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Things to know from real analysis

» For S C R,
» o =max§ if
» o > x forall S and
> aeS.
» o =minS if
» o <zxforall Sand
> acs.
> a=supS if
> o> g forall S and
> if 3>z for all S, then 5 > a.
> o =inf S if
> o <z forall Sand
> if 8 <z forall S, then 5 < a.

> sup S exists if S is bounded above;
inf S exists if S is bounded below.
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» Euclidean norm: for z = (z1,...,z,) € R",
2]l = /i (i),
» Euclidean distance: for z,y € R", d(z,y) = ||z — y|.

> A sequence {z*} in R converges to 2° € R™ if for any € > 0,
there exists a natural number K such that d(z*,2%) < ¢ for
all k > K.

In this case,

> {2¥} is said to be convergent,

» 29 is called the limit of {z*}, and

> we write limg_ oo 2F = 2% or 2F — 2% as k — .

> A sequence {2*} in R" is called a Cauchy sequence if
for any € > 0, there exists a natural number K such that
d(zF,z%) < e for all k, £ > K.

> A sequence {z*} in R" is convergent if and only if

it is a Cauchy sequence.
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S C R™ is closed if for any convergent sequence in {z*} in S
with 2% — 2%, we have z* € S.

S C R" is open if for every z € S, there exists € > 0 such
that B.(xz) C S,

where B.(z) = {y € R" | d(y, z) < €}.
S C R" is closed if and only if R™\ S is open.
Basic properties:
» () and R™ are both closed and open.
The union of any family of open sets is open.

The intersection of a finite number of open sets is open.

>
>
» The intersection of any family of closed sets is closed.
| 2

The union of a finite number of closed sets is closed.
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x € S is an interior point of S if there exists € > 0 such that
B.(z) C S.

The set of all interior points of S is called the interior of S
and denoted int S.

int S is the largest open set that is contained in S.

x € R" is a boundary point of S if for any € > 0,
B.(x)NS # () and Be(z) N (R™\ S) # 0.

The set of all boundary points of S is called the boundary of
S and denoted bd S.

The closure of S C R" is the set of all points that are

the limits of convergent sequences of points in S and denoted
clS.

cl S is the smallest closed set that contains S.
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» Relationships:
> clS =R"\int(R"\ S)
> intS =R"\ cl(R"\S)
> bdS=clS\intS
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S C R™ is bounded if there exists > 0 such that S C B,(0).

S C R" is compact if it is closed and bounded.

If S C R is compact, then supS € S and inf S € S
(and hence sup S = max S and inf S = min 5).

If S C R" is bounded, then any sequence in S has
a convergent subsequence.

If in addition S is closed (i.e., S is compact),
then any sequence in S has a convergent subsequence and its
limit is in S.

Conversely, if every sequence in S has a convergent
subsequence whose limit is in .S, then S is compact.
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» A family of subsets of R” is said to have the finite intersection
property if the intersection of any finite subfamily of it is
nonempty.

» For S C R", the following conditions are equivalent:

> S is compact.

» For any family (F))xea of closed subsets of S that has
the finite intersection property, we have (N, o, Fx # 0.
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Let S C R", S # 0.
A function f: S — R™ is continuous at T € S if for any
€ > 0, there exists § > 0 such that

d(z,7) < 8, z € S = d(f(z), f(z)) < e.

f: S — R™ is continuous on T" C S if it is continuous at
every x € T

f: 8 — R™ is continuous if it is continuous on S.

f: S — R™ is continuous at £ € S if and only if
for any sequence {z*} in S such that z¥ — Z, we have

f(z*) = f(z).
Examples:

» (z,y) — d(z,y) is continuous.

» For A € R™*" g+ Az is continuous.
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Proposition 2.1 (Weierstrass' Theorem)

Suppose that S C R", S # (), is compact and f: S — R is
continuous. Then max,eg f(x) and mingeg f(x) exist,

i.e., there exist z*,x** € S such that f(z**) < f(z) < f(z*) for
allxz e S.
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Convex Sets

Definition 2.1
C C R™ is convex if for any z,y € C and X € [0, 1], we have
Az +(1—-XNyeC.
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Properties of Convex Sets

Proposition 2.2
Suppose that C, D C R" are convex.
» C+D={x+yl|lxzeC, ye D} is convex.

