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Partially Ordered Sets

Definition 4.1
A binary relation < on a set X is a partial order if it satisfies the
following:
» Transitivity:
forall z,y,z € X, ifx Zyandy 3 2, then z 3 2.

> Reflexivity:
forallz € X, x 2 .

> Antisymmetry:
forall z,y € X, if x Ty and y X x, then x = y.

» A partially ordered set (or poset) is a set X with a partial
order 2 on X, denoted (X, 3).
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Examples

» (R, <), where < is the usual order on R.

In fact, it is a totally ordered set:
< also satisfies completeness: for all x,y € R, z <y ory < .

» (R", <), where < is the vector order on R".

> (2%, C), where 2% is the set of all subsets of a set X, and
C is set inclusion.
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Upper/lower bounds, . ..

> Let (X, ) be a partially ordered set, and let S C X.

» 1 € X is an upper bound of S if y 3 x forall y € S.
x € X is a lower bound of S if x Sy forally e S.

» x € X is a greatest (or largest) element of S if z € S, and
x is an upper bound of S.

x € X is a least (or smallest) element of S if z € S, and
x is a lower bound of S.

» x € X is a maximal element of S if x € S, and
r3yandyesS = y=u.

x € X is a minimal element of S if x € S, and
ySzrxandye S = y=u.
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» If the set of upper bounds of S has a least element,
then it is called the least upper bound, or supremum, of S,
and denoted supy S.

That is, z = supy S if and only if
1. y Sz forallyeS; and
2. ify 2 zforally €S, then x 3 2.
> If the set of lower bounds of S has a greatest element,

then it is called the greatest lower bound, or infimum, of S,
and denoted inf x S.

That is, x = infx S if and only if
1. z Sy forally € S; and
2. if z Sy forally €S, then z 3 .

> supy S is a greatest (least) element of S if and only if
supy S € S (infx S € 5).
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(Abstract) Lattices

> Forx,y € X, write

JJVX?J:SUPX{»T’?J}, x/\Xyzlan{$7y}

(If there is no risk of confusion, we just write x Vy and x A y.)

Definition 4.2
A partially ordered set (X, 3) is a lattice if z Vx y and x Ax y
exist for all z,y € X.
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Example

> (R, <) is a lattice.
> 2 Vy=max{z,y}, x Ay = min{z, y}
» (R, <) is a lattice.
» 2 Vy € R" the vector such that (z V y); = max{z;, y;}
> z Ay € R™ the vector such that (z A y); = min{x;, y; }
> (2X,C) is a lattice.
> SVIT=SUT, SANT=5NT
> X ={(0,0),(1,0),(0,1)} C R?
(X, <) is not a lattice.
> The set of upper bounds of {(1,0),(0,1)} is empty,

so (1,0) Vx (0,1) does not exist.
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> X ={(0,0),(1,0),(0,1),(2,2)} C R?
(X, <) is a lattice.
> (1,0)vx (0,1) = (2,2)
> Note that (1,0) Vg2 (0,1) = (1,1).
= X is not a sublattice of (R?, <) (to be defined later).
> X ={(0,0),(1,0), (0, 1)}u{(x1,22) | z1 = z2, 1 > 2} C R?
(X, <) is not a lattice.

» The set of upper bounds of {(1,0),(0,1)},
{(z1,22) | 1 = 2, x1 > 2}, does not have a least element.
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Sublattices

Definition 4.3
For a lattice (X, X), K C X is a sublattice of (X, 3) if
xVxyy€e Kand x Axy € K forall z,y € K.

» If K C X is a sublattice of (X, ), then (K, 3) is a lattice,
but not vice versa.

» (According to this definition, Definition 7.1 in the textbook is
defining a sublattice of R™.)

> X ={(0,0),(1,0),(0,1),(1,1)} is a sublattice of (R?, <).
> X ={(0,0),(1,0),(0,1),(2,2)} is not a sublattice of (R?, <).
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Complete Lattices

Definition 4.4

A lattice (X, 3) is complete if supy S and infx S exist for

all S c X

(where supy ) = infx X and infy () = supy X by convention).

