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Production Sets

» Y c RE: production set

» For (y1,...,yr) €Y
> yp, >0 = {: output
> yp <0 =/ input

» Example: Suppose L =5 and y = (—5,2,-6,3,0) € Y.
P> revenue = po X Y + Pg X Y4
» cost =py X (—y1) +ps X (—y3)
> profit = [py X yo +pa X ya] — [p1 X (=y1) +p3 % (—y3)] =p-y

» If a production function f: Ri_l — R is given
where commodity L is the output, then

Y={(-21,....,—21-1,¢) | ¢ < f(z1,...,20-1), z¢ > 0}.
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Properties of Production Sets

1. Y is nonempty.

N

. Y is closed.
3. No free lunch: Y NR% c {0}
4. Possibility of inaction: 0 € Y

5. Free disposal: If y € Y and 3/ <y, theny/ €Y, or
equivalently, Y — Rf_ cY.

(A—B={c|c=a—"bforsomeac Aandbec B})

6. Irreversibility: If y € Y and y # 0, then —y ¢ Y.
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Properties of Production Sets

7. Nonincreasing returns to scale:
If y €Y, then ay € Y for all a € [0, 1].

8. Nondecreasing returns to scale:
If y €Y, then ay € Y for all a > 1.

9. Constant returns to scale:
If y €Y, then ay € Y for all « > 0.

(le., Y is a cone.)
10. Additivity: Y +Y C Y.

11. Convexity:
If y,o €Y, then ay+ (1 — )y’ €Y for all « € [0, 1].

12. Y is a convex cone:
If y,y/ €Y, then ay + By €Y foralla >0 and 8> 0.
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Convexity

Proposition 6.1

Y is additive and exhibits nonincreasing returns to scale
if and only if it is a convex cone.
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Constant Returns to Scale

Proposition 6.2

IfY ¢ RE s convex and 0 € Y, then there is a constant returns,
convex production set Y C RETL such that
YV={yeR"|(y,-1) €Y'}

» Decreasing returns reflect the scarcity of some underlying,
unlisted input ( “entrepreneurial factor”).

Proof

> Let
Y'={y e REHL |/ = a(y,—1) for some y € Y and a > 0}.
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Profit Maximization Problem

max p-y (PMP)
y

s.t. yeyY

» Supply correspondence:
y(p) = argmax p-y
yey
={yeRl|yeYandp-y>p -y forally ev}

» Profit function:

= Imax .
7(p) max p-y

» Analogous to expenditure minimization!
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Properties of 7 and y

Proposition 6.3
Suppose Y is nonempty and closed.

1. 7 is homogeneous of degree one.
2. m is convex.

3. IfY is convex and satisfies free disposal, then
Y ={yeRl|p-y<n(p) forallp>0}.

4. y is homogeneous of degree zero.

5. IfY is convex, then y(p) is a convex set for all p.

6. [Hotelling's lemma] If y(p) is a singleton, then Vm(p) = y(p).

7. Ify is a continuously differentiable function, then Dy(p) is
=0.

symmetric and positive semi-definite, and Dy(p)p
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Separating Hyperplane Theorems

Proposition 6.4 (Strong Separating Hyperplane Theorem)

Suppose that C C RN, C # 0, is convex and closed, and
that b ¢ C.
Then there exist p € RV with p # 0 and ¢ € R such that

pylc<p-bforallyeC.
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Proposition 6.5 (Supporting Hyperplane Theorem)

Suppose that C C RN, C # (), is convex, and that b ¢ C.
Then there exists p € R with p # 0 such that

p-y<p-bforallyeccC.
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Proposition 6.6 (Separating Hyperplane Theorem)

Suppose that A,B Cc RN, A, B # (), are convex, and
that AN B = 0.
Then there exists p € RN with p # 0 such that

p-x<p-yforallze Aandyec B.
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Proof

» Since A and B are convex,
A-B={z—-yeRN |z €A, yec B}is also convex.

» Since ANB=0,0¢ A— B.

