6. Production

Daisuke Oyama

Microeconomics I

June 19, 2025

Production Sets

- $ightharpoonup Y\subset \mathbb{R}^L$: production set
- $\blacktriangleright \mathsf{ For } (y_1,\ldots,y_L) \in Y$
 - $y_{\ell} > 0 \Rightarrow \ell$: output
 - ▶ $y_{\ell} < 0 \Rightarrow \ell$: input
- ▶ Example: Suppose L = 5 and $y = (-5, 2, -6, 3, 0) \in Y$.
 - revenue = $p_2 \times y_2 + p_4 \times y_4$
 - $ightharpoonup cost = p_1 \times (-y_1) + p_3 \times (-y_3)$
 - ▶ profit = $[p_2 \times y_2 + p_4 \times y_4] [p_1 \times (-y_1) + p_3 \times (-y_3)] = p \cdot y$
- ▶ If a production function $f: \mathbb{R}^{L-1}_+ \to \mathbb{R}_+$ is given where commodity L is the output, then

$$Y = \{(-z_1, \dots, -z_{L-1}, q) \mid q \le f(z_1, \dots, z_{L-1}), \ z_{\ell} \ge 0\}.$$

Properties of Production Sets

- 1. Y is nonempty.
- $\mathbf{2}$. Y is closed.
- 3. No free lunch: $Y \cap \mathbb{R}^L_+ \subset \{0\}$
- 4. Possibility of inaction: $0 \in Y$
- 5. Free disposal: If $y \in Y$ and $y' \leq y$, then $y' \in Y$, or equivalently, $Y \mathbb{R}_+^L \subset Y$.

$$(A - B = \{c \mid c = a - b \text{ for some } a \in A \text{ and } b \in B\})$$

6. Irreversibility: If $y \in Y$ and $y \neq 0$, then $-y \notin Y$.

Properties of Production Sets

- 7. Nonincreasing returns to scale: If $y \in Y$, then $\alpha y \in Y$ for all $\alpha \in [0,1]$.
- 8. Nondecreasing returns to scale: If $y \in Y$, then $\alpha y \in Y$ for all $\alpha \ge 1$.
- 9. Constant returns to scale: If $y \in Y$, then $\alpha y \in Y$ for all $\alpha \geq 0$. (I.e., Y is a *cone*.)
- 10. Additivity: $Y + Y \subset Y$.
- 11. Convexity: If $y, y' \in Y$, then $\alpha y + (1 \alpha)y' \in Y$ for all $\alpha \in [0, 1]$.
- 12. Y is a convex cone: If $y, y' \in Y$, then $\alpha y + \beta y' \in Y$ for all $\alpha \geq 0$ and $\beta \geq 0$.

Convexity

Proposition 6.1

Y is additive and exhibits nonincreasing returns to scale if and only if it is a convex cone.

Constant Returns to Scale

Proposition 6.2

If $Y \subset \mathbb{R}^L$ is convex and $0 \in Y$, then there is a constant returns, convex production set $Y' \subset \mathbb{R}^{L+1}$ such that $Y = \{y \in \mathbb{R}^L \mid (y, -1) \in Y'\}.$

 Decreasing returns reflect the scarcity of some underlying, unlisted input ("entrepreneurial factor").

Proof

► Let

$$Y' = \{y' \in \mathbb{R}^{L+1} \mid y' = \alpha(y, -1) \text{ for some } y \in Y \text{ and } \alpha \geq 0\}.$$

Profit Maximization Problem

$$\max_{y} \ p \cdot y$$
 (PMP) s.t. $y \in Y$

Supply correspondence:

$$\begin{split} y(p) &= \mathop{\arg\max}_{y \in Y} \ p \cdot y \\ &= \{ y \in \mathbb{R}^L \mid y \in Y \text{ and } p \cdot y \geq p \cdot y' \text{ for all } y' \in Y \} \end{split}$$

Profit function:

$$\pi(p) = \max_{y \in Y} p \cdot y$$

Analogous to expenditure minimization!

Properties of π and y

Proposition 6.3

Suppose Y is nonempty and closed.

- 1. π is homogeneous of degree one.
- 2. π is convex.
- 3. If Y is convex and satisfies free disposal, then $Y = \{ y \in \mathbb{R}^L \mid p \cdot y \leq \pi(p) \text{ for all } p \geq 0 \}.$
- 4. y is homogeneous of degree zero.
- 5. If Y is convex, then y(p) is a convex set for all p.
- 6. [Hotelling's lemma] If y(p) is a singleton, then $\nabla \pi(p) = y(p)$.
- 7. If y is a continuously differentiable function, then Dy(p) is symmetric and positive semi-definite, and Dy(p)p=0.