P This property is called “compact” in the textbook.
We follow the “standard” terminology here.

» Any lattice (X, 3) with finite X is a complete lattice,
but not always if X is infinite.

» X=[0,1]CR
(X, <) is a complete lattice.
» X=[0,1)CR
(X, <) is not a complete lattice.
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» X =[0,1)U{2} CR
(X, <) is a complete lattice.
> supy[0,1) =2
> Note that supg|0,1) = 1.
= X is not a complete sublattice of (R, <).
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Complete Sublattices

Definition 4.5
For a lattice (X, Z), K C X is a complete sublattice of (X, 3) if
supy S and infy S exist in K for all S C K, S # 0.
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Complete (Sub-)Lattices in R”"

Proposition 4.1

1. IFK CR™ K #10, is compact and (K, <) is a lattice, then
(K, <) is a complete lattice.

2. For X C R™, suppose that (X, <) is a lattice.

If K C X is compact and a sublattice of (X, <), then K is
a complete sublattice of (X, <).

» Part 1 is a special case of part 2. (Let K = X.)
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Proof

Let SC K, S # 0.

We want to show that supy S exists in K.
(The existence of infx S in K can be shown symmetrically.)

Let U C X be the set of upper bounds of S in X:
U={ue X |s<uforall se€ S}

For the moment, assume that U # (). We prove this later.

For (s,u) € S x U, write [s,u] = {x e R" | s <z < u},
which is a closed set.

We want to show that (), ,)egxp (s, u] N K # 0.
If u € N(s,mesxuls, u] N K, then
> ue K (C X);
» s <uforall s€S: wis an upper bound of S;
> yu<wuforallueU. .. supxS=uckK.
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Take any (s',ul),..., (s5 uf) € S x U.

Since X is a lattice, 5 = supy{s,...,s%} exists in X.
Since K is a sublattice of X, 5 ¢ K.

For each k =1,..., K, since " is an upper bound of
{s',..., 5%}, we have 5 < uF.

Therefore (i, [s*, u¥] N K # 0.

» By the compactness of K, this implies that

Niswpesxuls, ul VK # 0.
Finally, we show that U # 0.

> Write [s,00) = {& € R" | s <z}, which is a closed set.

» By the compactness of K, a similar argument as above shows

that (), cg[s, 00) N K # 0.
» Thus U = (,cgls,00) N X D (N,cgls,00) N K # 0.
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Complete (Sub-)Lattices in R”"

Proposition 4.2

For a sublattice K C R™ of (R", <), K is a complete sublattice of
(R™, <) if and only if it is a compact set.
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Proof

> “If" part:

Follows from Proposition 4.1.

> “Only if" part:
Boundedness: K is contained in a bounded set
{z € R" | infgn K < x < supgn K}.
Closedness: If {z*} C K and z* — z*, then let
y* = infgn {2™}m>k € K, and let § = supgn {3*} € K.
Show that z* = ¥:

» For any € > 0, there exists k such that § —e1 < y*, and hence
y—el < a™ for all m > k. Therefore, j — 1 < x*. Since
€ > 0 is arbitrary, this implies y < z*.

» For any € > 0, there exists k such that z* — ¢l < z™ for all
m >k, and hence z* — 1 < y*. Therefore, z* — el < 7.
Since € > 0 is arbitrary, this implies that z* < 7.
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Tarski's Fixed Point Theorem

» For partially ordered sets (X, Zx) and (Y, Zy), a function
f:+ X — Y is non-decreasing (or isotone, or order-preserving)
if f(z) Zy f(2) whenever x Zx o'

Proposition 4.3 (Tarski's Fixed Point Theorem)

Suppose that (X, 3) is a complete lattice, and that f: X — X is
a non-decreasing function. Let X* C X be the set of fixed points
of f.

1.sup{z € X |z 2 f(z)} and inf{z € X | f(x) 2z} are
the greatest and the least elements of X*.
In particular, X* # ().