» Fora €R, aC ={ax |z € C} is convex.

Proposition 2.3
The intersection of any family of convex sets is convex.

11/61



Proposition 2.4
If C C R" s convex, then clC is also convex.

Proof
» B.(0) ={y € R"| ||ly|]| < e} is convex.

» Then clC = (.. (C + B-(0)) is convex if C'is convex.

Proposition 2.5
If C C R"™ is convex, then int C' is also convex.
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» For S C R", the set of all convex combinations of finite
subsets of S is called the convex hull of S and denoted by
conv(S).

» conv(S) is the smallest convex set that contains S.
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Carathéodory’s Theorem

Proposition 2.6 (Carathéodory's Theorem)

1. For S C R", S # {0}, each = € cone(S) is written as a conic
combination of linear independent elements of S.

2. For S C R", each x € conv(S) is written as a convex
combination of at most n + 1 elements of S.

Proof of Part 1

» Immediate from Proposition 1.6 (Fundamental Theorem of
Linear Inequalities).
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Proof of Part 2

» Let x € conv(S).
Then we have z = Z}]=1 Aja? for some xt,... 2/ € S and
A A >0, =1
» Consider T' = {(z%,1),...,(27,1)} c R**L,
Then (z,1) € cone(T).
» By part 1, there is an LI subset 77 C T such that
(1) =2 jer (27, 1) with p; >0, where [T| < n + 1.

» From the 1st through nth coordinates we have
= e ;@7 while from the (n + 1)st coordinate we have

2jerr i =1,
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Convex Hull of a Compact Set

Proposition 2.7

If S C R™ is bounded, then cl(conv(S)) = conv(cl(S)).
In particular, if S is compact, then conv(S) is compact.
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Proof

Since conv(S) D S, we have cl(conv(S)) D cl(5).

Since cl(conv(.S)) is convex (Proposition 2.4), we have
cl(conv(S)) D conv(cl(S)).

Since S C cl(S), we have conv(S) C conv(cl(5)).
We want to show that conv(cl(.S)) is closed if S is bounded.
Let {*} C conv(cl(S)), and assume z¥ — Z.

By Carathéodory’'s Theorem (Proposition 2.6 part 2),
each z* is written as

1 1
:L'k" — Oélkav + o4+ a2+1$k7n+ ,

where
> (k.. ok ) eA={aeR"™ [a; >0, ¥, a; =1},

> gkl o gkntl e cl(S).
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» Since A and cl(S) are compact, there exists a sequence
{k(£)} such that the limits &; = lim/_,., o) and

T = limy_,o 297 exist where (@, ..., an41) € A and
.ozt ecl(S).
» Hence,
=z 4 4 ap "t

so that z € conv(cl(S5)).
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Separating Hyperplane Theorems

> The textbook proves the strict separating hyperplane theorem
from scratch.

P It then states the weak separating hyperplane theorem without
proof, saying “The proof is similar to the previous one.”

(In fact, the proof is far from “similar”.)

P> Here, we prove the weak separating hyperplane theorem by
Farkas' Lemma (which we proved by an algebraic argument).

» Then we prove the strict version from the weak version.
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Weak Separating Hyperplane Theorem

Proposition 2.8 (Weak Separating Hyperplane Theorem)

Suppose that C' C R™ is a convex set, and that b ¢ C.
Then there exists h € R™, h # 0 such that

hx < hb for all z € C.

» The proof below is an adoption of a proof in some lecture notes by
Atsushi Kajii (which proves this theorem from the strict version).

» A similar argument (similar to Kajii's) is also found in Berkovitz,
Convexity and Optimization in R™, Chapter IlI, Theorem 3.2.
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Proof

Write PY = {h € R" | ||h|| = 1}, which is compact.
Let C C R™ be convex and b ¢ C.

For each z € C, let
P, ={h € P°| ha < hb},

which is a closed subset of PY.

