not $2 \Rightarrow \text{not } 1$ ".
- Suppose that there exist a sequence $\{x^m\}$ in A and $\bar{x} \in \mathbb{R}^N$ such that $x^m \to \bar{x}$ and $\bar{x} \notin A$ (i.e., $\bar{x} \in \mathbb{R}^N \setminus A$).
- Since $x^m \to \bar{x}$, for any $\varepsilon > 0$ we have $x^m \in B_{\varepsilon}(\bar{x})$ for some m, where $x^m \in A$.
- This means that $B_{\varepsilon}(\bar{x}) \cap A \neq \emptyset$, i.e., $B_{\varepsilon}(\bar{x}) \not\subset \mathbb{R}^N \setminus A$.
- We have shown that there exists some $\bar{x} \in \mathbb{R}^N \setminus A$ such that $B_{\varepsilon}(\bar{x}) \not\subset \mathbb{R}^N \setminus A$ for any $\varepsilon > 0$.
- Hence, $\mathbb{R}^N \setminus A$ is not open, i.e., A is not closed.

$2 \Rightarrow 1$

- We prove its contrapositive "not $1 \Rightarrow \text{not } 2$ ".
- Suppose that A is not closed, i.e., $\mathbb{R}^N \setminus A$ is not open.
- ▶ Then there exists some $\bar{x} \in \mathbb{R}^N \setminus A$ such that for any $\varepsilon > 0$, we have $B_{\varepsilon}(\bar{x}) \not\subset \mathbb{R}^N \setminus A$, i.e., $B_{\varepsilon}(\bar{x}) \cap A \neq \emptyset$.
- For each $m \in \mathbb{N}$, take any $x^m \in B_{\frac{1}{m}}(\bar{x}) \cap A$.
- Then $\{x^m\}$ is a sequence in A and converges to $\bar{x} \notin A$.
- We have shown that there exists a convergent sequence in A whose limit is not in A.

Characterization of (Relative) Closed Sets

Proposition 0.2

For $X \subset \mathbb{R}^N$, the following statements are equivalent:

- 1. $A \subset X$ is a closed set relative to X.
- 2. For any sequence $\{x^m\}_{m=1}^{\infty}$ in A with $x^m \to \bar{x} \in X$, we have $\bar{x} \in A$.

Compact Sets

• $A \subset \mathbb{R}^N$ is bounded if there exists $r \in \mathbb{R}$ such that ||x|| < r for all $x \in A$.

Definition 0.4 $A \subset \mathbb{R}^N$ is compact if it is bounded and closed.

Examples:

- ▶ $[0,1] \subset \mathbb{R}$ is compact.
- ▶ $[0,\infty) \subset \mathbb{R}$ is not compact.
- ▶ $(0,1] \subset \mathbb{R}$ is not compact.
- ▶ For $p \in \mathbb{R}^N_{++}$, $\{x \in \mathbb{R}^N_+ \mid p \cdot x \leq w\}$ is compact.

Characterizations of Compact Sets

Proposition 0.3

For $A \subset \mathbb{R}^N$, the following statements are equivalent:

- 1. A is compact.
- 2. For every sequence $\{x^m\} \subset A$, there exist a subsequence $\{x^{m(k)}\}$ of $\{x^m\}$ and a point $x \in A$ such that $x^{m(k)} \to x$.

Characterizations of Compact Sets

A family {F_λ}_{λ∈Λ} of subsets of ℝ^N satisfies the finite intersection property if for any finite subfamily {F_{λi}}_{i=1,...,k} of {F_λ}_{λ∈Λ}, we have ⋂^k_{i=1} F_{λi} ≠ Ø.

Proposition 0.4 For $A \subset \mathbb{R}^N$, the following statements are equivalent: 1. $A \subset \mathbb{R}^N$ is compact.

 For any family {F_λ}_{λ∈Λ} of closed (relative to A) subsets of A that satisfies the finite intersection property, we have ∩_{λ∈Λ} F_λ ≠ Ø.

Continuous Functions

Let X be a nonempty subset of \mathbb{R}^N .

Definition 0.5

▶ A function $f: X \to \mathbb{R}^K$ is continuous at $\bar{x} \in X$ if for any sequence $\{x^m\} \subset X$ such that $x^m \to \bar{x}$ as $m \to \infty$, we have $f(x^m) \to f(\bar{x})$ as $m \to \infty$

(i.e., $\lim_{m\to\infty} f(x^m) = f(\lim_{m\to\infty} x^m)$).

• $f: X \to \mathbb{R}^K$ is continuous if it is continuous at all $\bar{x} \in X$.

Examples/Properties

- For $p \in \mathbb{R}^N$, the function $f : \mathbb{R}^N \to \mathbb{R}$ defined by $f(x) = p \cdot x$ is continuous.
- Suppose that f: X → ℝ is a continuous function. For any c ∈ ℝ,
 - $\{x \in X \mid f(x) \ge c\}$ and $\{x \in X \mid f(x) \le c\}$ are closed sets relative to X.
 - ▶ ${x \in X \mid f(x) > c}$ and ${x \in X \mid f(x) < c}$ are open sets relative to X.

▶ Proof of closedness of $A = \{x \in X \mid f(x) \ge c\}$:

- Take any sequence $\{x^m\}$ in A, and assume that $x^m \to \bar{x} \in X$.
- ▶ Then $f(x^m) \ge c$ for all m, but by the continuity of f, we have $f(x^m) \to f(\bar{x})$.
- Therefore, we have $f(\bar{x}) \ge c$, which means that $\bar{x} \in A$.
- Therefore, A is a closed set (relative to X).

Extreme Value Theorem

Proposition 0.5

If $X \subset \mathbb{R}^N$ is a nonempty compact set and $f: X \to \mathbb{R}$ is a continuous function, then f has a maximizer and a minimizer, i.e., there exist $x^*, x^{**} \in X$ such that $f(x^{**}) \leq f(x) \leq f(x^*) \ \forall x \in X$.

Proof

For each $x \in X$, define

 $F_x = \{ y \in X \mid f(y) \ge f(x) \}.$

- By the continuity of f, F_x is a closed set (relative to X) for each x ∈ X.
- $\{F_x\}_{x \in X}$ satisfies the finite intersection property:
 - Take any finite subset $\{x^1, \ldots, x^k\}$ of X.

• Let
$$i^* = 1, \dots, k$$
 be such that $f(x^{i^*}) = \max\{f(x^1), \dots, f(x^k)\}$

• Then $x^{i^*} \in F_{x^i}$ for all $i = 1, \ldots, k$.

• Therefore,
$$\bigcap_{i=1}^{k} F_{x^i} \neq \emptyset$$
.

▶ Since X is a compact set, we therefore have $\bigcap_{x \in X} F_x \neq \emptyset$ by Proposition 0.4.

• Take any
$$x^* \in \bigcap_{x \in X} F_x$$
.

It satisfies $x^* \in X$ and $f(x^*) \ge f(x)$ for all $x \in X$, which means that it is a maximizer of f on X.