» Thus by the Supporting Hyperplane Theorem, there exists
p € RN with p # 0 such that

p-z<p-0forall z€ A— B,
or

p-x<p-yforallz € Aand y € B.
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Separation with Nonnegative/Positive Vectors

Lemma 6.7

For AC RN, A+ 0, suppose that A—RY, C A.

For p € RY, if there exists ¢ € R such that p-xz < ¢ for all z € A,
then p > Q.

Proposition 6.8

Suppose that C C RN, C # (), is convex.
If CNRY, =0, then there exists p > 0 with p # 0 such that

p-x<0forallzeC.

Proof

> Consider the convex set A = C —RY,, where 0 ¢ A.
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Support Function of a Convex Set

For Y C RY, Y # (), define the function ¢y : RY — (—oc, 00| by

¢y (p) =supp-y.
yey

In mathematics, this is called the support function of Y.

Proposition 6.9
LetY c RN Y # (), be a closed convex set. Then

Y:{yERN|p-y§¢y(p) forallpGRN}.
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Proof

» Y C (RHS): By definition.
> Y D (RHS):
Lety ¢ Y.

» Since Y is closed and convex, by the Separating Hyperplane
Theorem, there exist p # 0 and ¢ € R such that

pry<c<p-yforallye,
and hence

¢y (p) =supp-y<c<p-y.
yey

» This means that y ¢ (RHS).
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From Profit Function to Production Set

» What additional assumptions are needed to recover Y from
the profit function, which is defined only for nonnegative, or
positive, price vectors (where we allow the profit function to
take values in (—o0, 00])?

Proposition 6.10

IfY is nonempty, convex, and closed and satisfies free disposal,
then

Y ={yeRY |p-y < ¢y(p) forall p > 0}.

> Generally, Y S {y e RY | p-y < ¢y (p) for all p>> 0}.
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Proof

Y C (RHS): Immediate.
Y¢ C (RHS)¢: Suppose that 5y ¢ Y.

Since Y is nonempty, convex, and closed, there exist p # 0
and ¢ such that

pry<c<p-ygforallyey,

and hence ¢y (p) < p- ¥, by the Separating Hyperplane
Theorem.

Since Y satisfies free disposal, i.e., Y — RY C Y (which
implies Y — RL CY), we have p > 0 by Lemma 6.7.

Hence, y ¢ (RHS).
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Proposition 6.11

If'Y is nonempty, convex, and closed and satisfies free disposal,
no free production, and the ability to shut down, then

Y ={yeRY |p-y < ¢y(p) forall p>>0}.
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Cost Minimization Problem

f: Ri_l — R4 production function

min w -z
z>0
s.t. f(z) 2 ¢

» Conditional factor demand correspondence:

z(w,q) =argmin{w -z | 2> 0, f(z) >q}

» Cost function:

c(w,z) =min{w -z | 2 >0, f(z) > q}

» Analogous to expenditure minimization!

(CMP)

18/31



Properties of ¢ and z
Proposition 6.12

1. ¢ is homogeneous of degree one in w and nondecreasing in q.
2. c Is concave in w.

3. If f is continuous, nondecreasing, and quasi-concave, then
Y ={(-2,9) | 2>0and w- z > c(w,q) for all w>> 0}.

4. z is homogeneous of degree zero in w.

5. If f is quasi-concave, then z(w,q) is a convex set.
If f is continuous and strictly quasi-concave, then z(w, q) is
single-valued.

6. [Shepard's lemma] If z(w, q) is a singleton, then
Vuc(w, q) = z(w, q).

7. If z is a continuously differentiable function, then Dy, z(w, q)
is symmetric and negative semi-definite, and D,z (w,q)w = 0.
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. If f is homogeneous of degree one (i.e., exhibits constant
returns to scale), then ¢ and z are homogeneous of degree one

inq.

. If f is concave, then c¢ is convex in gq.
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Proof

» Fix any w, ¢, and t > 0. (We write ¢(q) for c(w,q).)
» Take any z > 0 such that f(z) > ¢

» By homogeneity, we have f(tz

) > tq.
Therefore, c(tq) < w - (tz) = t(w - 2), or e(tq) < w - 2.

