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Extreme Points, Vertices

Definition 3.1
For S C R™, £ € S is an extreme point of S if

=M+ 1-XNz y,2€ 5, A€(0,1) = y=z=1.

Definition 3.2
For S C R™, z € S is a vertex of S if there exists ¢ € R" such that
argmax{cx | x € S} = {z}.
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Proposition 3.1

Forany S C R", ifx € S is a vertex of S, then it is an extreme
point of S.
Proof

» Suppose that arg max{cz | z € S} = {z}, and suppose that
Z=Xy+(1—-XNz y,z€ S, Ae(0,1).

» Then Acy < Acz and (1 — A)cz < (1 — A)ez, and therefore
T =Xy + (1 — N)ez < cx.

» Hence, cy = ¢Z and cz = cZ, and therefore y = 2z = Z.

P> The converse does not hold in general.
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Basic Feasible Solutions of Polyhedra

> For A=[a' -+ a™] € R"™™ and b€ R™,
consider the polyhedron

P={zxecR"| A%z <b}.

Definition 3.3

For P = {x € R" | ATz < b}, € P is a basic feasible solution of
P if there exists a subset B of A with rank(B) = n such that
BTz = bP (where b = (b));cB).
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Proposition 3.2

For P = {x € R" | ATz < b}, the following statements are
equivalent:

1. T € P is a vertex of P.

2. & € P is an extreme point of P.

3. T € P is a basic feasible solution of P.
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Proof

A\

1 = 2: By Proposition 3.1.

» 2= 3 (not 3= not 2):
Suppose that € P is not a basic feasible solution of P.

> Let B={a’ € A|d'z = b;}.
By assumption, rank(B) < n.

> Take any w € ker(B), w # 0 (where ker(B) # {0} since
rank(ker(B)) = n — rank(B) > 0).

» Let ¢ > 0 be such that a’(Z & ew) < b; for all j € A\ B, and
let y=Z+ew and z =% — cw.

» Then, y#7%, 2 # 2, y,z € P, andg}:%ij%zv

which means that Z is not an extreme point of P.
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3=1:
Let £ € P be a basic feasible solution of P, and let B C A be
such that BTz = bP and rank(B) = n.

Letc:zjeBaj.
Then we have cz =3, p Az =Y. pbj, and

if Az < b, then cz = ZjEB alx < ZjeB bj = cZ.

jEB
If cx = ¢Z, then a/z = b forall j € B,

but since rank(B) = n, this implies that = Z.

Hence, T is a vertex of P.
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Linear Programs

» Standard form:

(*)

max cx
reR”™

s.t. Az =0
x>0

where A € R™*" b € R™, and ¢ € R™.

» Any linear program can be converted into the standard form:

>

If 2; is unrestricted, then substitute z; = x — z} with
+ —
T, x; > 0.
If a constraint is 3 7_, a;;x; < b;, then add a slack variable
s; > 0 so that Z?zl a;;jxj + s; = b;.

If the objective is min cx, then replace it with max(—c)z.
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» x* is a feasible solution of (%) if z* € {x | Ax =b, x > 0},

» 2* is an optimal solution of (x) if it is a feasible solution of

(%) such that cz* = max{cz | Az = b, = > 0}.

» (x) is feasible (resp. infeasible) if {x | Ax =b, © >0} #0
(resp. = 0).

» (%) is unbounded if {cx | Ax =b, > 0} is unbounded

above.
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Basic Solutions
» Consider the linear program (x) (A € R™*" b € R™).

» We assume throughout that rank(A) = m (and thus m < n).

(If rank(A) < m, remove redundant rows.)

Definition 3.4
Any set B of m LI columns of A (also considered as an m x m
matrix) is called a basis of A.

Definition 3.5

x € R™ is called a basic solution of (x) if it is a solution to Ax = b
such that there exists a basis B of A such that z; # 0 only if

j € B.

