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Brouwer’s Fixed Point Theorem

Proposition 10.1 (Brouwer’s Fixed Point Theorem)

Suppose that X ⊂ RN is a nonempty, compact, and convex set,
and that f : X → X is a continuous function from X into itself.
Then f has a fixed point, i.e., there exists x ∈ X such that
x = f(x).
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▶ What if X is not compact?

▶ What if X is not convex?

▶ What if f is not continuous?
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Kakutani’s Fixed Point Theorem

Proposition 10.2 (Kakutani’s Fixed Point Theorem)

Suppose that X ⊂ RN is a nonempty, compact, and convex set,
and that F : X → X is a correspondence from X into itself that is

1. nonempty-valued,

2. convex-valued,

3. compact-valued, and

4. upper semi-continuous.

Then F has a fixed point, i.e., there exists x ∈ X such that
x ∈ F (x).

Note:

Since the codomain is compact,
“being compact-valued and upper semi-continuous” can be replaced with
“having a closed graph”.
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▶ What if F is not convex-valued?

▶ What if F is not compact-valued?
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Proof of Brouwer’s Fixed Point Theorem

▶ Sperner’s Lemma

▶ KKM Lemma

▶ Brouwer’s Fixed Point Theorem

▶ for simplices

▶ for general compact convex sets
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Simplices

▶ The unit simplex ∆ in RN is the set

∆ =
{
x ∈ RN

∣∣ x1, . . . , xN ≥ 0,
∑N

i=1 xi = 1
}

= Co{e1, . . . , eN},

where ei ∈ RN is the ith unit vector in RN .

▶ An m-simplex in RN is the convex hull Co{a1, a2, . . . , am+1}
of m+ 1 affinely independent vectors a1, a2, . . . , am+1 in RN

(i.e., a2 − a1, . . . , am+1 − a1 linearly independent).

▶ ∆ ⊂ RN is an (N − 1)-simplex in RN .
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▶ For an m-simplex S = Co{a1, . . . , am+1}:
▶ Each ai is called a vertex of the m-simplex,

where we write V (S) = {a1, . . . , am+1} (set of vertices of S).

▶ {a1, . . . , am+1} is said to span S.

▶ The simplex spanned by a subset of vertices of S is called
a face of S,

where a face spanned by k vertices is called a k-face.

▶ For each x ∈ S, which is (uniquely) represented by a convex
combination

∑
i αia

i, the carrier C(x) of x is the set of
indices with positive weights:

C(x) = {i ∈ {1, . . . ,m+ 1} | αi > 0}.
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Simplicial Subdivision

▶ A simplicial subdivision of an m-simplex S is a finite set of
m-simplices (subsimplices) such that

▶ the union of all subsimplices is S, and

▶ the intersection of any two subsimplices is either empty or
a face of both.

▶ The mesh of a simplicial subdivision is the maximum among
the diameters of the subsimplices.

(The diameter of a set A is supx,y∈A∥x− y∥.)

▶ For any ε > 0, there exists a simplicial subdivision with mesh
smaller than ε.
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Example: Equilateral subdivision
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Sperner Labelling

▶ Consider a simplicial subdivision T of an m-simplex
S = Co{a1, . . . , am+1}.

Let V (T ) be the set of vertices of subsimplices in T .

▶ A Sperner labelling (or proper labelling) of T is a mapping
λ : V (T ) → {1, . . . ,m+ 1} such that

λ(v) ∈ C(v)

for all v ∈ V (T )

(where C(v) = {i ∈ {1, . . . ,m+ 1} | αi > 0} is the carrier of v).

▶ A subsimplex in T is completely labelled if its set of vertices
has all m+ 1 distinct labels.
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Example: Sperner labelling

1 1 2 2 1 2 2

1 1 1 1 1 2

1 2 1 2 2

1 1 3 2

3 1 2

3 2

3
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Sperner’s Lemma

Proposition 10.3 (Sperner’s Lemma)

For any simplicial subdivision of any m-simplex and any Sperner
labelling of it,
there are an odd number of completely labelled subsimplices;
in particular, there is at least one completely labelled subsimplex.
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Proof

By induction in m:

▶ The statement is trivial for m = 0.