We want to show that (. Pr # 0.

We show that the family {P,},cc of closed subsets of
compact set PV has the finite intersection property.

Take any z!,..., 2™ € C.
Write A = [3:1 e IL‘m] e R,
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Since b ¢ conv(A) (C C), there exists no o € R™ such that
b= Aa, la =1, and a > 0 (where 1 € R™ is the vector of

ones), or such that [ﬂ = [f}f} a and a > 0.

Then by Farkas' Lemma, there exist h € R™ and k € R such
A b

that [h k] [1T] <0Oand [h kK [J > 0, or

hal < —k <hbforallj=1,....m

so that h € (/L) Py

Thus, ML, Py # 0.

Hence, by the compactness of PY, we have Npcc P # 0, as
desired.
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Proposition 2.9

Suppose C, D C R™, C, D # (), are convex, and that C N D = {).
Then there exists h € R™, h £ 0 such that

hx < hy forallz € C"' andy € D.
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Proof

» Let K=C—-D (={x—y|zeC, ye D}). Then
> K#0 (- C,D#0);

»> K is convex (" C and D convex);
> 0¢ K (-CNnD=0).

» Therefore, by the weak separating hyperplane theorem, there
exists h € R™, h # 0, such that

hz < hO for all z € K,
or

hx < hy for all z € C' and y € D.

24/61



Strict Separating Hyperplane Theorem

Proposition 2.10 (Strict Separating Hyperplane Theorem)

Suppose that C' C R"™ is a closed convex set, and that b ¢ C.
Then there exist h € R™, h # 0, and 8 € R such that

hx < B < hb forallx € C.
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Proof

Let b ¢ C.

By the closedness of (', there exists & > 0 such that

By the convexity of C' (and Bs(b)), it follows from
Proposition 2.9 that there exists h € R, h # 0 such that
hx < hy for all C' and all y € Bz(b).

Normalize h so that ||h]| = 1.

Letting y = b — %h, we have hz < hb — g for all z € C,
where hb — £ < hb.

Finally, let 5 = hb — %
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Proposition 2.11
Suppose C, D C R™, C, D # (), are convex and closed, and that

CnD=09.
If C or D is bounded, then there exist h € R"™, h # 0, and f € R

such that

hx < B < hy forallx € C andy € D.

» The boundedness of C or D is indispensable.
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Proof

» Let K=C—-D (={x—y|xzeC, ye D}). Then
> K0 (.-C,D #0);
» K is convex (.- C and D convex);
> 0¢ K (-CND=).

» Suppose that C' is bounded and hence is compact by

the closedness of C.

We want to show that K is closed.
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» Take any sequence {z*} in K, and assume that z* — 2*.

» For each k, let z* € C and y* € D be such that 2% = zF — y*.

> By the compactness of C, there are a subsequence of {z*}
(again denoted {z*}) and z* € C such that z* — z*.

» Then y* = 2 — 2* converges to some y*, where y* € D by
the closedness of D.

» Then we have z* = zF — y* — 2* = 2* — y*, and hence
z*e K.

» This proves that K is closed.
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» Therefore, by the strict separating hyperplane theorem, there
exist h € R", h # 0, and ' € R such that

hz < B < hO forall z € K,

or

hx < hy+ /3 <hyforallz e CandyecD.

» Then let, for example, 8 = infyecp hy + %
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Extreme Points and Extreme Rays

Definition 2.2
For S C R", x € S is an extreme point of S if

r= y+(1—-XNz, y,z€ 85, A€ (0,1) = y=z=u.

Definition 2.3
For S C R™,
reS, r#0,isarayof Sifx+ Ar e Sforallx €S and X > 0;

r € S is an extreme ray of S if

r=Mu+ (1—MNwv, u,v: raysof S, A € (0,1)

= u = av for some o > 0.
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Krein-Milman Theorem

» Denote the set of extreme points of C' by ext(C).

Proposition 2.12 (Krein-Milman Theorem)

Let C C R", C # (), be a compact convex set.
Then C' = conv(ext(C)).