Definition 3.6
x € R™ is called a basic feasible solution of (k) if it is a basic
solution such that z > 0.
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Proposition 3.3

T is a basic feasible solution of (x) if and only if it is a basic
feasible solution of {x | Ax < b,—Azx < —b,—Iz < 0}.

» Therefore, by Proposition 3.2 we have the following.

Proposition 3.4

Denote P = {x | Ax = b, x > 0}. The following statements are
equivalent:

1. T € P is a vertex of P.

2. T € P is an extreme point of P.

3. T € P is a basic feasible solution of (x).
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Proposition 3.5

If {x | Az =b, © > 0} # 0, then there exists a basic feasible
solution, hence an extreme point.

» By Proposition 2.6, part 1 (cone version of Carathéodory's
Theorem), and Proposition 3.4.
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Fundamental Theorem of Linear Programming

Proposition 3.6

If max{cx | Az = b,z > 0} has an optimal solution,
then there exists an optimal solution that is an extreme point of
{z | Az = b,z > 0}.
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Proof

Denote P = {z | Az = b,z > 0} (£ 0).

Let v* = max{cz | x € P} and

p={a|[a]a= 0] 220} 2o

where rank ([ﬁ}) =morm+ 1.

If rank ([éﬂ) = m, then P* = P.

Then by Proposition 3.5 applied to P,

P has an extreme point, which is an optimal solution.
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()

by Proposition 3.5 applied to P*,
P* has an extreme point.

Let * € P* be an extreme point of P*.

We want to show that it is an extreme point of P.

Let 2* =Xy + (1 =Nz, y,z€ P, A€ (0,1).

Then v* = cz* = Acy + (1 — XN)cz while cy < v* and cz < v*.
Thus we must have cy = cz = v*, i.e., y,z € P*.

But since x* is an extreme point of P*, we must have
y=z=zx".
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Duality

» Given the linear program

max cx
s.t. Az =1»
x>0,

multiply both sides of Az = b by y from the left:
yAzx = yb.
> If y satisfies ¢ < yA, then, since x > 0, we have
cx < yAx = yb.

» Thus, for any y such that ¢ < yA, yb is an upper bound of
{cx | Az = b,z > 0}.
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» Primal problem:

(P) max cx
r€R™

s.t. Az =0
x>0

» Dual problem:
D ' b
(D) Jnin y

s.t. yA>c
(y : unrestricted)
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Weak Duality

Proposition 3.7

If x and y are feasible solutions of (P) and (D), respectively,
then cx < yb.

» Therefore, if feasible solutions z* and y* satisfy cx* = y*b,
then they are optimal solutions of (P) and (D), respectively.
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Strong Duality

Proposition 3.8

If (P) and (D) are feasible,
then both (P) and (D) have optimal solutions, and

max{cz | Ax =b, x > 0} = min{yb | yA > c}.
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Proof

» (P) and (D) have

optimal solutions if and only if there exist x

and y such that Ax = b, x >0, yA > ¢, cx > yb, i.e.,

A 0
0 AT
—CT bT

» The alternative is:

(A p ]

(A p ]

2] — b
{] < |—c|,z>0
A 0
0 —-AY > =10 0],
—CT bT
[ b
—c| <0, p>0,n>0.
0
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» We want to show that, whenever (P) and (D) are feasible,

M —ne>0, —pAT +n9pT =0, 1 >0, n>0 (1)
implies
Ab — e > 0. (2)

» For n > 0, (1) implies that u/n and A\/n are feasible solutions,
and hence by weak duality, (p/n)c < (A/n)b, or pc < Ab.

» Forn =0, let z and y be feasible solution.
Then from (1) we have b — uc > Mz — uATy > 0.

20/53



Infeasibility and unboundedness

Lemma 3.9
1. If (P) is infeasible, then (D) is either infeasible or unbounded.

2. If (P) is unbounded, then (D) is infeasible.

» Thus, if (D) is feasible and bounded, then so is (P).