▶ For m ≥ 1, assume that the statement is true for m− 1.

▶ Let a simplicial subdivision T of an m-simplex S and
a Sperner labelling λ : T → {1, . . . ,m+ 1} be given.

▶ Define

▶ C: set of subsimplices with labels {1, . . . ,m+ 1}
(set of completely labelled subsimplices);

▶ A: set of subsimplices with labels {1, . . . ,m}
(set of “almost” completely labelled subsimplices); and

▶ E: set of (m− 1)-faces of subsimplices with labels {1, . . . ,m}
that are contained in the boundary of S.
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▶ Let R = C ∪A ∪ E.

▶ Define

D = {(t, t′) ∈ R×R | t ̸= t′, λ(V (t∩ t′)) = {1, . . . ,m}}.

(V (t ∩ t′): set of vertices of the simplex t ∩ t′)

▶ Interpretation

▶ S: house; T : rooms

▶ C: rooms with labels {1, . . . ,m+ 1}
▶ A: rooms with labels {1, . . . ,m}
▶ E: entrances (outside of the house)

▶ D: doors between two rooms or a room and an entrance
· · · defined as ordered pairs, hence each door counted twice
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1. For each t ∈ C: |{t′ | (t, t′) ∈ D}| = 1.

“Each room in C has one door.”

2. For each t ∈ A: |{t′ | (t, t′) ∈ D}| = 2.

(∵ One label in {1, . . . ,m} is repeated.)

“Each room in A has two doors.”

3. For each t ∈ E: |{t′ | (t, t′) ∈ D}| = 1.

“Each entrance in E has one door.”

4. |D|: even

(∵ (t, t′) ∈ D ⇐⇒ (t′, t) ∈ D)

“Each door in D is counted twice.”
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▶ Therefore, we have

|D| = |C|+ 2|A|+ |E|,

where |D| is even.

▶ Therefore, |C|+ |E| is even.

▶ Since |E| is odd by the induction hypothesis, it therefore
follows that |C| is odd.
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1 1 2 2 1 2 2

1 1 1 1 1 2

1 2 1 2 2

1 1 3 2

3 1 2

3 2

3
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Paths through doors

▶ 4 types of paths:

▶ e ↔ · · · ↔ a ↔ · · · ↔ e

▶ e ↔ · · · ↔ a ↔ · · · ↔ c

▶ c ↔ · · · ↔ a ↔ · · · ↔ c

▶ · · · ↔ a ↔ · · · (cycle)

where c ∈ C, a ∈ A, e ∈ E.

▶ |E| is odd by the induction hypothesis.
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KKM (Knaster-Kuratowski-Mazurkiewicz) Lemma

Let ∆ = Co{e1, . . . , eN} be the unit simplex in RN , where
ei ∈ RN is the ith unit vector in RN .

Proposition 10.4 (KKM Lemma)

Let F1, . . . , FN be a family of closed subsets of ∆ such that

Co{ei | i ∈ I} ⊂
⋃
i∈I

Fi for every I ⊂ {1, . . . , N}. (∗)

Then we have
⋂N

i=1 Fi ̸= ∅.
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Proof

▶ Let F1, . . . , FN be a family of closed subsets of ∆ that satisfy
condition (∗).

▶ For each k ∈ N, let Tk be a simplicial subdivision of ∆ with
mesh smaller than 1

k , and V (Tk) the set of vertices of
subsimplices in Tk.

▶ For each v ∈ V (Tk), where v ∈ Co{ei | i ∈ C(v)},
by condition (∗) there is some i ∈ C(v) such that v ∈ Fi.

Let λk(v) be any such i.

▶ Then, the mapping λk : V (Tk) → {1, . . . , N} so defined is
a Sperner labelling.
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▶ Therefore, by Sperner’s Lemma, there exists a completely
labelled subsimplex in Tk.

Denote its vertices by v1(k), . . . , vN (k) so that λk(v
i(k)) = i.

▶ By construction, vi(k) ∈ Fi for all k.

▶ By the compactness of ∆, {v1(k)}∞k=1 has a convergent
subsequence {v1(kn)}∞n=1 with a limit x∗.