» In the proof given in the textbook, | could not prove the closedness
of K from the induction hypothesis (rather than proving
the Krein-Milman Theorem itself by a different proof).
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» \We prove the theorem in a stronger form.

Proposition 2.13 (Krein-Milman Theorem)

Let C C R™, C # (), be a compact convex set.
Then each x € C is written as a convex combination of at most

n + 1 extreme points of C.

» The proof is by induction on the dimension of C.

33/61



Dimension of a set

Definition 2.4
{20, ... 2™} C R" is affinely independent if
{zt — 20, 2™ — 20} is LI

Definition 2.5

For S C R", the dimension of S, dim S, is the largest number m

for which S contains some affinely independent vectors 2V, ..., 2™,

» For any 2° € S, dim(S) = rank(S — {2°}).
» dimR" = n (take 0 and the unit vectors e!, ... e").

» For a hyperplane H C R", i.e., H = {x € R" | ha = (3} for
some heR" h#0,and € R, dmH =n— 1.

> Forany 2° € H, let H* = H — {2°} = {x € R" | hx = 0}.

» H° = ker(h") and rank(span(h)) = 1, and hence
dim(H) = rank(H%) =n — 1.
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Proof of Proposition 2.13

» We prove by induction on the dimension of C.

» If dim(C) = 0, where C'is a singleton set, the statement is
obviously true.

» Assume that the statement is true for any compact convex set
C with dim(C) <m — 1.
» Suppose that dim(C') = m. Denote K = conv(ext(C')).

We can embed C' into R™, so that we can assume C' C R™
(where the structure of convex combinations does not
change).
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Claim 1
Each x € bd C is written as a convex combination of at most m
extreme points of C.

Proof

» Take any z € bd C.

By the weak separating hyperplane theorem (applied to int C
which is convex), there exists a hyperplane
H = {x € R™ | hx = hz} such that hy < hz for all y € C.

» Since C N H is compact and convex and
dim(C' N H) <m — 1, by the induction hypothesis there are
m extreme points y', ..., y™ of C N H such that

z € conv({yl,...,y™}).

» We want to show that ¢!, ...,y are extreme points of C.
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> Let y' =2+ (1 - Nw, z,w € C, and X € (0,1).
» Then we have
hi = hy' = Mz + (1 — \)hw
< AhZ + (1 — A\)hz = hZ.

Thus, the inequality in fact holds with equality, and hence,
hz = hw = hx, meaning that z,w € H.

» Since 3’ is an extreme point of C'N H, it must be that
z=w=1y".

This proves that each 3 is an extreme point of C.

[End of the proof of Claim 1]
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Claim 1 in particular implies that ext(C') # 0.
Fix any 29 € ext(C).

Take any xz € C.

0

If 2 = 20, we are done, so assume that z # z°.

Let ap = max{a € R | z° + a(x — 2°) € C} > 1, which is
well defined by the compactness of C'.
Then y = 2% + ap(x — 2%) € bd C.
Then by Claim 1, there exist z!,..., 2™ € ext(C) such that
y =" az’ for some aq, ..., >0 with Y1 a; = 1.
Then we have
1
=2+ —(y—a)
Qg
—1 1 —1
_ 00, 5= 20
Qg

ao—1 1 . o=l , 1 ym e i
i 20 and Pt oo Doty o =1, as desired.
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Application: Walrasian Equilibrium in Exchange Economies
» Goods 1,...,n
> Agents A={1,...,m}
» For each agent i € A:
» Endowment w' € R?
Assume w’ > 0.
» Utility function U?: R} — R
Assumed to be
> continuous;

» strictly quasi-concave; and
> strictly increasing: i.e., if y > x and y # z, then
U'(y) > U'(x).
> Let M € R} be such that M > 37, 4 w'.
(In particular, M > w' for all i € A.)

» p € R : Price vector (to be determined in equilibrium)
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» Demand function of agent i:

di(p) = argmaX{Ui(:L") |z eRY, pr < pwt, x < M}

» “r < M" is a non-standard constraint, which makes the
domain compact even when the prices of some goods are zero.

» By the continuity of U?, the right-hand side is nonempty.