2. (X*,2) is a complete lattice.

> X* is not a sublattice in X in general.
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Proof

> let X'={reX|zZ f(z)}
X' # () since inf X € X',

» Denote z* = sup X' € X.
We show that z* € X*.

» Take any z € X', where z X f(x) and = 3 a*.

By the monotonicity of f, we have f(z) = f(z*), so that
)

Since this holds for any x € X', we have

a3 faT). (1)
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By the monotonicity of f, (1) implies that f(z*) 3 f(f(z¥)).
This means that f(z*) € X'

Therefore, we have

By (1) and (2), we have z* = f(z*), i.e., z* € X*.
For any x € X*, we have z € X', and therefore = 3 z*.
Thus, z* is the greatest element of X ™.

A symmetric argument shows that inf{x € X | f(z) S x} is
the least element of X*.
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Take any S C X*.
Denote s=supy Se X and Z={x € X |5 3z}
(Z,2) is a complete lattice.
We have f(Z) C Z.
> Take any z € Z.
> Forany z € S (C X*), we have z = f(x) 3 f(5) 2 f(»).
» This shows that § =supx S =X z, i.e., f(z) € Z.

Thus, the restriction f|z of f to Z is a non-decreasing
function from the complete lattice Z to itself.

Let Z* (C X™) denote the set of fixed points of f|z, which is
the set of upper bounds of S in X*.

By part 1, Z* has a least element, which is supy« S.
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> A symmetric argument shows that inf x« S exists in X*.

» Thus, (X*, 3) is a complete lattice.
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Proposition 4.4

Suppose that (X, Zx) is a complete lattice and (Y, Zy) is

a lattice, and that f: X xY — X is a non-decreasing function.
Then the greatest and the least fixed points of f(-,y) are
non-decreasing in .
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Proof

Let z*(y) € X denote the greatest fixed point of f(-,y).
Let v/ 24,

Let Z ={z e X |z*() 2 z}.

(Z,3) is a complete lattice.

f(,9y") maps Z into itself:

for any x € Z, we have
() = F(Z ), v) 2 f(2,y) 2 flx,y").

By Tarski's Fixed Point Theorem, f(-,4”) has a fixed point in
Z, and its greatest fixed point in Z is the greatest fixed point
in X,

that is, *(y") € Z, or z*(v') 2 *(v").
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Proposition 4.5

Let X C R™ be a compact set, and suppose that (X, <) has

a least element x. Suppose that f: X — X is non-decreasing and
continuous.

Then the sequence z* = f(2*~1) with 2° = x converges to

the least fixed point.
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Proof

» By the monotonicity of f, we have

> By the boundedness of X, z* converges to some z*,
the closedness of X, z* € X.

» By the continuity of f, z* = f(z*), i.e., z* is a fixed point of
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> Let £ € X be a fixed point of f.

» By the monotonicity of f, we have
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» Therefore, z* < Z.

» This shows that z* is the least fixed point.
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Application: Games with Monotone Best Responses

» 7T ={1,...,I}: Set of players
> S;: Set of strategies of player i € 7
Partially ordered by =;
» Assumption: For all i € Z, (S;, Z;) is a complete lattice.
» <: Product partial order on S =[], S
(si)ier S (sh)iez if and only if s; =, s, for all i € Z
» =_;: Product partial order on S_; = H#iS-
(85)j2i S—i (85)jzi if and only if s; 3; s’ for all j # i
» u;: S — R: Payoff function of player i € 7

» Denote this game by G.
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» Best response correspondence (in pure strategies) of player i:

bi(s—;) = {si € Si | wi(si,s—i) > u;(s;,s_;) for all s; € S;}

> Assumption: G has monotone best responses,
i.e., forallieZ,

> forall s_; € S_;, bi(s_;) has a greatest element b;(s_;) and
a least element b;(s_;), and

» b;(s—;) and b,;(s_;) are non-decreasing in s_;.

