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Production Sets
▶ Y ⊂ RL: production set

▶ For (y1, . . . , yL) ∈ Y

▶ yℓ > 0 ⇒ ℓ: output

▶ yℓ < 0 ⇒ ℓ: input

▶ Example: Suppose L = 5 and y = (−5, 2,−6, 3, 0) ∈ Y .

▶ revenue = p2 × y2 + p4 × y4

▶ cost = p1 × (−y1) + p3 × (−y3)

▶ profit = [p2 × y2 + p4 × y4]− [p1 × (−y1) + p3 × (−y3)] = p · y

▶ If a production function f : RL−1
+ → R+ is given

where commodity L is the output, then

Y = {(−z1, . . . ,−zL−1, q) | q ≤ f(z1, . . . , zL−1), zℓ ≥ 0}.
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Properties of Production Sets

1. Y is nonempty.

2. Y is closed.

3. No free lunch: Y ∩ RL
+ ⊂ {0}

4. Possibility of inaction: 0 ∈ Y

5. Free disposal: If y ∈ Y and y′ ≤ y, then y′ ∈ Y , or
equivalently, Y − RL

+ ⊂ Y .

(A−B = {c | c = a− b for some a ∈ A and b ∈ B})

6. Irreversibility: If y ∈ Y and y ̸= 0, then −y /∈ Y .
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Properties of Production Sets

7. Nonincreasing returns to scale:
If y ∈ Y , then αy ∈ Y for all α ∈ [0, 1].

8. Nondecreasing returns to scale:
If y ∈ Y , then αy ∈ Y for all α ≥ 1.

9. Constant returns to scale:
If y ∈ Y , then αy ∈ Y for all α ≥ 0.

(I.e., Y is a cone.)

10. Additivity: Y + Y ⊂ Y .

11. Convexity:
If y, y′ ∈ Y , then αy + (1− α)y′ ∈ Y for all α ∈ [0, 1].

12. Y is a convex cone:
If y, y′ ∈ Y , then αy + βy′ ∈ Y for all α ≥ 0 and β ≥ 0.
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Convexity

Proposition 6.1

Y is additive and exhibits nonincreasing returns to scale
if and only if it is a convex cone.
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Constant Returns to Scale

Proposition 6.2

If Y ⊂ RL is convex and 0 ∈ Y , then there is a constant returns,
convex production set Y ′ ⊂ RL+1 such that
Y = {y ∈ RL | (y,−1) ∈ Y ′}.

▶ Decreasing returns reflect the scarcity of some underlying,
unlisted input (“entrepreneurial factor”).

Proof

▶ Let
Y ′ = {y′ ∈ RL+1 | y′ = α(y,−1) for some y ∈ Y and α ≥ 0}.
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Profit Maximization Problem

max
y

p · y (PMP)

s. t. y ∈ Y

▶ Supply correspondence:

y(p) = argmax
y∈Y

p · y

= {y ∈ RL | y ∈ Y and p · y ≥ p · y′ for all y′ ∈ Y }

▶ Profit function:

π(p) = max
y∈Y

p · y

▶ Analogous to expenditure minimization!
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Properties of π and y

Proposition 6.3

Suppose Y is nonempty and closed.

1. π is homogeneous of degree one.

2. π is convex.

3. If Y is convex and satisfies free disposal, then
Y = {y ∈ RL | p · y ≤ π(p) for all p ≥ 0}.

4. y is homogeneous of degree zero.

5. If Y is convex, then y(p) is a convex set for all p.

6. [Hotelling’s lemma] If y(p) is a singleton, then ∇π(p) = y(p).

7. If y is a continuously differentiable function, then Dy(p) is
symmetric and positive semi-definite, and Dy(p)p = 0.
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Separating Hyperplane Theorems

Proposition 6.4 (Strong Separating Hyperplane Theorem)

Suppose that C ⊂ RN , C ̸= ∅, is convex and closed, and
that b /∈ C.
Then there exist p ∈ RN with p ̸= 0 and c ∈ R such that

p · y ≤ c < p · b for all y ∈ C.
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Proposition 6.5 (Supporting Hyperplane Theorem)

Suppose that C ⊂ RN , C ̸= ∅, is convex, and that b /∈ C.
Then there exists p ∈ RN with p ̸= 0 such that

p · y ≤ p · b for all y ∈ C.
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Proposition 6.6 (Separating Hyperplane Theorem)

Suppose that A,B ⊂ RN , A,B ̸= ∅, are convex, and
that A ∩B = ∅.
Then there exists p ∈ RN with p ̸= 0 such that

p · x ≤ p · y for all x ∈ A and y ∈ B.
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Proof

▶ Since A and B are convex,
A−B = {x− y ∈ RN | x ∈ A, y ∈ B} is also convex.

▶ Since A ∩B = ∅, 0 /∈ A−B.