» By the strict quasi-concavity of U?, the right-hand side is
a singleton set.

— We regard d'(p) as a function (instead of correspondence).
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Observation 1
For any p € R", if pxr < pw' and x < M, then U'(x) < U'(d'(p));
in particular, pd(p) = pw'.

» This holds if U’ satisfies local insatiability within
{r € R} | x < M} (denote this set by M),

i.e., the property that for any x € M and any ¢ > 0,
there exists 2’ € M such that |2’ — z|| < & and
U'(z') > U'(x).

(Local insatiability within R’} is not sufficient.)
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Proof

Let p # 0.
Let z € R"} be such that pz < pw’ and z < M.

We want to show that such an z is not optimal.

By M > w', there must exist j such that pj >0 and
x; < M; (otherwise we would have pz > pw?).

Let 2’ € R'} be such that z’; is slightly larger than z; (while

z), = xy, for all k # j) so that we still have pz’ < pw’ and

By strict monotonicity of U?, we have U’(z') > U'(x).

This means that z is not optimal.
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Observation 2
di(tp) = di(p) for any t > 0.

Observation 3
If U(x) > U'(d(p)) and x < M, then px > pw'.

» We normalize a price vector p > 0, p # 0, so that ijj =1,
or consider p as an element of A = {p € R"} | Zj p;j =1}
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Definition 2.6
A pair of price vector p € R’} and allocation
X =(z',...,2™) € (R")™ is a Walrasian equilibrium if
» [utility maximization]
xt = d'(p) for all i € A, and

» [market clearing]

Zz’GA rt = ZieA w'.

» The market clearing condition should be imposed as
an inequality (i.e., > ;o4 2" <> ;4 w’) if we do not assume
monotonicity of U”.
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Lemma 2.14
d'(p) is continuous on A.

» By the continuity of U? and the “continuity” of the constraint
correspondence p — {z € R} | pz < puw', z < M}.
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Proof

Let {p*} be a sequence in A and assume that p* — p* € A.
Write 2% = d*(p*).

Since it is contained in the compact set {x € R"} |z < M},
we assume that {z*} is convergent with limit z* € R",
z* < M.

We want to show that d’(p*) = z*.

First, since pkxk < pkwi for all k,
by k — oo we have p*z* < p*w'.
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Second take any z € R} such that p*z < p*w’ and z < M.
We want to show that U%(z) < U?(z*).

For any € > 0, let 2° € R} be such that [|2° — z|| < ¢,
p*zf < p*w’, and 2 < M.

(Note that p*w® > 0 since w’ > 0 by assumption.)

Let K be such that p*z° < pFuw’ for all k > K.

Then by optimality we have U?(2°) < U¥(z*).

Letting k — oo, we have U?(2%) < U’(z*) by continuity of U°.

Finally, letting ¢ — 0, we have U'(z) < U%(z*) again by
continuity of U*.
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> Define the function E(p) = >,c 4 d'(p) — > ;e 4 W'
--- Excess demand function

Continuous by Lemma 2.14.

Lemma 2.15 (Walras' Law)
For any p € R, pE(p) = 0.

» By Observation 1.
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Existence of Walrasian equilibrium

Proposition 2.16

There exists a Walrasian equilibrium.

» p e Ais a Walrasian equilibrium price vector if and only if
E(p) =0, or it is a fixed point of the function p + E(p).

» But p+ E(p) ¢ A in general.

We will modify this function so that the value is in A.

» Then use Brouwer's Fixed Point Theorem.
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Brouwer's Fixed Point Theorem

Proposition 2.17

Suppose that X C R is a nonempty, compact, and convex set,
and that f: X — X is a continuous function from X into itself.
Then f has a fixed point, i.e., there exists x € X such that

x = f(x).

50 /61



Proof of Proposition 2.16

» Write E;L(p) = max{F;(p),0}, which is continuous in p.
» Define the function f: A — A by

_ pi+E(p)
1+>70, E;'(p),

which is continuous, mapping the compact set A to itself.

fi(p)

» By Brouwer’s Fixed Point Theorem, f has a fixed point p € A:

b — pj + Ef (p)
! 1—1-2;.":1E;F(p)
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» Then by Walras' Law pE(p) = 0, we have

> iEi(p) + X, Ef (0)E;(p)
0= Zj:ijj(p) == + EJ’LJ'ZP)

- Zj E]'-"(p)Ej(p)
S 1+ Zj Etj(p)’

and therefore 3~ E;L(p)Ej(p) =0.