> This implies that c(tq) < c(q).

» Take any z > 0 such that f(z)

I\/

» By homogeneity, we have (%z)

Therefore, c(q) <w - (1z) = }(w- z) orte(q) <w- z.

» This implies that tc(q) < c(tq).
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» (We write z(q) for z(w,q).)

z € z(tq)
— z22>0, f(2) >tq, w-z=c(tq)
= 220, f(32) 2 ¢ w-(32) = c(q)
— 1z¢€z2(q)
> z € 12(q)
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» Take any ¢,¢/, and « € [0, 1].
Write ¢ = ag + (1 — a)q’.

> Let 2,2’ > 0 be such that f(z) > ¢, f(2') > ¢, c(q) =w -z,
and ¢(¢') =w- 2.

» By concavity, f(az+ (1 —«a)z’) > ¢".

» Then we have

(@) <w-(az+(1-a))=aw -2+ (1 —a)w-2
= ac(q) + (1 — a)e(q).

23/31



Aggregation

> Yi,...,Y;: production sets of J firms
» m;: firm j's profit function
» y;: firm j's supply correspondence

> Aggregate supply correspondence:

J
y(p) =>_ v;(p)
pust

Z{yGRL|y:ijj for some y; € y;(p), j=1,...,J}
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> Aggregate production set:

J
Y:Zsz{yERL|2jyj forsomey; €Y, j=1,...,J}
j=1

> m*(p) =max{p-y|y €Y}
y*(p) = argmax{p-y |y € Y}

Proposition 6.13
L 7w (p) = 22; mj(p)
2. y*(p) = >, yi(p)
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Proof

> Takeanyy €Y.
Then by definition, there exist y; € Y;, j =1,...,J, such
that y = >, y;.
> Then
py=p- (ijj) =3 (p-y) <32, m(p).
This implies that 7*(p) < >, m;(p).
» Takeanyy; €Y, j=1,...,J.
> Then
>i(pry)=p- (Zj yj) < (p).

This implies that >, 7;(p) < 7*(p).
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» We have

y €y (p)

= yeY, py=7(p)

= JpeN,...y€Ysiy=3y;, vy =7 (p)
= JypeY,...y €Y ry=3y5, >0y =2 (p)
= JyeEY,...y €Y iy=3y; p-y; =7ip) Vj
(Cpy<mp)Vi=1,...,J)

Jy1 € ya(p),---ys € yslp ) =Y

y€ > ,vip)

11
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Efficient Production

» A production vector y € Y is efficient if
there is no ¢’ € Y such that ¥/ > y and ¢/ # v.

» y €Y is weakly efficient if there is no 3/ € Y such that
y >

> y: efficient = y: weakly efficient

> We say that y € Y is profit maximizing for p if p-4y > p -y for
alyeY.
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Proposition 6.14

1. Ify € Y is profit maximizing for some p > 0, then § is
efficient.

2. Ify €Y is profit maximizing for some p > 0 with p # 0,
then i is weakly efficient.

» A version of the first fundamental theorem of welfare economics

Proof
1. If g € Y is not efficient, then there exists y € Y such that
Y=>0.y#;
for any p> 0 we havep- (y —y) >0,0orp-y >p-4.
2. If y € Y is not weakly efficient, then there exists y € Y such
that y > ¥;
foranyp >0, p#0we havep-(y—9y) >0,0rp-y >p-7.
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Proposition 6.15

Suppose that Y is convex.
Any weakly efficient y € Y is profit maximizing for some p > 0

with p # 0.

» A version of the second fundamental theorem of welfare economics
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Proof

> Let §y € Y be weakly efficient.
» Then (Y — {g}) NRY, =0, where Y — {y} is convex.

» Thus by Proposition 6.8, there exists p > 0 with p # 0 such
thatp-z<Oforall zeY —{g},orp-y<p-gygforally Y.
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