» The same results hold with (P) and (D) interchanged.
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Proof

> Part 1:
If (P) is infeasible, then by Farkas’ Lemma, there exists ¢
such that gA > 0 and b < 0.

» If (D) is feasible, i.e., there exists 4" such that y°A > ¢, then
for t > 0, y" + tg is feasible (since (y° + t§)A > ¢), and
(y° + t9)b = y'b + t(9b) — —00 as t — oo.

> Part 2: By weak duality.
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Strong Duality

Proposition 3.10

If either (P) or (D) has an optimal solution,
then the other also has an optimal solution, and

max{cz | Ax = b, x > 0} = min{yb | yA > c}.

Proof

» If either (P) or (D) has an optimal solution,
then the other is feasible by Lemma 3.9(1).

» Then by Proposition 3.8, it also has an optimal solution.
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Complementary Slackness

Proposition 3.11

If * and y* are optimal solutions of (P) or (D), respectively, then
(y*A—c)x* =0.

Proof

» Since cx™ = y*b, we have

(YA —c)x* = y*Ax™ — ca”
=y*b—cx* =0.
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Primal and Dual Problems in Various Forms

» maxcr s.t. Az <b, x>0
» s maxcxr+0sst. Ax+s=0b2>0,8>0
» Dual:
minyb s.t. y [A I] > [c 0]
— yA>cy>0
> maxcr s.t. Az =5
» - maxc(zt —z7)st. AlxT —27)=b, 2zt >0, 27 >0
» Dual:
minyb s.t. y [A fA} > [c fc]
— yA=c
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» maxcx s.t. Az <b

» - maxc(zt —2z7)+0sst. AlxT —z7)+s=0b,
zt>0,27>0,5>0

» Dual:
minybs.t.y[A —A I}Z[C —c O}
— yA=cy>0
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Dual

Primal
max cx min yb
Ax =b y: unrestricted
Ax <b y >0
x>0 yA > c
x: unrestricted yA=c
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Farkas' Lemma from Duality Theorem

vV vV Vv V

Let A € R™*™ and b € R™.

Suppose that yA > 0, yb < 0 has no solution, i.e.,

yA>0 = yb>0.

We want to show that Az = b, > 0 has a solution.

Consider the linear program: max0x s.t. Az =0, x > 0.

Its dual problem is: minyb s.t. yA > 0.

By (*), y = 0 is an optimal solution of the dual problem.

Therefore, by Proposition 3.10, the primal problem has
a feasible solution.
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Application: Zero-Sum Games

Definition 3.7

A zero-sum game is given by an m x n matrix A = (a;;), where
when Row player plays strategy i € {1,...,m} and Column player
plays strategy j € {1,...,n}, Row's payoff is a;; and Column's
payoff is —a;;.

» The set of mixed strategies for Row:

A" ={zeR™ |z >0, )" x; =1}

» The set of mixed strategies for Column:

A"={yeR"[y>0, 37 y; = 1}.
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» Min-max value for Row:

i Ay); (= mi A
nin max(Ay); (= min max xAy)

» Max-min value for Column:

Joax min(zA); (= max min zAy)
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» Consider the following linear programs:

(LP-R) min R
y,R
s.t. Ay—1R<0
ly=1,y>0
(LP-C) max C
z,C
s.t. zA—-C1>0
zl=1, >0

» (LP-R) and (LP-C) are duals to each other.

Both are feasible, and therefore by strong duality
(Proposition 3.8), these have optimal solutions (z*, R*) and
(y*,C*), and R* = C"*.
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Minimax Theorem

Proposition 3.12

mingean Maxzeam TAY = maxzeam mingean Ay.
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Proof

Clearly, LHS > RHS.
We want to show LHS < RHS.

Let (y*, R*) and (z*,C*) be optimal solutions of (LP-R) and
(LP-C), respectively, where R* = C*.

Then we have Ay* < 1R*, and hence zAy* < R* for all
xr €A™, ie., max, rAy* < R*.