▶ Thus by the Supporting Hyperplane Theorem, there exists
p ∈ RN with p ̸= 0 such that

p · z ≤ p · 0 for all z ∈ A−B,

or

p · x ≤ p · y for all x ∈ A and y ∈ B.
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Separation with Nonnegative/Positive Vectors

Lemma 6.7
For A ⊂ RN , A ̸= ∅, suppose that A− RN

++ ⊂ A.
For p ∈ RN , if there exists c ∈ R such that p · x ≤ c for all x ∈ A,
then p ≥ 0.

Proposition 6.8

Suppose that C ⊂ RN , C ̸= ∅, is convex.
If C ∩ RN

++ = ∅, then there exists p ≥ 0 with p ̸= 0 such that

p · x ≤ 0 for all x ∈ C.

Proof

▶ Consider the convex set A = C − RN
++, where 0 /∈ A.
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Support Function of a Convex Set

For Y ⊂ RN , Y ̸= ∅, define the function ϕY : RN → (−∞,∞] by

ϕY (p) = sup
y∈Y

p · y.

In mathematics, this is called the support function of Y .

Proposition 6.9

Let Y ⊂ RN , Y ̸= ∅, be a closed convex set. Then

Y = {y ∈ RN | p · y ≤ ϕY (p) for all p ∈ RN}.
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Proof

▶ Y ⊂ (RHS): By definition.

▶ Y ⊃ (RHS):

Let ȳ /∈ Y .

▶ Since Y is closed and convex, by the Separating Hyperplane
Theorem, there exist p̄ ̸= 0 and c ∈ R such that

p̄ · y ≤ c < p̄ · ȳ for all y ∈ Y ,

and hence

ϕY (p̄) = sup
y∈Y

p̄ · y ≤ c < p̄ · ȳ.

▶ This means that ȳ /∈ (RHS).
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From Profit Function to Production Set

▶ What additional assumptions are needed to recover Y from
the profit function, which is defined only for nonnegative, or
positive, price vectors (where we allow the profit function to
take values in (−∞,∞])?

Proposition 6.10

If Y is nonempty, convex, and closed and satisfies free disposal,
then

Y = {y ∈ RN | p · y ≤ ϕY (p) for all p ≥ 0}.

▶ Generally, Y ⫋ {y ∈ RN | p · y ≤ ϕY (p) for all p ≫ 0}.
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Proof

▶ Y ⊂ (RHS): Immediate.

▶ Y c ⊂ (RHS)c: Suppose that ȳ /∈ Y .

▶ Since Y is nonempty, convex, and closed, there exist p̄ ̸= 0
and c such that

p̄ · y ≤ c < p̄ · ȳ for all y ∈ Y ,

and hence ϕY (p̄) < p̄ · ȳ, by the Separating Hyperplane
Theorem.

▶ Since Y satisfies free disposal, i.e., Y − RN
+ ⊂ Y (which

implies Y − RN
++ ⊂ Y ), we have p̄ ≥ 0 by Lemma 6.7.

▶ Hence, ȳ /∈ (RHS).
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Proposition 6.11

If Y is nonempty, convex, and closed and satisfies free disposal,
no free production, and the ability to shut down, then

Y = {y ∈ RN | p · y ≤ ϕY (p) for all p ≫ 0}.
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Cost Minimization Problem

f : RL−1
+ → R+: production function

min
z≥0

w · z (CMP)

s. t. f(z) ≥ q

▶ Conditional factor demand correspondence:

z(w, q) = argmin{w · z | z ≥ 0, f(z) ≥ q}

▶ Cost function:

c(w, z) = min{w · z | z ≥ 0, f(z) ≥ q}

▶ Analogous to expenditure minimization!
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Properties of c and z
Proposition 6.12

1. c is homogeneous of degree one in w and nondecreasing in q.

2. c is concave in w.

3. If f is continuous, nondecreasing, and quasi-concave, then
Y = {(−z, q) | z ≥ 0 and w · z ≥ c(w, q) for all w ≫ 0}.

4. z is homogeneous of degree zero in w.

5. If f is quasi-concave, then z(w, q) is a convex set.
If f is continuous and strictly quasi-concave, then z(w, q) is
single-valued.

6. [Shepard’s lemma] If z(w, q) is a singleton, then
∇wc(w, q) = z(w, q).

7. If z is a continuously differentiable function, then Dwz(w, q)
is symmetric and negative semi-definite, and Dwz(w, q)w = 0.
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8. If f is homogeneous of degree one (i.e., exhibits constant
returns to scale), then c and z are homogeneous of degree one
in q.

9. If f is concave, then c is convex in q.
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Proof

8

▶ Fix any w, q, and t > 0. (We write c(q) for c(w, q).)

▶ Take any z ≥ 0 such that f(z) ≥ q.

▶ By homogeneity, we have f(tz) ≥ tq.

Therefore, c(tq) ≤ w · (tz) = t(w · z), or 1
t c(tq) ≤ w · z.

▶ This implies that 1
t c(tq) ≤ c(q).

▶ Take any z ≥ 0 such that f(z) ≥ tq.

▶ By homogeneity, we have f(1t z) ≥ q.

Therefore, c(q) ≤ w · (1t z) =
1
t (w · z), or tc(q) ≤ w · z.