» (We will later discuss what conditions on the primitives of
the game guarantee this assumption to hold.)
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Examples

Coordination game:

Lo Ry
Ly 4,4 0,2
R 20 3,3

> bi(Lj) = Li, bi(R;) = R

> With orders L; <; R;, the best responses are non-decreasing.
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Battle of the sexes:

Lo Ry
L[ 0,0 2.1
Ry 1,2 0,0

> bi(L;) =Ry, bi(R;) = L;

> With orders L1 <1 R; and Ry <9 Lo, the best responses are
non-decreasing.
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Matching pennies:
Lo Ry
Ly 1,-1 -1,1
Ry -1,1 1,-1

> b1(L2) = L1, bi(R2) = Ry
ba(L1) = Rz, ba(R1) = Lo

> With any orders, the best responses cannot be non-decreasing
simultaneously for both players.
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Existence of Pure-Strategy Nash Equilibria

Proposition 4.6

Suppose that the game G has monotone best responses.

Then G has a pure-strategy Nash equilibrium.

In particular, there are a greatest and a least pure-strategy Nash
equilibria.

Proof

» The function b: S — S defined by
b(s) = (b1(s-1),...,bn(s—;)) is a non-decreasing function
from the complete lattice S to itself.

» By Tarski's Fixed Point Theorem, a greatest fixed point of b
exists, which is the greatest pure-strategy Nash equilibrium.
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Supermodular Functions

Definition 4.6
For a lattice (X, Z), a function f: X — R is said to be
supermodular if

f@)+ f@) < flaval) + flz nal)

for all z, 2’ € X.

> f is said to be strictly supermodular if
f@)+ f(@') < f(zVva')+ f(z Ax') whenever neither x 3 2/
nor 2’ X .

> fis said to be (strictly) submodular if —f is (strictly)
supermodular.
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Example
> Let X = {r € R? |z < 2 <7} for some z,T € R2
Suppose that f: X — R is supermodular.
» Consider (2, z%) and (2, 2%) with 2} < 2/ and z}, < zf.
By the supermodularity of f, we have
Fah,25) + f(af, 25)
< flay Va2 Vag) + f(2) Aaf,2h Aab)
= (el al) + £l 7h),
or f(z7,5) — f(a, 25) < f(af,23) — f(2}, 25),
that is, f satisfies increasing differences in (x1,x3).

» Conversely, if f satisfies increasing differences in (z1, z2),
then it is supermodular.
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Example: Submodular Functions on R?

> Let X = {r € R? |z < 2 <7} for some 2,7 € R?.

Suppose that f: X — R is submodular
(i.e., —f is supermodular).

» Define the partial order <* on R? by
(21, 25) <* (27,25) < 27 < a7, o) > 2.

» Then f is supermodular with respect to <*:

If (2, 2h) <* («f,27), then

faf,25) = f(2h,25) = —[(— (331’$2)) (—f(zh,25))]
< —[(—f(a,23)) = (= f(21,23))]
= f(z 1/7952) f($1a552)'

» This “trick” does not work with more than two variables.
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Proposition 4.7

Let X ={z € R" |z <x <7T} for some z,7 € R", x < T, and
suppose that f: X — R is twice continuously differentiable on
int X and continuous on X.

Then f is supermodular if and only if for all i,j =1,...,n,1# j

5o (%) > 0 for all 3 € int X

> Example:
f(z1,z2) = 2" 25?, aq, a2 > 0, is supermodular on Ri.
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Optimization

Proposition 4.8
Let (X,3) be a lattice.
» If f: X — R is supermodular, then arg max . f(x) is
a sublattice of X.

» If f is strictly supermodular, then arg max .y f(x) is a chain,
ie., forany x,x’ € argmax,cx f(x), v 32’ orz’ 3z
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Proof
1.

» Suppose that z, 2’ € arg max,cx f(x).
» By supermodularity, we have
0< f(z) = flana’) < flava') - f2) <0,
which must hold with equality.

» Thus, x Va/,z A2’ € argmax,cy f(2).

» If z,2" € argmax,cy f(z), then we have

flava)+ flz Aa') < fz) + f(2).