▶ Since the diameter of Co{v1(kn), . . . , vN (kn)} converges to 0
as n → ∞, we have vi(kn) → x∗ also for all i ̸= 1.

▶ By the closedness of Fi, we have x∗ ∈ Fi for all i = 1, . . . , N .
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Brouwer’s Fixed Point Theorem for Simplices

Proposition 10.5

If f : ∆ → ∆ is continuous, then it has a fixed point.

Corollary 10.6

For a simplex S,
if f : S → S is continuous, then it has a fixed point.
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Proof of Brouwer’s Fixed Point Theorem for Unit Simplex

▶ Let f : ∆ → ∆ be continuous,
where we write f(x) = (f1(x), . . . , fN (x)).

▶ For each i ∈ {1, . . . , N}, define a subset Fi of ∆ by

Fi = {x ∈ ∆ | xi ≥ fi(x)},

which is closed by the continuity of f .

▶ If x ∈
⋂N

i=1 Fi, which means xi ≥ fi(x) for all i, then we have

1 =

N∑
i=1

xi ≥
N∑
i=1

fi(x) = 1,

and hence xi = fi(x) for all i, i.e., x is a fixed point of f .

▶ Therefore, it suffices to show that
⋂N

i=1 Fi ̸= ∅.
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▶ For any I ⊂ {1, . . . , N},
if x ∈ Co{ei | i ∈ I}, then x ∈

⋃
i∈I Fi.

∵ If x /∈
⋃

i∈I Fi, which means xi < fi(x) for all i ∈ I,
then we would have

1 =

N∑
i=1

xi =
∑
i∈I

xi <
∑
i∈I

fi(x) ≤
N∑
i=1

fi(x) = 1,

which is a contradiction.

▶ Thus, F1, . . . , FN satisfy the hypothesis of the KKM Lemma.

▶ Therefore, by the KKM Lemma,
⋂N

i=1 Fi ̸= ∅, as desired.
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Proof of Brouwer’s Fixed Point Theorem

▶ Let X be a nonempty, compact, and convex set, and
f : X → X continuous.

▶ Let S be a sufficiently large simplex that contains X.

▶ For each x ∈ S, let g(x) be the unique y ∈ X such that
∥y − x∥ = infz∈X∥z − x∥.

The function g : S → X is well defined and continuous
by the closedness and convexity of X.

▶ Define h : S → S by h(x) = f(g(x)), which is continuous.

▶ By Corollary 10.6, h has a fixed point x∗ ∈ S, which must be
in X.

▶ Then, we have x∗ = h(x∗) = f(g(x∗)) = f(x∗),
i.e., x∗ is a fixed point of f .
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Proof of Kakutani’s Fixed Point Theorem for Simplices

▶ Let S ⊂ RN be an M -simplex: S = Co{a1, . . . , aM+1}.

▶ Let F : S → S be a nonempty- and convex valued
correspondence from S to S whose graph is closed.

▶ For each k ∈ N, let Tk be a simplicial subdivision of S with
mesh smaller than 1

k , and V (Tk) the set of vertices of
subsimplices in Tk.

▶ For each k, we construct a continuous function fk from S to
S as follows:

▶ For each v ∈ V (Tk), take any y ∈ F (v), and let fk(v) = y.

▶ For each x ∈ S,

if x is in a subsimplex Co{v1, . . . , vM+1}, so that

x =
∑M+1

m=1 αmvm,

then let fk(x) =
∑M+1

m=1 αmym, where ym = fk(vm).
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▶ By Brouwer’s Fixed Point Theorem, fk has a fixed point
xk ∈ S: fk(xk) = xk.

▶ Write xk =
∑M+1

m=1 αk
mvk,m and fk(xk) =

∑M+1
m=1 αk

myk,m,
where yk,m = fk(vk,m) ∈ F (vk,m).

▶ By taking a subsequence, as k → ∞,

xk → x∗, αk
m → α∗

m, and yk,m → y∗,m,

and also, vk,m → x∗.

▶ From xk = fk(xk) =
∑M+1

m=1 αk
myk,m, we have

x∗ =
∑M+1

m=1 α∗
my∗,m.