» Since

E;(p)* if Ej(p) > 0,
0 If Ej(p) S 0,

it must be that E;(p) < 0 for all j.
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» Finally, we want to show that E;(p) = 0 for all j (by strict
monotonicity of U?).

» By Walras' Law, Zj p;iEj(p) =0, where p;E;(p) <0 as
shown.

> If E£j(p) <0, then p; =0,

but by monotonicity of U?, we would have
di(p) = Mj > Y, cqw? (> 0) for all i € A, which violates
Ej(p) <0.

53/61



Pareto Efficiency of Walrasian equilibrium

> An allocation X = (ml, ..., x™) € (R})™ is feasible if
Dlieatt <Y eqw’.
» An allocation Y Pareto dominates an allocation X if
> Ui(y') > Ul(a?) for all i € A, and
> Ui(y') > U'(z*) for some i € A.
> A feasible allocation X is Pareto efficient (or Pareto optimal)

if there exists no feasible allocation Y that Pareto dominates
X.
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First Fundamental Theorem of Welfare Economics

Proposition 2.18
If (p, X) is a Walrasian equilibrium, then X is Pareto efficient.

» Uses only Observation 1.
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Proof

» Suppose that an allocation Y Pareto dominates X, i.e.,

Ul(y") > U'(2") for all i € A, (1)
Ui(yi) > Ui(:ci) for some 7 € A. (2)

We want to show that Y is not feasible.

» If y' £ M for some i € A, then clearly Y is not feasible.
Suppose that y* < M for all i € A.

» By (1) and Observation 1, we have

pyt > pw' for all i € A.

> By (2), we have

py' > pw' for some i € A.
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» Therefore, we have

P (Z y' - Zw’> => (py' —pw') > 0.

i€A i€A 1€A

> This implies that Y. 4 ' < >°,. 4, w' does not hold,
i.e., Y is not feasible,

for, we would have p (3°;c4 4" — >;c4 w') < 0 otherwise.
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Second Fundamental Theorem of Welfare Economics

Proposition 2.19

Suppose that X = (w',... ,w™) is Pareto efficient. Then there
exists p € R} such that (p, X) is a Walrasian equilibrium.

> Uses

» quasi-concavity,

» |ocal insatiability, and
» continuity of U?; and
> w' > 0.
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Proof

Define
§ = {y eRY | U(y) > Ui(w)},

and define S = Z'LEA 5” which is a convex set by
the quasi-concavity of U''s.

By the Pareto efficiency of X = (wh, ..., w™),
§N (T w'} —RY) = 0.

By the weak separating hyperplane theorem, there exists
p € R", p # 0, such that

py >p (X eqw’ —2) forally € S and z > 0.

Since this holds for all z > 0, it must be that p > 0.

We want to show that (p, X) is a Walrasian equilibrium.
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Fix any 7 € A.
Suppose that y* € R, U'(y*) > Ul(w'), and 3* < M.

For each j # 4, by strict monotonicity of U7 (local insatiability
is sufficient) we have 37 arbitrarily close to w’ such that
Ul (y?) > Ut (w').

Then 3.4/ € S, and therefore,

Py + 2y ) = pw' + 3, w?).

Letting v/ — w’ for all j # i, we have py’ > pw’.
(We have shown that (p, X) is a “quasi-equilibrium".)

We want to show that if y* € R, U'(y") > U'(w"), and
y' < M, then py' > pw'.
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» Suppose that i € R?, U'(y’) > U'(w'), and y* < M.
» By the continuity of U?, U(ay®) > U'(w') for some o < 1.
Then, as we have shown, we must have p(ay’) > pw'.

» Since w’ > 0 and p > 0, p # 0, we have
0 <pw' < a(py’) <py'
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