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Expected Utility Theory (von Neumann and Morgenstern)

» C ={x1,...,zn}: (finite) set of outcomes

> L={(p1,-..,on) €RY | p1+ - +py =1}
set of alternatives ( “lotteries”)

» Compound lotteries
Compound lottery of L = (p1,...,pn) and L' = (q1,...,qN):
aL+(1—-a)l! (a€]0,1])

» We identify the compound lottery oL + (1 — )L’ and
its reduced probability distribution

(ap1 + (1 —a)q,...,apy + (1 —a)gn) € L.
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» ~: complete and transitive preference relation on £

Definition 5.1 (Continuity)

> on L satisfies continuity if for all L, L/, L" € L,
{a€0,1]|aL+(1—a)Ll' = L"} and
{a€0,1] | L" m oL+ (1 — «)L'} are closed.

Definition 5.2 (Independence)

> on L satisfies independence if for all L, L', L” € L and
ac (0,1),

Ll < aL+(1—-a)l" Zall+(1—-a)L".
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Independence Axiom
N =3
> Indifference curves are straight lines:

> If L~L' then al + (1 —a)L' ~ L.
>» fL=alL+(1-a)L~L =al”+(1—-a)L, then L ~ L".

» Indifference lines are parallel to each other.
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Expected Utility Theorem

Proposition 5.1

Complete and transitive -, on L satisfies continuity and
independence if and only if there exists a function u: C' — R
such that the function U: L — R defined by

N
UL) =) pulx) (L= (p...,pn) € L)
=1

represents .
Such w is unique up to positive affine transformation (i.e., if u and
v are such functions, then v = au + b for some a > 0 and b).
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» Call u a von Neumann-Morgenstern (vNM) function (or
Bernoulli function).

This is not a utility function.

» U is a particular utility function that represents =, which is of
linear form.
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Proof

Outline

| 2

vV vV VvV V

By finiteness of C' and Independence, there are L, L € £ such
that L 7~ L 75 L for all L € L. (Exercise 6.B.3)

Assume L > L.

By Continuity, for each L € L, there exists a € [0, 1] such that
L~aL+(1-a)L,

which is unique by Independence.

Define U: L — R by U(L) = a.

Verify that U represents .

Verify that U is linear.

Let u(z;) = U([x;]) (where [z;] € L is the degenerate lottery
that yields x; € C with probability one).

6/27



Step 0
» By Independence, for all L, L/, L"” € £ and a € (0,1),

L-L=al+(1-a)l” =al' +(1-a)L”, (Ind-1)
L~ =alL+(1-a)l”"~al'+(1-a)L". (Ind-2)
In particular,

Ll L'~ = aL+(1—a)l” ~al' +(1—a)L"”.

(Ind-3)
Step 1 (Strict betweenness)
» By (Ind-1), for all L, L' € £ and « € (0, 1),
L-L=L>aL+(1—a)l'-L" (Bet)

(Let L” = L and L” = L' in (Ind-1).)
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Step 2 (Mixture monotonicity)

» By (Bet), forall L,L' € £ and o, 8 € [0,1], if L > L', then

alL+(1—-a)l' 7 L+ (1= B)L < a > . (Mon)

> < Ifa=p,wehave alL + (1 —a)L' ~ L+ (1—-pB)L.
Suppose that a > 3. By (Bet), we have

al+ (1—a)l = L.
Since f/a € (0,1), again by (Bet) we have

al+(1—a)L' - g{aL—F(l—a)L/}—l—(l - g) L'=pL+(1-B)L.

» =-: Contraposition.
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Step 3 (Unique mixture intermediate value)

» By Continuity (with L=1L, L' = L, and L” = L),
for each L € L, there exists « € [0, 1] such that

L~aL+(1-a)L

» By (Mon), for each L € L, there exists a unique o € [0, 1]
such that

L~aL+(1-a)L.

(Uni)

» Denote the unique such a by ay.
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Step 4 (Utility representation)
» Define U: L — R by U(L) = af, for each L € L.
» U is a utility function that represents =:
For L,L' € L,
L
< arL+(1—ap)L = apyL+(1—ap)L (by (Uni))

<= ar >ap (by (Mon))
<~ U(L)>U(L).
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Step 5 (Linearity)

» U is linear:

U@L+ (1—a)L') =aU(L)+ (1 —a)U(L’) for all a € [0, 1]:

By definition,

L~UL)I+(1-U(L)L, L ~U@L)L+(1-U(L))L.

Therefore, by (Ind-3),

oL+ (1-a)L' ~a{U(L)L+ (1 - U(L))L}
+(1-a){UL)L+(1-U(L"))L}

={aU(L)+ (1 - a)U(L)}L
+[1- {aU +(1—a)U(L)}]L.

Hence,

U(aL + (1 —a)L') = aU(L) + (1 — a)U(L).
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Step 6 (Expected utility form)

» U has an expected utility form: there is a function u: C — R
such that U(L) = "N | pu(a;) for all L= (p1,...,pn) € L:

Define u by u(z;) = U([zi]).

