10. Fixed Point Theorems

Daisuke Oyama

Mathematics II

May 15, 2024

Brouwer's Fixed Point Theorem

Proposition 10.1 (Brouwer's Fixed Point Theorem)

Suppose that $X \subset \mathbb{R}^{N}$ is a nonempty, compact, and convex set, and that $f: X \rightarrow X$ is a continuous function from X into itself. Then f has a fixed point, i.e., there exists $x \in X$ such that $x=f(x)$.

- What if X is not compact?
- What if X is not convex?
- What if f is not continuous?

Kakutani's Fixed Point Theorem

Proposition 10.2 (Kakutani's Fixed Point Theorem)

Suppose that $X \subset \mathbb{R}^{N}$ is a nonempty, compact, and convex set, and that $F: X \rightarrow X$ is a correspondence from X into itself that is

1. nonempty-valued,
2. convex-valued,
3. compact-valued, and
4. upper semi-continuous.

Then F has a fixed point, i.e., there exists $x \in X$ such that $x \in F(x)$.

Note:
Since the codomain is compact, "being compact-valued and upper semi-continuous" can be replaced with "having a closed graph".

- What if F is not convex-valued?
- What if F is not compact-valued?

Proof of Brouwer's Fixed Point Theorem

- Sperner's Lemma
- KKM Lemma
- Brouwer's Fixed Point Theorem
- for simplices
- for general compact convex sets

Simplices

- The unit simplex Δ in \mathbb{R}^{N} is the set

$$
\begin{aligned}
\Delta & =\left\{x \in \mathbb{R}^{N} \mid x_{1}, \ldots, x_{N} \geq 0, \sum_{i=1}^{N} x_{i}=1\right\} \\
& =\operatorname{Co}\left\{e_{1}, \ldots, e_{N}\right\},
\end{aligned}
$$

where $e_{i} \in \mathbb{R}^{N}$ is the i th unit vector in \mathbb{R}^{N}.

- An m-simplex in \mathbb{R}^{N} is the convex hull $\operatorname{Co}\left\{a^{1}, a^{2}, \ldots, a^{m+1}\right\}$ of $m+1$ affinely independent vectors $a^{1}, a^{2}, \ldots, a^{m+1}$ in \mathbb{R}^{N}
(i.e., $a^{2}-a^{1}, \ldots, a^{m+1}-a^{1}$ linearly independent).
- $\Delta \subset \mathbb{R}^{N}$ is an $(N-1)$-simplex in \mathbb{R}^{N}.
- For an m-simplex $S=\operatorname{Co}\left\{a^{1}, \ldots, a^{m+1}\right\}$:
- Each a^{i} is called a vertex of the m-simplex, where we write $V(S)=\left\{a^{1}, \ldots, a^{m+1}\right\}$ (set of vertices of S).
- $\left\{a^{1}, \ldots, a^{m+1}\right\}$ is said to span S.
- The simplex spanned by a subset of vertices of S is called a face of S, where a face spanned by k vertices is called a k-face.
- For each $x \in S$, which is (uniquely) represented by a convex combination $\sum_{i} \alpha_{i} a^{i}$, the carrier $C(x)$ of x is the set of indices with positive weights:

$$
C(x)=\left\{i \in\{1, \ldots, m+1\} \mid \alpha_{i}>0\right\} .
$$

Simplicial Subdivision

- A simplicial subdivision of an m-simplex S is a finite set of m-simplices (subsimplices) such that
- the union of all subsimplices is S, and
- the intersection of any two subsimplices is either empty or a face of both.
- The mesh of a simplicial subdivision is the maximum among the diameters of the subsimplices.
(The diameter of a set A is $\sup _{x, y \in A}\|x-y\|$.)
- For any $\varepsilon>0$, there exists a simplicial subdivision with mesh smaller than ε.

Example: Equilateral subdivision

Sperner Labelling

- Consider a simplicial subdivision \mathcal{T} of an m-simplex $S=\operatorname{Co}\left\{a^{1}, \ldots, a^{m+1}\right\}$.
Let $V(\mathcal{T})$ be the set of vertices of subsimplices in \mathcal{T}.
- A Sperner labelling (or proper labelling) of \mathcal{T} is a mapping $\lambda: V(\mathcal{T}) \rightarrow\{1, \ldots, m+1\}$ such that

$$
\lambda(v) \in C(v)
$$

for all $v \in V(\mathcal{T})$
(where $C(v)=\left\{i \in\{1, \ldots, m+1\} \mid \alpha_{i}>0\right\}$ is the carrier of v).

- A subsimplex in \mathcal{T} is completely labelled if its set of vertices has all $m+1$ distinct labels.

Example: Sperner labelling

Sperner's Lemma

Proposition 10.3 (Sperner's Lemma)
For any simplicial subdivision of any m-simplex and any Sperner labelling of it,
there are an odd number of completely labelled subsimplices; in particular, there is at least one completely labelled subsimplex.