▶ From yk,m ∈ F (vk,m), we have y∗,m ∈ F (x∗) by the
closedness of the graph of F .

▶ Therefore, by the convexity of F (x∗), we have x∗ ∈ F (x∗).
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Application: Existence of Nash Equilibrium

Nash gave three proofs of the existence of Nash equilibrium of
finite normal form games.

1. J. F. Nash, “Equilibrium Points in n-Person Games,”
Proceedings of the National Academy of Sciences of the
United States of America 36 (1950), 48-49.

2. J. F. Nash, “Non-Cooperative Games,” Dissertation,
Princeton University, Department of Mathematics, 1950.

3. J. Nash, “Non-Cooperative Games,” Annals of Mathematics
54 (1951), 287-295.

See also:

▶ J. Hofbauer, “From Nash and Brown to Maynard Smith: Equilibria,
Dynamics and ESS,” Selection 1 (2000), 81-88.
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Normal Form Games

Definition 10.1
An I-player (finite) normal form game is a tuple
(I, (Si)i∈I , (ui)i∈I) where

▶ I = {1, . . . , I} is the set of players,

▶ Si is the finite set of strategies of player i ∈ I, and

▶ ui :
∏

j Sj → R is the payoff function of player i ∈ I.
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Mixed Strategies (1/2)

▶ A mixed strategy σi of player i is a probability distribution
over Si, where σi(si) denotes the probability that i plays
si ∈ Si.

▶ We denote by ∆(Si) the set of mixed strategies of player i.

▶ ∆(Si) is a convex and compact subset of R|Si|.

▶ ∏
i∆(Si) is a convex and compact subset of R|S1|+···+|SI |.
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Mixed Strategies (2/2)

▶ For σ−i = (σ1, . . . , σi−1, σi+1, . . . , σI) ∈
∏

j ̸=i∆(Sj),
we write

ui(si, σ−i) =
∑

s−i∈S−i

∏
j ̸=i

σj(sj)ui(si, s−i),

ui(σi, σ−i) =
∑
si∈Si

σi(si)ui(si, σ−i).

▶ ui(si, σ−i) is continuous in σ−i.

▶ ui(σi, σ−i) is continuous in (σi, σ−i).

▶ ui(σi, σ−i) is linear in σi.
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Nash Equilibrium (in Mixed Strategies)

Definition 10.2
A mixed strategy profile σ∗ = (σ∗

1, . . . , σ
∗
I ) ∈

∏
i∆(Si) is

a Nash equilibrium of (I, (Si)i∈I , (ui)i∈I) if for all i ∈ I,

ui(σ
∗
i , σ

∗
−i) ≥ ui(σi, σ

∗
−i)

for all σi ∈ ∆(Si).
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Equivalent Representations
1. Define the correspondences Bi :

∏
j ̸=i∆(Sj) → ∆(Si) and

B :
∏

j ∆(Sj) →
∏

j ∆(Sj) by

Bi(σ−i) = {σi ∈ ∆(Si) | ui(σi, σ−i) ≥ ui(σ
′
i, σ−i) ∀σ′

i ∈ ∆(Si)},
B(σ) = B1(σ−1)× · · · ×BI(σ−I).

σ∗ is a Nash equilibrium if and only if σ∗ is a fixed point of B,
i.e., σ∗ ∈ B(σ∗).

2. σ∗ is a Nash equilibrium if and only if for all i ∈ I and si ∈ Si,

σ∗
i (si) > 0 ⇒ ui(si, σ

∗
−i) = max

s′i∈Si

ui(s
′
i, σ

∗
−i).

3. σ∗ is a Nash equilibrium if and only if for all i ∈ I,

ui(σ
∗
i , σ

∗
−i) ≥ ui(si, σ

∗
−i) for all si ∈ Si.
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Existence Theorem

Proposition 10.7

Every finite normal form game has at least one Nash equilibrium.
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Three Proofs

1. J. F. Nash, “Equilibrium Points in n-Person Games,”
Proceedings of the National Academy of Sciences of the
United States of America 36 (1950), 48-49.