Separating Hyperplane Theorems

Proposition 6.4 (Strong Separating Hyperplane Theorem)

Suppose that $C \subset \mathbb{R}^N$, $C \neq \emptyset$, is convex and closed, and that $b \notin C$.

Then there exist $p \in \mathbb{R}^N$ with $p \neq 0$ and $c \in \mathbb{R}$ such that

$$p \cdot y \leq c$$

Proposition 6.5 (Supporting Hyperplane Theorem)

Suppose that $C \subset \mathbb{R}^N$, $C \neq \emptyset$, is convex, and that $b \notin C$. Then there exists $p \in \mathbb{R}^N$ with $p \neq 0$ such that

 $p \cdot y \leq p \cdot b$ for all $y \in C$.

Proposition 6.6 (Separating Hyperplane Theorem)

Suppose that $A,B\subset\mathbb{R}^N$, $A,B\neq\emptyset$, are convex, and that $A\cap B=\emptyset$.

Then there exists $p \in \mathbb{R}^N$ with $p \neq 0$ such that

 $p \cdot x \leq p \cdot y$ for all $x \in A$ and $y \in B$.

Proof

- Since A and B are convex, $A-B=\{x-y\in\mathbb{R}^N\mid x\in A,\ y\in B\}$ is also convex.
- ▶ Since $A \cap B = \emptyset$, $0 \notin A B$.
- ▶ Thus by the Supporting Hyperplane Theorem, there exists $p \in \mathbb{R}^N$ with $p \neq 0$ such that

$$p \cdot z \le p \cdot 0$$
 for all $z \in A - B$,

or

$$p \cdot x \leq p \cdot y$$
 for all $x \in A$ and $y \in B$.

Separation with Nonnegative/Positive Vectors

Lemma 6.7

For $A \subset \mathbb{R}^N$, $A \neq \emptyset$, suppose that $A - \mathbb{R}^N_{++} \subset A$. For $p \in \mathbb{R}^N$, if there exists $c \in \mathbb{R}$ such that $p \cdot x \leq c$ for all $x \in A$, then $p \geq 0$.

Proposition 6.8

Suppose that $C \subset \mathbb{R}^N$, $C \neq \emptyset$, is convex. If $C \cap \mathbb{R}^N_{++} = \emptyset$, then there exists $p \geq 0$ with $p \neq 0$ such that $p \cdot x < 0$ for all $x \in C$.

Proof

▶ Consider the convex set $A = C - \mathbb{R}^N_{++}$, where $0 \notin A$.

Support Function of a Convex Set

For
$$Y\subset\mathbb{R}^N$$
, $Y\neq\emptyset$, define the function $\phi_Y\colon\mathbb{R}^N\to(-\infty,\infty]$ by
$$\phi_Y(p)=\sup_{y\in Y}p\cdot y.$$

In mathematics, this is called the *support function* of Y.

Proposition 6.9

Let $Y \subset \mathbb{R}^N$, $Y \neq \emptyset$, be a closed convex set. Then

$$Y = \{ y \in \mathbb{R}^N \mid p \cdot y \le \phi_Y(p) \text{ for all } p \in \mathbb{R}^N \}.$$

Proof

- ▶ $Y \subset (RHS)$: By definition.
- $Y\supset (\mathsf{RHS})$: Let $\bar{y}\notin Y$.
- ▶ Since Y is closed and convex, by the Separating Hyperplane Theorem, there exist $\bar{p} \neq 0$ and $c \in \mathbb{R}$ such that

$$\bar{p} \cdot y \leq c < \bar{p} \cdot \bar{y} \text{ for all } y \in Y,$$

and hence

$$\phi_Y(\bar{p}) = \sup_{y \in Y} \bar{p} \cdot y \le c < \bar{p} \cdot \bar{y}.$$

▶ This means that $\bar{y} \notin (RHS)$.

From Profit Function to Production Set

▶ What additional assumptions are needed to recover Y from the profit function, which is defined only for nonnegative, or positive, price vectors (where we allow the profit function to take values in $(-\infty,\infty]$)?

Proposition 6.10

If Y is nonempty, convex, and closed and satisfies free disposal, then

$$Y = \{ y \in \mathbb{R}^N \mid p \cdot y \le \phi_Y(p) \text{ for all } p \ge 0 \}.$$

▶ Generally, $Y \subsetneq \{y \in \mathbb{R}^N \mid p \cdot y \leq \phi_Y(p) \text{ for all } p \gg 0\}.$

Proof

- ▶ $Y \subset (RHS)$: Immediate.
- ▶ $Y^{c} \subset (RHS)^{c}$: Suppose that $\bar{y} \notin Y$.
- ▶ Since Y is nonempty, convex, and closed, there exist $\bar{p} \neq 0$ and c such that

$$\bar{p} \cdot y \leq c < \bar{p} \cdot \bar{y} \text{ for all } y \in Y,$$

and hence $\phi_Y(\bar{p}) < \bar{p} \cdot \bar{y}$, by the Separating Hyperplane Theorem.