Then for each L = (p1,...,pn) € L, which is written as
L =" pilxi], by the linearity of U we have

N N
UL) =) piU([wi]) =Y piulz:).
i=1 i=1

12/27



Step 7 (Identification)

> Let u be as constructed above.

By construction,
[2;] ~ u(x;)L + (1 — u(z;))L.
> If V(L) = 32N piv(z;), then for all z;,

v(z;) = V(u(x;)L + (1 — u(x;))L)
= u(z;)V(L) + (1 — u(z;)) V(L)
= (V(L) = V(L))u(z;) + V(L).
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Allais Paradox
> C = {1M,0.9M,0}
> L, = 0.9[1M] + 0.1[0] L = 1[0.9M]
> Lo = 0.45[1M] + 0.55[0] LY, = 0.5[0.9M] + 0.5[0]
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Risk Aversion

> (' =R,: set of monetary outcomes
> L: set of cumulative distribution functions on R

> Expected utility representation:

U(F)= /000 u(z)dF(z) (Fel)

u: Ry — R: vNM function

> Assume that w is increasing and continuous.
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» DM is risk averse if for any F € £, 1[[ zdF (z)] Z F, i.e.,

" < / xdF(:v)) > / w(@)dF ().

» <— u is concave.

» DM is risk neutral if for any F' € £, 1[[ zdF(z)] ~ F, i.e.,

u < / :ch(a:)) = / w(z)dF(z).

» < u is affine.
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> DM is strictly risk averse if for any nondegenerate F' € L,
1[[ zdF(z)] = F, ie.,

u < / :vdF(:z:)) > / w(z)dF(z).

» <« u is strictly concave.
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Certainty Equivalent, Risk Premium

» Certainty equivalent: ¢(F,u) such that 1[c(F,u)] ~ F, i.e.,
w(C(F,u)) = [u(z)dF(z)

» Risk premium: RP(F,u) = [xdF(z) — c¢(F,u)
» RP(F,u) >0 for all F if and only if DM is risk averse.
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Example: Insurance

» (1 —m)w]+ w[w — D] (me€(0,1))
» Insurance:

costs ¢, pays 1 if the loss D occurs
» « units of insurance:
(1 —m[w—qa] + 7w —qga — D +

» Expected utility with strictly concave u:

fla)=(1—-m)u(w — qa) + Tu(w — g — D + «)

» Assume g = m --- “actuarial fairness”
(market clearing condition under free entry of insurance firms)
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> flla)y)=7(1—-m)(u(w—D+ (1-7m)a)—u(w—ra))
> f(0) =n(1l —7)(v(w— D) —u(w)) > 0 by strict concavity
> By FOC:
W' (w— D+ (1—m)a*) = (w—ma*)
w—D+(1-7m)a" =w—ma”

» Therefore, a* = D,

i.e., under actuarial fairness, DM insures completely.
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» In fact, using FOC is not necessary to reach this conclusion.

» If ¢ = m, then the expected wealth is:
(1—-m)(w—ma)+7n(w—nma—D+a«a)=w-—rD
for any a.

» Lottery with o« = D: 1{w — 7 D]

- preferred to any nondegenerate lottery by strictly risk
averse DM
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Absolute/Relative Risk Aversion

» Assume u'(x) > 0 for all .

> ra(z) = — @) coefficient of absolute risk aversion at z
w'(x)

"
> rp(z) = — 2@ coefficient of relative risk aversion at z
u/(x)
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> Fix z, and consider the lottery [z +¢] + 1[z — €].

» Risk premium RP(e) satisfies

u(x — RP(g)) = %u(w +e)+ %u(x —e).

» By second-order Taylor expansion around € = 0, we have

e) ~ _w(a) £ e~ 0).
O - I

2 u'(x)

ra(z)
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> Consider the lottery [z + ex] + 5[z — ez].

» Similarly, we have

or
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Constant Absolute Risk Aversion (CARA) Functions

) =@ for all x

> = u(x) = —ée_”

(and its positive affine transformations)
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Constant Relative Risk Aversion (CRRA) Functions

> —I;L,/ES) =c for all z

L l-c i 1
> @)= Te7
log x ifc=1

(and its positive affine transformations)

> (For each z, lim,,1 = (z!7¢ — 1) = log z)
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First-Order Stochastic Dominance

Definition 5.3
F first-order stochastically dominates G if

/ w(@)dF(z) > / w(@)dG(z)

for all nondecreasing functions wu.

Proposition 5.2
F first-order stochastically dominates G if and only if

F(z) < G(z) (or equivalently, 1 — F(z) > 1 — G(x)) for all x.

> If F' = (p1,p2,p3), then > u(z;)p; =
u(z1) + (w(r2) — w(w1))(p2 + p3) + (u(zs) — u(z2))ps.
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