1 分離定理のいろいろ

定理 1.1 $K \subset \mathbb{R}^n$ を閉凸集合, $a \notin K$ とする. このとき $p \in \mathbb{R}^n$, $p \neq 0$ と $\alpha \in \mathbb{R}$ が存在して

 $p'a < \alpha$

 $p'x > \alpha$ (すべての $x \in K$ に対して)

が成り立つ.

証明 教科書の定理 3.35 を見てください.

定理 1.2 $K \subset \mathbb{R}^n$ を凸集合とする. $K \cap \mathbb{R}^n_{++} = \emptyset$ ならば, $p \in \mathbb{R}^n_+, p \neq 0$ が存在して

$$p'x \le 0$$
 (すべての $x \in K$ に対して)

が成り立つ.

証明 教科書の定理 3.37 と 119 ページの「 $(1) \Rightarrow (2)$ 」の前半部分の議論から証明できます.

 \mathbb{R}^n の部分集合 $K \neq \emptyset$ が凸錐 (convex cone) であるとは,

- (a) $x, y \in K$ ならば $x + y \in K$
- (b) $x \in K$, $\lambda \ge 0$ $x \in K$

をみたすことをいいます.定義から $0 \in K$ になることに注意してください.凸錐 $K \subset \mathbb{R}^n$ に対して

$$K^* = \{ p \in \mathbb{R}^n \mid$$
すべての $x \in K$ に対して $p'x \ge 0 \}$

と定義します. K^* を K の双対錐 (dual cone) といいます. K^* は閉凸錐になります. また, K^* の双対錐 $(K^*)^*$ を K^{**} と書くことにします.

定理 1.3 $K \subset \mathbb{R}^n$ を凸集合とする.

- (1) $K \subset K^{**}$.
- (2) K が閉凸錐ならば、 $K^{**} = K$.

証明 (1) 定義をよくにらめば出てくる.

(2) K を閉凸錐とする. $K^{**}\subset K$ を示せばよい. $a\notin K$ とする. K は閉凸集合なので、定理 1.1 より $p\in\mathbb{R}^n,\,p\neq 0$ と $\alpha\in\mathbb{R}$ が存在して

$$p'a < \alpha \tag{1.1}$$

$$p'x \ge \alpha$$
 (すべての $x \in K$ に対して) (1.2)

が成り立つ。ある $x \in K$ に対して p'x < 0 となったとすると,K が凸錐であることから任意の $\lambda > 0$ に対して $\lambda x \in K$ なので, $p'(\lambda x)$ いくらでも小さくなってしまい,(1.2) に矛盾する。したがって,すべての $x \in K$ に対して p'x > 0 が成り立つ。つまり $p \in K^*$.

一方、 $0 \in K$ なので、(1.2) より $\alpha \le 0$ でないといけない。したがって (1.1) より p'a < 0 となる。よって $a \notin K^{**}$ がいえた。

定理 1.4 (Minkowski-Farkas の補題) A を $m \times n$ 行列, $b \in \mathbb{R}^m$ とする. 次の 2 つの条件は同値である.

- (1) $Ax = b, x \ge 0$ なる $x \in \mathbb{R}^n$ が存在する.
- (2) すべての $y \in \mathbb{R}^m$ に対して $y'A \ge 0 \Rightarrow b'y \ge 0$ が成り立つ.

証明

$$K = \{Ax \in \mathbb{R}^m \mid x \ge 0\}$$
$$L = \{y \in \mathbb{R}^m \mid y'A \ge 0\}$$

b ≥ b ∈ K b b ∈ K b b , E

$$L^* = \{ z \in \mathbb{R}^m \mid \text{ すべての } y \in L \text{ に対して } y'z \ge 0 \}$$
$$= \{ z \in \mathbb{R}^m \mid \text{ すべての } y \in \mathbb{R}^m \text{ に対して } y'A \ge 0 \Rightarrow y'z \ge 0 \}$$

なので、 $(2) \Leftrightarrow b \in L^*$ である。したがって、 $K = L^*$ が証明したいことである。K は閉凸錐なので定理 1.3 より、 $K^* = L$ を示せばよい $(L^* = K^{**} = K$ となる)。実際、

$$y \in K^* \iff \forall z \in K : y'z \ge 0$$

 $\iff \forall x \ge 0 : y'Ax \ge 0$
 $\iff y'A \ge 0 \iff y \in L^*$

である**.** □

定理 1.5 (Stiemke の補題) A を $m \times n$ 行列とする. 次の 2 つの条件は同値である.

- (1) $Ax = 0, x \gg 0$ なる $x \in \mathbb{R}^n$ が存在する.
- (2) すべての $y \in \mathbb{R}^m$ に対して $y'A \ge 0 \Rightarrow y'A = 0$ が成り立つ.

証明

$$L = \{A'y \in \mathbb{R}^n \mid y \in \mathbb{R}^m\}$$

$$L^{\perp} = \{z \in \mathbb{R}^n \mid \text{すべての } x \in L \text{ に対して } z'x = 0\}$$

とする. ここで

$$L^{\perp} = \{ z \in \mathbb{R}^n \mid Az = 0 \}$$

であることに注意すると, (1), (2) はそれぞれ

$$(1') L^{\perp} \cap \mathbb{R}^{n}_{++} \neq \emptyset, \qquad (2') L \cap \mathbb{R}^{n}_{+} = \{0\}$$

と同値である. $(1') \Leftrightarrow (2')$ が証明したいことである.

 $(1')\Rightarrow (2')$: (2') が成り立たないとすると、y'A>0 なる $y\in\mathbb{R}^m$ が存在する。どんな $z\in\mathbb{R}^n_{++}$ についても この y に対しては y'Az>0 なので、Az=0 とはなりえない、すなわち $z\in L^\perp$ とはなりえない。つまり $L^\perp\cap\mathbb{R}^n_{++}=\emptyset$ である。

(2') \Rightarrow (1'): (1') が成り立たないとする。 L^{\perp} は凸集合なので,定理 1.2 より,ある $p\in\mathbb{R}^n_+,\,p\neq 0$ が存在して,すべての $z\in L^{\perp}$ に対して

 $p'z \leq 0$

が成り立つ。ここで,p'z<0 となる $z\in L^\perp$ が存在すると, $-z\in L^\perp$ なので p'(-z)>0 となってしまい矛盾。したがって,すべての $z\in L^\perp$ に対して p'z=0 である。これは $p\in (L^\perp)^\perp$ を意味し, $(L^\perp)^\perp\subset L$ なので,すなわち $p\in L\cap \mathbb{R}^n_+$ である。 $p\neq 0$ だったので, $p\in L\cap \mathbb{R}^n_+\neq \{0\}$ がいえた.

注意 **1.1** $(L^{\perp})^{\perp} \subset L$ の証明. $\{a_1,\ldots,a_k\}$, $\{b_1,\ldots,b_\ell\}$ をそれぞれ L, L^{\perp} の正規直交 基底とします. (これらは \mathbb{R}^n の基底をなします.) $p \in (L^{\perp})^{\perp}$ に対して $p = \sum_{i=1}^k \alpha_i a_i + \sum_{j=1}^\ell \beta_j b_j$ と表すと, $\beta_j = p'b_j = 0$, $j = 1,\ldots,\ell$ なので $p \in L$ となります.

ちなみに、定義よりただちに $L\subset (L^\perp)^\perp$ がしたがうので、結局 $L=(L^\perp)^\perp$ が成り立ちます.

(2011/6/21)