▶ This implies that tc(q) ≤ c(tq).
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▶ (We write z(q) for z(w, q).)

z ∈ z(tq)

⇐⇒ z ≥ 0, f(z) ≥ tq, w · z = c(tq)

⇐⇒ 1
t z ≥ 0, f(1t z) ≥ q, w · (1t z) = c(q)

⇐⇒ 1
t z ∈ z(q)

⇐⇒ z ∈ 1
t z(q)
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9

▶ Take any q, q′, and α ∈ [0, 1].

Write q′′ = αq + (1− α)q′.

▶ Let z, z′ ≥ 0 be such that f(z) ≥ q, f(z′) ≥ q′, c(q) = w · z,
and c(q′) = w · z′.

▶ By concavity, f(αz + (1− α)z′) ≥ q′′.

▶ Then we have

c(q′′) ≤ w · (αz + (1− α)z′) = αw · z + (1− α)w · z′

= αc(q) + (1− α)c(q′).
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Aggregation

▶ Y1, . . . , YJ : production sets of J firms

▶ πj : firm j’s profit function

▶ yj : firm j’s supply correspondence

▶ Aggregate supply correspondence:

y(p) =

J∑
j=1

yj(p)

= {y ∈ RL | y =
∑

j yj for some yj ∈ yj(p), j = 1, . . . , J}
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▶ Aggregate production set:

Y =

J∑
j=1

Yj = {y ∈ RL |
∑

j yj for some yj ∈ Y , j = 1, . . . , J}

▶ π∗(p) = max{p · y | y ∈ Y }

y∗(p) = argmax{p · y | y ∈ Y }

Proposition 6.13

1. π∗(p) =
∑

j πj(p)

2. y∗(p) =
∑

j yj(p)
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Proof
1

▶ Take any y ∈ Y .

Then by definition, there exist yj ∈ Yj , j = 1, . . . , J , such
that y =

∑
j yj .

▶ Then

p · y = p ·
(∑

j yj

)
=

∑
j (p · yj) ≤

∑
j πj(p).

This implies that π∗(p) ≤
∑

j πj(p).

▶ Take any yj ∈ Yj , j = 1, . . . , J .

▶ Then∑
j (p · yj) = p ·

(∑
j yj

)
≤ π∗(p).

This implies that
∑

j πj(p) ≤ π∗(p).
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2

▶ We have

y ∈ y∗(p)

⇐⇒ y ∈ Y, p · y = π∗(p)

⇐⇒ ∃ y1 ∈ Y1, . . . yJ ∈ YJ : y =
∑

j yj , p ·
∑

j yj = π∗(p)

⇐⇒ ∃ y1 ∈ Y1, . . . yJ ∈ YJ : y =
∑

j yj ,
∑

j p · yj =
∑

j πj(p)

⇐⇒ ∃ y1 ∈ Y1, . . . yJ ∈ YJ : y =
∑

j yj , p · yj = πj(p) ∀ j
(∵ p · yj ≤ πj(p) ∀ j = 1, . . . , J)

⇐⇒ ∃ y1 ∈ y1(p), . . . yJ ∈ yJ(p) : y =
∑

j yj

⇐⇒ y ∈
∑

j yj(p)
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Efficient Production

▶ A production vector y ∈ Y is efficient if
there is no y′ ∈ Y such that y′ ≥ y and y′ ̸= y.

▶ y ∈ Y is weakly efficient if there is no y′ ∈ Y such that
y′ ≫ y.

▶ y: efficient ⇒ y: weakly efficient

▶ We say that ȳ ∈ Y is profit maximizing for p if p · ȳ ≥ p · y for
all y ∈ Y .
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Proposition 6.14

1. If ȳ ∈ Y is profit maximizing for some p ≫ 0, then ȳ is
efficient.

2. If ȳ ∈ Y is profit maximizing for some p ≥ 0 with p ̸= 0,
then ȳ is weakly efficient.

▶ A version of the first fundamental theorem of welfare economics

Proof

1. If ȳ ∈ Y is not efficient, then there exists y ∈ Y such that
y ≥ ȳ, y ̸= ȳ;

for any p ≫ 0 we have p · (y − ȳ) > 0, or p · y > p · ȳ.

2. If ȳ ∈ Y is not weakly efficient, then there exists y ∈ Y such
that y ≫ ȳ;

for any p ≥ 0, p ̸= 0 we have p · (y − ȳ) > 0, or p · y > p · ȳ.
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Proposition 6.15

Suppose that Y is convex.
Any weakly efficient ȳ ∈ Y is profit maximizing for some p ≥ 0
with p ̸= 0.

▶ A version of the second fundamental theorem of welfare economics
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Proof

▶ Let ȳ ∈ Y be weakly efficient.

▶ Then (Y − {ȳ}) ∩ RN
++ = ∅, where Y − {ȳ} is convex.

▶ Thus by Proposition 6.8, there exists p ≥ 0 with p ̸= 0 such
that p · z ≤ 0 for all z ∈ Y −{ȳ}, or p · y ≤ p · ȳ for all y ∈ Y .
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