Hence min, max, xAy < R*.

» Similarly, we have max, min, x Ay > C*.

» Since R* = C*, we have LHS < RHS.

(The argument above in fact shows that
¥ Ay* < maxzAy* < R* = C* < minz"Ay < z*Ay",
x Yy

which holds as equality.)
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Definition 3.8
A profile (z*,y*) € A™ x A" is a Nash equilibrium of
the zero-sum game A if

Ay > xAy* forall x € A™,
Ayt < z*Ay forall y € A™.

Proposition 3.13

(x*,y*) is a Nash equilibrium of A and x*Ay* = R* = C*
if and only if (x*, R*) and (y*,C*) are optimal solutions of
(LP-R) and (LP-C), respectively.
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Proof

> “If": By the Minimax Theorem.

> “Only if": (y,R) = (y*,2*Ay*) and (z,C) = (z*, z* Ay*) are
feasible solutions of (LP-R) and (LP-C) and give the same
value (z*Ay*), hence they are optimal solutions.
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Integrality

» We discuss sufficient conditions under which

> all extreme points of a polyhedron are integral (integer
valued); and

» a linear program has an integral optimal solution.
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Unimodular Matrices

» A square integer matrix A € Z™*"™ is called unimodular if
det A=1or —1.

Proposition 3.14

For A € Zm*™, A~1 exists and is an integer matrix if and only if
it is unimodular.

» Example: A = B ﬂ is a unimodular matrix (det A = —1).

o [-1 2
— A _[1 1
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Proof

> If A~! exists and is an integer matrix, then
(det A) x (det A=) =det I = 1.

Then by the integrality of A and A~!, we must have
(det A,det A™1) = (1,1) or (—1,—1).

» If Ais unimodular, then A=t = A*/(det A) = A* x 1 or (—1)
for some A* called the adjoint of A, which is constructed with
-+, —, and X of the entries of A, so is an integer matrix.
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Totally Unimodular Matrices

Definition 3.9
A € """ is totally unimodular (TUM) if det B =1, —1, or 0 for
every square submatrix B of A.

1 2
> = N
A 1 1.notTUM
(1 1 0 0
0 0 1 1
| 2 =
A 1 0 -1 o TUM
|0 -1 0 -1
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Integral Extreme Points

Proposition 3.15

Let A € Z™*"™ and b € Z™, and assume that rank A = m.
If A is TUM, then every extreme point of
{z e R" | Az = b, = > 0} is integral.

Proof

» By Proposition 3.4, every extreme point w of
{r € R" | Ax = b, > 0} is a basic feasible solution, i.e.,
there exists a basis B of A such that w® = B~!b (where
w = [w?]0]).

» Since A is TUM, any such B is unimodular.

» Therefore, by Proposition 3.14, B lis integral, and so is w.
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A Sufficient Condition for TUM

Proposition 3.16
Suppose that A € 7Z™*™ satisfies the following property:

1. each entry is 0, 1, or —1;
2. each column contains at most two non-zero entries; and

3. if a column contains two non-zero entries, then they are of
opposite sign (i.e., 1 and —1).
Then A is TUM.
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Proof

It suffices to show that for any B € ZF** if B satisfies

the property in the proposition, then det B =1, —1, or 0.

Prove by induction.

The claim obviously holds for £ = 1.

Suppose that the claim holds for & — 1.
Let B € ZF*k satisfy the property in the proposition.
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> There are three cases:

1. There is a column whose entries are all zero.
In this case, det B = 0.

2. There is a column that has exactly one non-zero entry (which
is1or—1).

In this case, suppose that j is such a column and

bij =1or —1.

Let C € RE=Dx(k=1) pe the submatrix of B obtained by
removing row ¢ and column j.

Then
det B = (det C') x b;; = (detC') x L or (=1) =1,—1, or 0
by the induction hypothesis.