2. J. F. Nash, “Non-Cooperative Games,” Dissertation,
Princeton University, Department of Mathematics, 1950.

3. J. Nash, “Non-Cooperative Games,” Annals of Mathematics
54 (1951), 287-295.
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First Proof (1/2)

▶ B is a correspondence from the nonempty, convex, and
compact set

∏
j ∆(Sj) to itself.

▶ Bi(σ−i) ⊂ R|Si| is the set of all convex combinations of
pure best responses to σ−i, which is nonempty and convex.

So B is nonempty- and convex-valued.

▶ To show that B has a closed graph,
let (σk, τk) ∈

∏
j ∆(Sj)×

∏
j ∆(Sj) be such that

τki ∈ Bi(σ
k
−i) for each i, and suppose that (σk, τk) → (σ, τ)

as k → ∞.
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First Proof (2/2)

▶ Take any i and any σ′
i. Then ui(τ

k
i , σ

k
−i) ≥ ui(σ

′
i, σ

k
−i).

Since ui is continuous, letting k → ∞ we have

ui(τi, σ−i) ≥ ui(σ
′
i, σ−i).

This means τi ∈ Bi(σ−i).

▶ Therefore, all the conditions of Kakutani’s Fixed Point
Theorem are satisfied.

▶ Hence, B has a fixed point, which is a Nash equilibrium.
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Second Proof (1/4)

▶ For each i ∈ I and for k ∈ N, define the function
bki :

∏
j ̸=i∆(Sj) → ∆(Si) by

bki (σ−i)(si) =
ϕk
isi
(σ−i)∑

s′i∈Si
ϕk
is′i
(σ−i)

,

where

ϕk
isi(σ−i) =

[
ui(si, σ−i)− Ui(σ−i) +

1

k

]
+

,

and Ui(σ−i) = maxs′i∈Si
ui(s

′
i, σ−i) and [x]+ = max{x, 0}.

▶ bki (σ−i)(si) > 0 if and only if ui(si, σ−i) > Ui(σ−i)− 1
k .

“Play 1
k -best responses with positive probabilities.”

▶ bki is a continuous function.
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Second Proof (2/4)
▶ Define the function bk :

∏
j ∆(Sj) →

∏
j ∆(Sj) by

bk(σ) = (bk1(σ−1), . . . , b
k
I (σ−I)).

▶ bk is a continuous function from the nonempty, convex, and
compact set

∏
j ∆(Sj) to itself.

▶ Therefore, by Brouwer’s Fixed Point Theorem
bk has a fixed point, i.e., there exists σk ∈

∏
j ∆(Sj)

such that σk = bk(σk).

▶ Since
∏

j ∆(Sj) is a compact set, the sequence {σk} has a
convergent subsequence with a limit σ∗ ∈

∏
j ∆(Sj).

We want to show that σ∗ is a Nash equilibrium.

▶ Take any i ∈ I and any si ∈ Si such that σ∗
i (si) > 0.

Fix any ε > 0.
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Second Proof (3/4)

▶ Since σk
i → σ∗

i and Ui(·)− ui(si, ·) is continuous,
we can take a k such that

▶ σk
i (si) > 0

(
⇐⇒ ui(si, σ

k
−i)− Ui(σ

k
−i) +

1

k
> 0

)
,

▶ [Ui(σ
∗
−i)− ui(si, σ

∗
−i)]− [Ui(σ

k
−i)− ui(si, σ

k
−i)] <

ε

2
, and

▶ 1

k
<

ε

2
.

▶ Therefore,

0 ≤ Ui(σ
∗
−i)− ui(si, σ

∗
−i)

=
(
[Ui(σ

∗
−i)− ui(si, σ

∗
−i)]− [Ui(σ

k
−i)− ui(si, σ

k
−i)]

)
+

(
Ui(σ

k
−i)− ui(si, σ

k
−i)−

1

k

)
+

1

k

<
ε

2
+ 0 +

ε

2
= ε.
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Second Proof (4/4)

▶ So we have shown that ui(si, σ
∗
−i) = Ui(σ

∗
−i) whenever

σ∗
i (si) > 0.