- ▶ Since Y satisfies free disposal, i.e., $Y \mathbb{R}_+^N \subset Y$ (which implies $Y \mathbb{R}_{++}^N \subset Y$), we have $\bar{p} \geq 0$ by Lemma 6.7.
- ▶ Hence, $\bar{y} \notin (RHS)$.

Proposition 6.11

If Y is nonempty, convex, and closed and satisfies free disposal, no free production, and the ability to shut down, then

$$Y = \{ y \in \mathbb{R}^N \mid p \cdot y \le \phi_Y(p) \text{ for all } p \gg 0 \}.$$

Cost Minimization Problem

$$f\colon \mathbb{R}^{L-1}_+ o \mathbb{R}_+\colon$$
 production function
$$\min_{z\geq 0} \ w\cdot z$$
 (CMP) s. t. $f(z)\geq q$

Conditional factor demand correspondence:

$$z(w,q) = \arg\min\{w \cdot z \mid z \ge 0, \ f(z) \ge q\}$$

Cost function:

$$c(w, z) = \min\{w \cdot z \mid z \ge 0, \ f(z) \ge q\}$$

Analogous to expenditure minimization!

Properties of c and zProposition 6.12

- 1. c is homogeneous of degree one in w and nondecreasing in q.
- 2. c is concave in w.
- 3. If f is continuous, nondecreasing, and quasi-concave, then $Y = \{(-z,q) \mid z \geq 0 \text{ and } w \cdot z \geq c(w,q) \text{ for all } w \gg 0\}.$
- 4. z is homogeneous of degree zero in w.
- 5. If f is quasi-concave, then z(w,q) is a convex set. If f is continuous and strictly quasi-concave, then z(w,q) is single-valued.
- 6. [Shepard's lemma] If z(w,q) is a singleton, then $\nabla_w c(w,q) = z(w,q)$.
- 7. If z is a continuously differentiable function, then $D_w z(w,q)$ is symmetric and negative semi-definite, and $D_w z(w,q)w=0$.

- 8. If f is homogeneous of degree one (i.e., exhibits constant returns to scale), then c and z are homogeneous of degree one in q.
- 9. If f is concave, then c is convex in q.

Proof

8

- Fix any w, q, and t > 0. (We write c(q) for c(w, q).)
- ▶ Take any $z \ge 0$ such that $f(z) \ge q$.
- ▶ By homogeneity, we have $f(tz) \ge tq$. Therefore, $c(tq) \le w \cdot (tz) = t(w \cdot z)$, or $\frac{1}{t}c(tq) \le w \cdot z$.
- ▶ This implies that $\frac{1}{t}c(tq) \le c(q)$.
- ▶ Take any $z \ge 0$ such that $f(z) \ge tq$.
- ▶ By homogeneity, we have $f(\frac{1}{t}z) \ge q$. Therefore, $c(q) \le w \cdot (\frac{1}{t}z) = \frac{1}{t}(w \cdot z)$, or $tc(q) \le w \cdot z$.
- ▶ This implies that $tc(q) \le c(tq)$.

 \blacktriangleright (We write z(q) for z(w,q).)

$$z \in z(tq)$$

$$\iff z \ge 0, \ f(z) \ge tq, \ w \cdot z = c(tq)$$

$$\iff \frac{1}{t}z \ge 0, \ f(\frac{1}{t}z) \ge q, \ w \cdot (\frac{1}{t}z) = c(q)$$

$$\iff \frac{1}{t}z \in z(q)$$

$$\iff z \in \frac{1}{t}z(q)$$

- ► Take any q, q', and $\alpha \in [0, 1]$. Write $q'' = \alpha q + (1 - \alpha)q'$.
- Let $z,z'\geq 0$ be such that $f(z)\geq q$, $f(z')\geq q'$, $c(q)=w\cdot z$, and $c(q')=w\cdot z'$.
- ▶ By concavity, $f(\alpha z + (1 \alpha)z') \ge q''$.
- ► Then we have

$$c(q'') \le w \cdot (\alpha z + (1 - \alpha)z') = \alpha w \cdot z + (1 - \alpha)w \cdot z'$$
$$= \alpha c(q) + (1 - \alpha)c(q').$$

Aggregation

- ▶ $Y_1, ..., Y_J$: production sets of J firms
- $\blacktriangleright \pi_i$: firm j's profit function
- $\triangleright y_j$: firm j's supply correspondence
- Aggregate supply correspondence:

$$\begin{split} y(p) &= \sum_{j=1}^J y_j(p) \\ &= \{ y \in \mathbb{R}^L \mid y = \sum_j y_j \text{ for some } y_j \in y_j(p), \ j = 1, \dots, J \} \end{split}$$

► Aggregate production set:

$$Y = \sum_{j=1}^J Y_j = \{y \in \mathbb{R}^L \mid \sum_j y_j \text{ for some } y_j \in Y, \ j=1,\ldots,J\}$$

$$\pi^*(p) = \max\{p \cdot y \mid y \in Y\}$$
$$y^*(p) = \arg\max\{p \cdot y \mid y \in Y\}$$

Proposition 6.13

- 1. $\pi^*(p) = \sum_{i} \pi_j(p)$
- 2. $y^*(p) = \sum_{j} y_j(p)$

▶ Take any $y \in Y$.