3. All columns have two non-zero entries (which are 1 and —1).

In this case, the sum of all the row vectors is the zero vector,
and hence det B = 0.
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Application: Doubly Stochastic Matrices

> A= (z;;) € R"" is called a doubly stochastic matrix if

n
E xij =1 foralli=1,...,n,

j=1
n
injzl forall j=1,...,n,
i=1
Tij >0 for all i,j = 1,.. ., n.
> Example:
0.7 03 0
0 02 08
0.3 0.5 0.2
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» A doubly stochastic matrix that consists only of 0 and 1 is
called a permutation matrix.

» A convex combination of doubly stochastic matrices is
a doubly stochastic matrix.
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Proposition 3.17 (Birkhoff-von Neumann Theorem)

Any doubly stochastic matrix is written as a convex combination of
permutation matrices.

> Example:

0.7 03 0
0 02 08
0.3 0.5 0.2

I
@)
[\
S O =
O = O
= o O
+
@)
w
= O O
OO =
o = O
+
)
(@)
S O =
= O O
o = O
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Proof

» The set D of doubly stochastic matrices is the polyhedron

defined by
n
injzl foralli=1,...,n,
j=1
n
D (—ay)=-1 forallj=1,....n—1,
i=1
x5 >0 foralli,5=1,...,n.

(One equation is implied by the others.)

» D # () has an extreme point (Proposition 3.5).
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> Written in a matrix form Az =0b, z > 0, A is TUM:

» The column for x;;, j # n, has exactly one 1 and
exactly one —1; and

» The column for z;, has exactly one 1.

» Therefore, by Proposition 3.15, all the extreme points of D
are integral, and hence are permutation matrices.

» Thus, by the Krein-Milman Theorem, every doubly stochastic
matrix (i.e., element of D) is written as a convex combination
of permutation matrices (i.e., extreme points of D).
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Application: Efficient Assignment of Indivisible Goods

vV vV v VvV v Vv

Indivisible objects : € M

Agents j € N

v;5 > 0: monetary value of one unit of object ¢ for agent j
Each agent consumes at most one object.

Assume |M| > |N|.

Assignment: (z;;)icnm jen Where z;; € {0,1}

x;j =1 <= i is consumed by j.
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» Efficient assignment problem:

(P*) max Z ’UijZCij

i€M,jeEN

s. t. inj <1 forallie M
jEN
d mij <1 foralljeN
€M

zi; € {0,1} forallie M,je N

» Since there are finitely many feasible solutions,
(P*) has an optimal solution (z7;).
» Is there a price vector p* that “supports”’ the assignment (:cffj)

(i.e., agents optimize against p* and demand and supply
balance)?
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» Consider the relaxed problem where the 0-1 constraint is
removed (converted into the standard form):

(P) max Z Uij-rij

ieM,jeN

s. t. inj"i_si:l foralli e M
JEN
Z(—Cﬁij) —t; = —1 foralljeN
€M

l‘ijZO,SiZO,thO forallie M,j € N

» Written in a matrix form, the constraint matrix is TUM:

» The column for x;; has exactly one 1 and exactly one —1;
» The column for s; has exactly one 1; and

» The column for ¢; has exactly one —1.
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» Since the feasible region is nonempty, it has extreme points,
which are all integral by Proposition 3.15.

» Since there is an optimal solution that is an extreme point by
Proposition 3.6, (P) has an integral optimal solution
(550 87:15).

> Clearly, (z7;) is an optimal solution of (P*).
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» Now consider the dual problem of (P):

(D) min Zpi—i— Z)\j

ieM jEN
s.t.opi+ A > vy forallie M,5 € N
pi >0, >0 forallie M,j €N

> Let (p;,A}) be an optimal solution of (D).

> Then (p;) supports (z;;):
> By optimality, A} = max;er(vij — pj).
> By complementary slackness, (pj + A} — vij)z}; = 0.

ij
» Therefore, if xfj =1, then
vij — pj = A} = maxpenm (Vh; — D),

i.e., ¢ maximizes vp; —pj, h € M.
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