» If neither x = 2/ nor 2’ < x, then this contradicts the strict
supermodaularity.
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Proposition 4.9

Let X and Y be lattices, and suppose that f: X xY — R is
supermodular.

Assume that v(y) = sup,cx f(z,y) is finite for all y € Y.
Then v is supermodular.

Proof
> Lety,y/ €Y.
» For any 7,2’ € X, we have
v(y Vy ') + oy Ay o)

> flavx e, yVy o)+ fzAx 2’y Ay y)
> f(x,y)+ f',y).

» Since this holds for all z,2’ € X, it follows that
o(y Vy y') +o(y Ay ') > v(y) + oY)
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Monotone Comparative Statics

Definition 4.7
For partially ordered sets (X, Zx) and (Y, Zy), a function
f: X xY — R satisfies increasing differences in (x,y) if

f@"y) = f@y) < fF@"y") — f2,y")

whenever 2/ 3Sx 2” and v Zy o”.
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Proposition 4.10

Suppose that
» X CR", X #10, is compact and a lattice (with respect to <),
» (Y Zy) is a partially ordered set; and
> f: X xY — R satisfies the following:

» f(-,y) is continuous for each y € Y;
> f(-,y) is supermodular for each y € Y, and

» f(x,y) satisfies increasing differences in (x,y).

Then

1. for each y € Y, argmax,cx f(x,y) is a nonempty, complete
sublattice of X; and

2. its greatest and least elements are non-decreasing in y.
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Proof

Write X*(y) = arg max,c y f(z,y).

By the compactness of X and the continuity of f(-,y),
X*(y) is nonempty and compact.

By the compactness, the lattice X is a complete lattice by
Proposition 4.1.

Thus, together with the supermodularity of f(-,y), X*(y) is
a sublattice of X by Proposition 4.8.

Again by Proposition 4.1, X*(y) is a complete sublattice.

Denote the greatest and the least elements of X*(y)
by 7*(y) and z*(y), respectively.
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» Suppose that v’ Jy ”.
If 2/ € X*(y') and 2" € X*(y"), then

0< f(@y) - f@' Axa"y)  (bya' € X*(y))
< f(@'vxa",y)— f(a",y) (by supermodularity)
< f(a'vx 2",y") — f(2",y") (by increasing differences)
<0 (by 2" € X*(y"))

which must hold with equality.
» Thus, 2’ Ax 2” € X*(y') and 2/ Vx 2" € X*(y").
» In particular, we must have

> 2*(y') Ix 2" (') Ax z*(y"), so that z*(y') Zx z*(y"); and

> T (y) Vx T (y") Ix TW(y"), so that T°(y') Tx T (y").
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Supermodular Games
» T ={1,...,1}: Set of players
> S; C R™: Set of strategies of player i € 7
Partially ordered by < on R™:
> S; C R™: compact
> u;: S — R: Payoff function of player i € Z (S =][;c7 Sj)

» wu;(s;,$_;): continuous in s; for each s_; and continuous in
s_; for each s;

» Denote this game by G.

» G is called a supermodular game if for each i € Z,
> S, is a complete lattice;
> wu;(s;,S—;) is supermodular in s; for each s_;; and
> wu;(s;, s_;) satisfies increasing differences in (s;,s_;).
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Smooth Supermodular Games

> The game is supermodular if the following are satisfied:
For each 7 € 7:
> S, = {Si e R™

» w; is twice continuously differentiable on int .S, and continuous
on S;

> forallseintS, 2% (s)>0forall k,¢=1,...,n; k+# L.

05410540

s; < 5y < 5;} for some s; < 5j;

> forall s €intS %(s) >0 for all j # 4, and

'6Sik35jm
forallk=1,...,n; and all m=1,...,n;.
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Proposition 4.11
Suppose that the game G is a supermodular game.
1. G has monotone best responses,

i.e., the greatest and the least best responses b;(s_;) and
b;(s—;) are well defined and non-decreasing in s_;.

