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Expected Utility Theory (von Neumann and Morgenstern)

▶ C = {x1, . . . , xN}: (finite) set of outcomes

▶ L = {(p1, . . . , pN ) ∈ RN
+ | p1 + · · ·+ pN = 1}:

set of alternatives (“lotteries”)

▶ Compound lotteries

Compound lottery of L = (p1, . . . , pN ) and L′ = (q1, . . . , qN ):
αL+ (1− α)L′ (α ∈ [0, 1])

▶ We identify the compound lottery αL+ (1− α)L′ and
its reduced probability distribution
(αp1 + (1− α)q1, . . . , αpN + (1− α)qN ) ∈ L.
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▶ ≿: complete and transitive preference relation on L

Definition 5.1 (Continuity)

≿ on L satisfies continuity if for all L,L′, L′′ ∈ L,
{α ∈ [0, 1] | αL+ (1− α)L′ ≿ L′′} and
{α ∈ [0, 1] | L′′ ≿ αL+ (1− α)L′} are closed.

Definition 5.2 (Independence)

≿ on L satisfies independence if for all L,L′, L′′ ∈ L and
α ∈ (0, 1),

L ≿ L′ ⇐⇒ αL+ (1− α)L′′ ≿ αL′ + (1− α)L′′.
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Independence Axiom

N = 3

▶ Indifference curves are straight lines:

▶ If L ∼ L′, then αL+ (1− α)L′ ∼ L′.

▶ If L = αL+ (1− α)L ∼ L′ = αL′′ + (1− α)L, then L ∼ L′′.

▶ Indifference lines are parallel to each other.
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Expected Utility Theorem

Proposition 5.1

Complete and transitive ≿ on L satisfies continuity and
independence if and only if there exists a function u : C → R
such that the function U : L → R defined by

U(L) =

N∑
i=1

piu(xi) (L = (p1, . . . , pN ) ∈ L)

represents ≿.
Such u is unique up to positive affine transformation (i.e., if u and
v are such functions, then v = au+ b for some a > 0 and b).
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▶ Call u a von Neumann-Morgenstern (vNM) function (or
Bernoulli function).

This is not a utility function.

▶ U is a particular utility function that represents ≿, which is of
linear form.
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Proof
Outline

▶ By finiteness of C and Independence, there are L,L ∈ L such
that L ≿ L ≿ L for all L ∈ L. (Exercise 6.B.3)

Assume L ≻ L.

▶ By Continuity, for each L ∈ L, there exists α ∈ [0, 1] such that

L ∼ αL+ (1− α)L,

which is unique by Independence.

▶ Define U : L → R by U(L) = α.

▶ Verify that U represents ≿.

▶ Verify that U is linear.

▶ Let u(xi) = U([xi]) (where [xi] ∈ L is the degenerate lottery
that yields xi ∈ C with probability one).
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Step 0

▶ By Independence, for all L,L′, L′′ ∈ L and α ∈ (0, 1),

L ≻ L′ =⇒ αL+ (1− α)L′′ ≻ αL′ + (1− α)L′′, (Ind-1)

L ∼ L′ =⇒ αL+ (1− α)L′′ ∼ αL′ + (1− α)L′′. (Ind-2)

In particular,

L ∼ L′, L′′ ∼ L′′′ =⇒ αL+ (1− α)L′′ ∼ αL′ + (1− α)L′′′.

(Ind-3)

Step 1 (Strict betweenness)

▶ By (Ind-1), for all L,L′ ∈ L and α ∈ (0, 1),

L ≻ L′ =⇒ L ≻ αL+ (1− α)L′ ≻ L′. (Bet)

(Let L′′ = L and L′′ = L′ in (Ind-1).)
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Step 2 (Mixture monotonicity)

▶ By (Bet), for all L,L′ ∈ L and α, β ∈ [0, 1], if L ≻ L′, then

αL+ (1− α)L′ ≿ βL+ (1− β)L′ ⇐⇒ α ≥ β. (Mon)

▶ ⇐: If α = β, we have αL+ (1− α)L′ ∼ βL+ (1− β)L′.
Suppose that α > β. By (Bet), we have

αL+ (1− α)L′ ≻ L′.