Then by definition, there exist $y_j \in Y_j$, $j=1,\ldots,J$, such that $y=\sum_j y_j$.

► Then

$$p \cdot y = p \cdot \left(\sum_{j} y_{j}\right) = \sum_{j} (p \cdot y_{j}) \leq \sum_{j} \pi_{j}(p).$$

This implies that $\pi^*(p) \leq \sum_i \pi_i(p)$.

- ightharpoonup Take any $y_i \in Y_i$, $j = 1, \ldots, J$.
- ► Then

$$\sum_{j} (p \cdot y_j) = p \cdot \left(\sum_{j} y_j\right) \le \pi^*(p).$$

This implies that $\sum_{j} \pi_{j}(p) \leq \pi^{*}(p)$.

We have

$$y \in y^{*}(p)$$

$$\iff y \in Y, \ p \cdot y = \pi^{*}(p)$$

$$\iff \exists y_{1} \in Y_{1}, \dots y_{J} \in Y_{J} : y = \sum_{j} y_{j}, \ p \cdot \sum_{j} y_{j} = \pi^{*}(p)$$

$$\iff \exists y_{1} \in Y_{1}, \dots y_{J} \in Y_{J} : y = \sum_{j} y_{j}, \ \sum_{j} p \cdot y_{j} = \sum_{j} \pi_{j}(p)$$

$$\iff \exists y_{1} \in Y_{1}, \dots y_{J} \in Y_{J} : y = \sum_{j} y_{j}, \ p \cdot y_{j} = \pi_{j}(p) \ \forall j$$

$$(\because p \cdot y_{j} \leq \pi_{j}(p) \ \forall j = 1, \dots, J)$$

$$\iff \exists y_{1} \in y_{1}(p), \dots y_{J} \in y_{J}(p) : y = \sum_{j} y_{j}$$

$$\iff y \in \sum_{j} y_{j}(p)$$

Efficient Production

- A production vector $y \in Y$ is efficient if there is no $y' \in Y$ such that $y' \geq y$ and $y' \neq y$.
- ▶ $y \in Y$ is weakly efficient if there is no $y' \in Y$ such that $y' \gg y$.
- \triangleright y: efficient \Rightarrow y: weakly efficient
- ▶ We say that $\bar{y} \in Y$ is profit maximizing for p if $p \cdot \bar{y} \ge p \cdot y$ for all $y \in Y$.

Proposition 6.14

- 1. If $\bar{y} \in Y$ is profit maximizing for some $p \gg 0$, then \bar{y} is efficient.
- 2. If $\bar{y} \in Y$ is profit maximizing for some $p \geq 0$ with $p \neq 0$, then \bar{y} is weakly efficient.
- ▶ A version of the first fundamental theorem of welfare economics

Proof

- 1. If $\bar{y} \in Y$ is not efficient, then there exists $y \in Y$ such that $y \geq \bar{y}, \ y \neq \bar{y};$
 - for any $p \gg 0$ we have $p \cdot (y \bar{y}) > 0$, or $p \cdot y > p \cdot \bar{y}$.
- 2. If $\bar{y} \in Y$ is not weakly efficient, then there exists $y \in Y$ such that $y \gg \bar{y}$;
 - $\text{for any } p \geq 0, \ p \neq 0 \text{ we have } p \cdot (y \bar{y}) > 0, \text{ or } p \cdot y > p \cdot \bar{y}.$

Proposition 6.15

Suppose that Y is convex.

Any weakly efficient $\bar{y} \in Y$ is profit maximizing for some $p \geq 0$ with $p \neq 0$.

▶ A version of the second fundamental theorem of welfare economics

Proof

- ▶ Let $\bar{y} \in Y$ be weakly efficient.
- ▶ Then $(Y \{\bar{y}\}) \cap \mathbb{R}_{++}^N = \emptyset$, where $Y \{\bar{y}\}$ is convex.
- ▶ Thus by Proposition 6.8, there exists $p \ge 0$ with $p \ne 0$ such that $p \cdot z \le 0$ for all $z \in Y \{\bar{y}\}$, or $p \cdot y \le p \cdot \bar{y}$ for all $y \in Y$.