▶ This means that σ∗ is a Nash equilibrium.
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Third Proof (1/3)

▶ For each i ∈ I, define the function fi :
∏

j ∆(Sj) → ∆(Si) by

fi(σ)(si) =
σi(si) + kisi(σ)

1 +
∑

s′i∈Si
kis′i(σ)

,

where

kisi(σ) = [ui(si, σ−i)− ui(σi, σ−i)]+ .

▶ fi is a continuous function.

▶ Define the function f :
∏

j ∆(Sj) →
∏

j ∆(Sj) by

f(σ) = (f1(σ), . . . , fI(σ)).

▶ f is a continuous function from the nonempty, convex, and
compact set

∏
j ∆(Sj) to itself.
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Third Proof (2/3)

▶ Therefore, by Brouwer’s Fixed Point Theorem
f has a fixed point, i.e., there exists σ∗ ∈

∏
j ∆(Sj)

such that for all i ∈ I and si ∈ Si,

σ∗
i (si) =

σ∗
i (si) + kisi(σ

∗)

1 +
∑

s′i∈Si
kis′i(σ

∗)
,

hence σ∗
i (si)

∑
s′i∈Si

kis′i(σ
∗) = kisi(σ

∗), where

kisi(σ
∗) =

[
ui(si, σ

∗
−i)− ui(σ

∗
i , σ

∗
−i)

]
+
.

▶ We want to show that σ∗ is a Nash equilibrium.
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Third Proof (3/3)

▶ By the linearity of ui in σi, there is some s̄i with σ∗
i (s̄i) > 0

such that

ui(s̄i, σ
∗
−i) ≤ ui(σ

∗
i , σ

∗
−i),

for which we have kis̄i(σ
∗) = 0.

▶ But by σ∗
i (s̄i)

∑
s′i∈Si

kis′i(σ
∗) = kis̄i(σ

∗), we have∑
s′i∈Si

kis′i(σ
∗) = 0,

and hence, kisi(σ
∗) = 0 for all si ∈ Si.

▶ That is, we have ui(si, σ
∗
−i) ≤ ui(σ

∗
i , σ

∗
−i) for all si ∈ Si.

▶ This implies that σ∗ is a Nash equilibrium.
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Tarski’s Fixed Point Theorem

Let X be any nonempty set.

▶ For functions v : X → R and v′ : X → R,
we write v ≤ v′ if v(x) ≤ v′(x) for all x ∈ X.

▶ This order ≤ defines a partial order on the set of functions
from X to R.

▶ Fix two functions v : X → R and v : X → R such that v ≤ v,
and write

[v, v] = {v : X → R | v ≤ v ≤ v}.

▶ A function φ : [v, v] → [v, v] is nondecreasing if
for all v, v′ ∈ [v, v], v ≤ v′ ⇒ φ(v) ≤ φ(v′).
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Tarski’s Fixed Point Theorem

Proposition 10.8 (Tarski’s Fixed Point Theorem)

Suppose that φ : [v, v] → [v, v] is nondecreasing.
Then φ has a fixed point, i.e., there exists v∗ ∈ [v, v] such that
v∗ = φ(v∗).
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Proof (1/3)
▶ Let

A = {v ∈ [v, v] | v ≤ φ(v)}

(which is nonempty since v ∈ A).

▶ Define the function v∗ : X → R by

v∗(x) = sup{v(x) | v ∈ A}

for each x ∈ X (which is well defined since {v(x) | v ∈ A} is
bounded above by v(x) and hence its supremum exists).

▶ Clearly, v∗ ∈ [v, v].

▶ Note that v∗ is the least upper bound of A, that is, if v ≤ u
for all v ∈ A, then v∗ ≤ u.

▶ We want to show that v∗ is a fixed point of φ.
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Proof (2/3)

▶ Fix any v ∈ A. Thus, v ≤ φ(v) by the definition of A.

▶ By the definition of v∗, v ≤ v∗, and thus φ(v) ≤ φ(v∗) by the
assumption that φ is nondecreasing.

▶ Therefore, we have v ≤ φ(v∗).

▶ Since this holds for any v ∈ A, it means that φ(v∗) is an
upper bound of A.

▶ Hence,

v∗ ≤ φ(v∗) (1)

since v∗ is the least upper bound of A.