Since β/α ∈ (0, 1), again by (Bet) we have

αL+(1−α)L′ ≻ β

α

{
αL+(1−α)L′}+(

1− β

α

)
L′ = βL+(1−β)L′.

▶ ⇒: Contraposition.
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Step 3 (Unique mixture intermediate value)

▶ By Continuity (with L = L, L′ = L, and L′′ = L),
for each L ∈ L, there exists α ∈ [0, 1] such that

L ∼ αL+ (1− α)L.

▶ By (Mon), for each L ∈ L, there exists a unique α ∈ [0, 1]
such that

L ∼ αL+ (1− α)L. (Uni)

▶ Denote the unique such α by αL.
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Step 4 (Utility representation)

▶ Define U : L → R by U(L) = αL for each L ∈ L.

▶ U is a utility function that represents ≿:

For L,L′ ∈ L,

L ≿ L′

⇐⇒ αLL+ (1− αL)L ≿ αL′L+ (1− αL′)L (by (Uni))

⇐⇒ αL ≥ αL′ (by (Mon))

⇐⇒ U(L) ≥ U(L′).
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Step 5 (Linearity)

▶ U is linear:
U(αL+(1−α)L′) = αU(L)+ (1−α)U(L′) for all α ∈ [0, 1]:

By definition,

L ∼ U(L)L+(1−U(L))L, L′ ∼ U(L′)L+(1−U(L′))L.

Therefore, by (Ind-3),

αL+ (1− α)L′ ∼ α
{
U(L)L+ (1− U(L))L

}
+ (1− α)

{
U(L′)L+ (1− U(L′))L

}
=

{
αU(L) + (1− α)U(L′)

}
L

+
[
1−

{
αU(L) + (1− α)U(L′)

}]
L.

Hence,

U(αL+ (1− α)L′) = αU(L) + (1− α)U(L′).
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Step 6 (Expected utility form)

▶ U has an expected utility form: there is a function u : C → R
such that U(L) =

∑N
i=1 piu(xi) for all L = (p1, . . . , pN ) ∈ L:

Define u by u(xi) = U([xi]).

Then for each L = (p1, . . . , pN ) ∈ L, which is written as
L =

∑N
i=1 pi[xi], by the linearity of U we have

U(L) =

N∑
i=1

piU([xi]) =

N∑
i=1

piu(xi).
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Step 7 (Identification)

▶ Let u be as constructed above.

By construction,

[xi] ∼ u(xi)L+ (1− u(xi))L.

▶ If V (L) =
∑N

i=1 piv(xi), then for all xi,

v(xi) = V (u(xi)L+ (1− u(xi))L)

= u(xi)V (L) + (1− u(xi))V (L)

= (V (L)− V (L))u(xi) + V (L).
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Allais Paradox

▶ C = {1M, 0.9M, 0}

▶ L1 = 0.9[1M] + 0.1[0] L′
1 = 1[0.9M]

▶ L2 = 0.45[1M] + 0.55[0] L′
2 = 0.5[0.9M] + 0.5[0]
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Risk Aversion

▶ C = R+: set of monetary outcomes

▶ L: set of cumulative distribution functions on R+

▶ Expected utility representation:

U(F ) =

∫ ∞

0
u(x)dF (x) (F ∈ L)

u : R+ → R: vNM function

▶ Assume that u is increasing and continuous.
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▶ DM is risk averse if for any F ∈ L, 1[
∫
xdF (x)] ≿ F , i.e.,

u

(∫
xdF (x)

)
≥

∫
u(x)dF (x).

▶ ⇐⇒ u is concave.

▶ DM is risk neutral if for any F ∈ L, 1[
∫
xdF (x)] ∼ F , i.e.,

u

(∫
xdF (x)

)
=

∫
u(x)dF (x).

▶ ⇐⇒ u is affine.
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▶ DM is strictly risk averse if for any nondegenerate F ∈ L,
1[
∫
xdF (x)] ≻ F , i.e.,

u

(∫
xdF (x)

)
>

∫
u(x)dF (x).