2. G has a greatest and a least pure-strategy Nash equilibria s*
and s*.

3. Let s = (Si)iez and s = (s;)iez be the greatest and the least
strategy profiles. Then the sequences 5° = b(5+~1), 5°
and s* = b(s*1), s¥ = s converge to 5 and s*, respectively

(where b(s) = (bi(s—i))iez and b(s) = (b;(s—i))iez)-

=5
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Proof
» Part 1: By Proposition 4.10.
» Part 2: By Proposition 4.6.
> Part 3:

{s*} is increasing and bounded above, and thus converges to
some s* € §S.
» For any s; € 5;, ui(gf,gﬁzl) > ui(si,skzl) for all k.

By continuity, letting k — oo we have
wi(sj,s%;) > wi(si, s75;). (*)

Thus, s* is a Nash equilibrium.

» For any Nash equilibrium 3, s° < 3, s' = b(s?) < b(8) < 3,
..., and hence s* < §, i.e., s* is the least Nash equilibrium.
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» Proof of (x):

Suppose that f(x,y) is continuous in x for each y and in y
for each y and satisfies increasing differences in (z,y).

If {(z*,4*)} is non-decreasing and converges to (z*,4*), then

> f(x*7y*)_f(xkayk): .
Fl@,y) = fla®y") + fa*,y*) = fa*,y"),
where by increasing differences,

f(x*ayo)_f($k7y0) < f(x*ayk)_f(xkvyk> < f(x*,y*)—f(a:k,y*)
» Therefore,
[f(m*,y*) - f(‘r*?yk)] + [f(x*vyo) - f(xk7y0)]
< f(l'*,y*) - f(wkvyk)
< [f(x*vy*) - f(x*vyk)] + [f(x*,y*) - f(xk?y*)}v

where the left and the right hand sides go to 0 as k — oo
by continuity in = (for y = y°,y*) and in y (for z = z*).
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Example: Bertrand Game with Differentiated Products

» Firms: Z={1,...,I}
» Strategy space of i: S; = [0, p;] (prices)

» d;(pi,p—i): Demand for i's product
> 6d £ <0
> Gar >0, j # i (substitutability)

» (;: Total cost
> C/ >0

» Payoff function of i:

wi(pis P—i) = Pidi(pi, p—i) — Ci(di(pi, p—i))
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» Cross derivatives:

0%, 02d, od; \ Ou;
(3 — ; — Cz/ (3 + < o C// > K
Op;Op; w ) OpiOp; " Opi ) Opj

Second term > 0

> With linear demand d;(pi, p—i) = ai — bipi + 9ij >~ 4; Pj,
bi, gij > 0 (Problem 7.7),

0%d;
we have 900, = 0 and therefore a - > (, so that

the game is supermodular
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Example: Cournot Game with Two Firms

A\

Firms: Z = {1,2}

v

Strategy space of 1: S; = [0, 1] (quantities)
Strategy space of 2: Sy = [—Z2,0] (negative of quantities)
» P(Q): Inverse demand

> @ =ux1 + (—x2): total supply
> P <0

A\

C;: Total cost

v

Payoff functions:

ul(.Tl,:Eg) = P(.’El - I‘Q)Cﬂl - Cl($1)

uz (21, v2) = P(x1 — 12)(—22) — Co(—12)
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» Cross derivatives:

62ul 1 /
8x18x2 = —P (:L'l — :Eg)l'l — P (I‘l — $2)
82
8.%'2223?1 = P”(:L‘l — :Ez).%’g — P'(xl — ZCQ)
—P' >0

» With linear inverse demand P(Q) =1 — @ (Problem 7.8),
we have P” =0 and therefore 623;;, > 0,

so that the game is supermodular.
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Application: Stable Matchings
» M: Set of men
» W: Set of women
» Assume |M| = |W].
>

Each m € M has a strict preference ordering >"" over
Wu{m};
each w € W has a strict preference ordering >* over
M uU{w}.

x >%y -+ i ranks z above y.
> Assume

» forall me M, w >" m for all w € W; and
> forallwe W, m>Y wforall m € M.