▶ Again by the assumption that φ is nondecreasing, it follows
from (1) that φ(v∗) ≤ φ(φ(v∗)), and hence φ(v∗) ∈ A.
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Proof (3/3)

▶ Hence,

φ(v∗) ≤ v∗ (2)

by the definition of v∗.

▶ Therefore, by (1) and (2), we have v∗ = φ(v∗).
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Contraction Mapping Fixed Point Theorem
Let X be any nonempty set.

▶ Let B(X) be the set of bounded functions from X to R.

▶ Define the function d : B(X)× B(X) → R+ by

d(v, v′) = sup
x∈X

|v(x)− v′(x)| (v, v′ ∈ B(X)).

▶ d satisfies the following properties:

1. d(v, v′) = 0 if and only if v = v′;

2. d(v, v′) = d(v′, v);

3. d(v, v′) ≤ d(v, v′′) + d(v′′, v′).

▶ A function φ : B(X) → B(X) is a contraction mapping
(or simply, contraction) if there exists β ∈ (0, 1) such that

d(φ(v), φ(v′)) ≤ βd(v, v′)

for all v, v′ ∈ B(X).
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Contraction Mapping Fixed Point Theorem

Proposition 10.9 (Contraction Mapping Fixed Point Theorem)

Suppose that φ : B(X) → B(X) is a contraction mapping.
Then φ has a unique fixed point, i.e., there exists a unique
v∗ ∈ B(X) such that v∗ = φ(v∗).
Moreover, for any v0 ∈ B(X), d(φm(v0), v∗) → 0 as m → ∞,
where φm(v0) = φ(φm−1(v0)), m = 1, 2, . . ..
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Proof (1/3)
▶ Fix any v0 ∈ B(X), and consider the sequence {vm} defined

by vm = φ(vm−1) for m ∈ N.

▶ Then the sequence {vm} is a Cauchy sequence in B(X)
in the following sense:

for any ε > 0, there exists M ∈ N such that

d(vm, vn) < ε

for all m,n ≥ M .

(∵ Given ε > 0, let M ∈ N be such that
[βM/(1− β)]d(φ(v0), v0) < ε.)

▶ Then for each x ∈ X,
the sequence {vm(x)} is a Cauchy sequence in R, and hence
it converges to some real number by the completeness of R.

Denote the limit by v∗(x).
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Proof (2/3)

▶ Regarding the function v∗ : X → R so defined, one can show:

1. v∗ ∈ B(X), i.e., v∗ is bounded;

2. d(vm, v∗) → 0 as m → ∞.

▶ We show that v∗ is indeed a fixed point of φ.

▶ Fix any ε > 0. Let M ∈ N be such that
d(vm, v∗) < ε/(1 + β) for all m ≥ M .

Then we have

d(φ(v∗), v∗) ≤ d(φ(v∗), φ(vM )) + d(φ(vM ), v∗)

≤ βd(v∗, vM ) + d(vM+1, v∗) < ε.

▶ Since ε > 0 has been taken arbitrarily, it follows that
d(φ(v∗), v∗) = 0 and hence φ(v∗) = v∗.
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Proof (3/3)

▶ Uniqueness:

Let φ(v∗) = v∗ and φ(v∗∗) = v∗∗.

Then

d(v∗, v∗∗) = d(φ(v∗), φ(v∗∗)) ≤ βd(v∗, v∗∗),

and therefore (1− β)d(v∗, v∗∗) ≤ 0.

Since β < 1, we have d(v∗, v∗∗) ≤ 0, and therefore v∗ = v∗∗.

▶ Convergence:

We have shown that for any choice of v0 ∈ B(X),
the sequence {vm} defined by vm = φ(vm−1) for m ∈ N
converges to the unique fixed point v∗.
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Remark

▶ The only property of B(X) (and d) used in the proof is
its completeness,

i.e., the property that any Cauchy sequence in the set
converges to some element of that set.

▶ For example, one can show that for X ⊂ RN , the set Cb(X)
of bounded and continuous functions from X to R in fact
satisfies this property.

Therefore, the Contraction Mapping Theorem holds also with
Cb(X) in place of B(X) (with the same d).
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