▶ ⇐⇒ u is strictly concave.
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Certainty Equivalent, Risk Premium

▶ Certainty equivalent: c(F, u) such that 1[c(F, u)] ∼ F , i.e.,
u(C(F, u)) =

∫
u(x)dF (x)

▶ Risk premium: RP(F, u) =
∫
xdF (x)− c(F, u)

▶ RP(F, u) ≥ 0 for all F if and only if DM is risk averse.
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Example: Insurance

▶ (1− π)[w] + π[w −D] (π ∈ (0, 1))

▶ Insurance:

costs q, pays 1 if the loss D occurs

▶ α units of insurance:

(1− π)[w − qα] + π[w − qα−D + α]

▶ Expected utility with strictly concave u:

f(α) = (1− π)u(w − qα) + πu(w − qα−D + α)

▶ Assume q = π · · · “actuarial fairness”
(market clearing condition under free entry of insurance firms)
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▶ f ′(α) = π(1− π)(u′(w −D + (1− π)α)− u′(w − πα))

▶ f ′(0) = π(1− π)(u′(w −D)− u′(w)) > 0 by strict concavity

▶ By FOC:

u′(w −D + (1− π)α∗) = u′(w − πα∗)

or

w −D + (1− π)α∗ = w − πα∗

▶ Therefore, α∗ = D,

i.e., under actuarial fairness, DM insures completely.
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▶ In fact, using FOC is not necessary to reach this conclusion.

▶ If q = π, then the expected wealth is:

(1− π)(w − πα) + π(w − πα−D + α) = w − πD

for any α.

▶ Lottery with α = D: 1[w − πD]

· · · preferred to any nondegenerate lottery by strictly risk
averse DM
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Absolute/Relative Risk Aversion

▶ Assume u′(x) > 0 for all x.

▶ rA(x) = −u′′(x)
u′(x) : coefficient of absolute risk aversion at x

▶ rR(x) = −xu′′(x)
u′(x) : coefficient of relative risk aversion at x
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▶ Fix x, and consider the lottery 1
2 [x+ ε] + 1

2 [x− ε].

▶ Risk premium RP(ε) satisfies

u(x− RP(ε)) =
1

2
u(x+ ε) +

1

2
u(x− ε).

▶ By second-order Taylor expansion around ε = 0, we have

RP(ε) ≈ 1

2

(
−u′′(x)

u′(x)

)
︸ ︷︷ ︸

rA(x)

ε2 (ε ≈ 0).
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▶ Consider the lottery 1
2 [x+ εx] + 1

2 [x− εx].

▶ Similarly, we have

RP(ε) ≈ 1

2

(
−u′′(x)

u′(x)

)
(εx)2,

or

RP(ε)

x
≈ 1

2

(
−xu′′(x)

u′(x)

)
︸ ︷︷ ︸

rR(x)

ε2.
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Constant Absolute Risk Aversion (CARA) Functions

▶ −u′′(x)
u′(x) = a for all x

▶ ⇒ u(x) = − 1
ae

−ax

(and its positive affine transformations)
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Constant Relative Risk Aversion (CRRA) Functions

▶ −xu′′(x)
u′(x) = c for all x

▶ ⇒ u(x) =

{
1

1−cx
1−c if c ̸= 1

log x if c = 1

(and its positive affine transformations)

▶ (For each x, limc→1
1

1−c(x
1−c − 1) = log x)
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First-Order Stochastic Dominance

Definition 5.3
F first-order stochastically dominates G if∫

u(x)dF (x) ≥
∫

u(x)dG(x)

for all nondecreasing functions u.

Proposition 5.2

F first-order stochastically dominates G if and only if
F (x) ≤ G(x) (or equivalently, 1− F (x) ≥ 1−G(x)) for all x.

▶ If F = (p1, p2, p3), then
∑

u(xi)pi =
u(x1) + (u(x2)− u(x1))(p2 + p3) + (u(x3)− u(x2))p3.
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