» Write x >y for “not y >' 2" (<= “x >'yorxz=1").
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» A matching is a function y: M UW — M U W such that

> u(m) e Wu{m} for all m € M;
> p(w) € M U{w} for all w € W; and
» u(m) = w if and only if u(w) = m.

» A pair (m,w) € M x W is a blocking pair for matching p if
w >" p(m) and m > p(w).

» Matching p is stable if there is no blocking pair for .

(By assumption, individual rationality is satisfied.)
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> Example:

M w

ma: w9 w1 w3 w1i. mi1 M3 My
ma: w1 ws w9 w9g. m3 MM My
ms. w1 w9 ws ws. mi1 ms 1My

> {(m1, wl), (mg,w2), (m3,w3)} is not stable.
*. (mq,ws) is a blocking pair.

> {(ml, wl), (’ITZQ7 ’wg)7 (mg, w3)} is stable.
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Proposition 4.12

There exists a stable matching.
Moreover, there exist

» a stable matching that is most preferred by all m € M and
least preferred by all w € W among all stable matchings; and

» a stable matching that is most preferred by all w € W and
least preferred by all m € M among all stable matchings.

» First (formulated and) proved by Gale and Shapley (1962) via
the “deferred acceptance algorithm”.

» We prove by Tarski's Fixed Point Theorem.
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» A semi-matching (or pre-matching) is a function
w: MUW — M UW such that

> u(m) € WU {m} for all m € M; and
> u(w) e MU{w} for all w e W.

> Xg: Set of all semi-matchings
X C Xp: Set of all matchings

» Define the function f: Xg — X by the following:
for u € Xo,

Fu)(m) = argmax{w € W [m =% p(w)} U {m},

£l w) = argmax{m € M | w =" p(m)} U {w},
> X*: Set of fixed points of f
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Proposition 4.13
Any fixed point of f is a matching, i.e., X* C X.

Proof

>

vV vV v Vv YV

Suppose that f(u) = pu.
Suppose that u(m) = w.

Then f(p)(m) = w, which implies m > p(w).

Also f(u)(w) >* m, and therefore p(w) >" m.

Hence p(w) = m.

A symmetric argument shows that
pw) =m = p(m) = w.

58 /62



Proposition 4.14

1 Iis a stable matching if and only if it is a fixed point of f, i.e.,
pe X",

Proof
» Suppose that € X* (C X).
If w >" u(m), then f(u)(w) >* m, hence p(w) > m.
Hence there is no blocking pair.

» Suppose that € X\ X*.

Suppose that there exists m € M such that
w = p(m) #w' = f(u)(m).
Then m >"" p(w') and w' >™ p(m).

Hence (m,w’) is a blocking pair.
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Proposition 4.15
f has a fixed point, i.e., X* # ().

Proof

» Define the partial order 2~ on Xg as follows:
w7 v if and only if

> u(m) >" v(m) for all m € M, and
> v(w) > p(w) for all w e W.

» Then (Xo, ) is a complete lattice.
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> f: Xy — Xo is non-decreasing:
Suppose that u - v.
> By v(w) >" p(w), we have m > v(w) = m >" p(w).
Therefore, f(p)(m) >™ f(v)(m).
> By p(m) >™ v(m), we have w >™ pu(m) = w > v(m).
Therefore, f(v)(w) >% f(u)(w).
» Thus, by Tarski's Fixed Point Theorem, X* # ().

In particular, X* has a greatest element (best for M and worst
for W) and a least element (worst for M and best for ).
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Problem

1. By Tarski's Fixed Point Theorem, f has a greatest fixed point

3, Homework 4

T*.

> let X' ={ze X |z* <z}

» For z € X', we have g(x) > f(z) > f(T*) = T*, so that
g(z) e X'

» Thus, g maps the compact convex set X’ to X’.

» By Brouwer’s Fixed Point Theorem, g has a fixed point z** in
X'.

» For any fixed point z* of f, we have z* < z* < z**,
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