Proof

By induction in m :

- The statement is trivial for $m=0$.
- For $m \geq 1$, assume that the statement is true for $m-1$.
- Let a simplicial subdivision \mathcal{T} of an m-simplex S and a Sperner labelling $\lambda: \mathcal{T} \rightarrow\{1, \ldots, m+1\}$ be given.
- Define
- C : set of subsimplices with labels $\{1, \ldots, m+1\}$ (set of completely labelled subsimplices);
- A : set of subsimplices with labels $\{1, \ldots, m\}$ (set of "almost" completely labelled subsimplices); and
- E : set of $(m-1)$-faces of subsimplices with labels $\{1, \ldots, m\}$ that are contained in the boundary of S.
- Let $R=C \cup A \cup E$.
- Define

$$
\mathcal{D}=\left\{\left(t, t^{\prime}\right) \in R \times R \mid t \neq t^{\prime}, \lambda\left(V\left(t \cap t^{\prime}\right)\right)=\{1, \ldots, m\}\right\} .
$$

($V\left(t \cap t^{\prime}\right)$: set of vertices of the simplex $t \cap t^{\prime}$)

- Interpretation
- S : house; \mathcal{T} : rooms
- C : rooms with labels $\{1, \ldots, m+1\}$
- A : rooms with labels $\{1, \ldots, m\}$
- E : entrances (outside of the house)
- \mathcal{D} : doors between two rooms or a room and an entrance
... defined as ordered pairs, hence each door counted twice

1. For each $t \in C:\left|\left\{t^{\prime} \mid\left(t, t^{\prime}\right) \in \mathcal{D}\right\}\right|=1$.
"Each room in C has one door."
2. For each $t \in A:\left|\left\{t^{\prime} \mid\left(t, t^{\prime}\right) \in \mathcal{D}\right\}\right|=2$.
(\because One label in $\{1, \ldots, m\}$ is repeated.)
"Each room in A has two doors."
3. For each $t \in E:\left|\left\{t^{\prime} \mid\left(t, t^{\prime}\right) \in \mathcal{D}\right\}\right|=1$.
"Each entrance in E has one door."
4. $|\mathcal{D}|$: even
$\left(\because\left(t, t^{\prime}\right) \in \mathcal{D} \Longleftrightarrow\left(t^{\prime}, t\right) \in \mathcal{D}\right)$
"Each door in \mathcal{D} is counted twice."

- Therefore, we have

$$
|\mathcal{D}|=|C|+2|A|+|E|,
$$

where $|\mathcal{D}|$ is even.

- Therefore, $|C|+|E|$ is even.
- Since $|E|$ is odd by the induction hypothesis, it therefore follows that $|C|$ is odd.

Paths through doors

- 4 types of paths:
> $e \leftrightarrow \cdots \leftrightarrow a \leftrightarrow \cdots \leftrightarrow e$
$>\leftrightarrow \cdots \leftrightarrow a \leftrightarrow \cdots \leftrightarrow c$
$c \leftrightarrow \cdots \leftrightarrow a \leftrightarrow \cdots \leftrightarrow c$
- $\cdot \leftrightarrow a \leftrightarrow \cdots \quad$ (cycle)
where $c \in C, a \in A, e \in E$.
- $|E|$ is odd by the induction hypothesis.

KKM (Knaster-Kuratowski-Mazurkiewicz) Lemma

Let $\Delta=\operatorname{Co}\left\{e_{1}, \ldots, e_{N}\right\}$ be the unit simplex in \mathbb{R}^{N}, where $e_{i} \in \mathbb{R}^{N}$ is the i th unit vector in \mathbb{R}^{N}.

Proposition 10.4 (KKM Lemma)
Let F_{1}, \ldots, F_{N} be a family of closed subsets of Δ such that

$$
\begin{equation*}
\operatorname{Co}\left\{e_{i} \mid i \in I\right\} \subset \bigcup_{i \in I} F_{i} \text { for every } I \subset\{1, \ldots, N\} \tag{*}
\end{equation*}
$$

Then we have $\bigcap_{i=1}^{N} F_{i} \neq \emptyset$.

Proof

- Let F_{1}, \ldots, F_{N} be a family of closed subsets of Δ that satisfy condition ($*$).
- For each $k \in \mathbb{N}$, let \mathcal{T}_{k} be a simplicial subdivision of Δ with mesh smaller than $\frac{1}{k}$, and $V\left(\mathcal{T}_{k}\right)$ the set of vertices of subsimplices in \mathcal{T}_{k}.
- For each $v \in V\left(\mathcal{T}_{k}\right)$, where $v \in \operatorname{Co}\left\{e_{i} \mid i \in C(v)\right\}$, by condition $(*)$ there is some $i \in C(v)$ such that $v \in F_{i}$. Let $\lambda_{k}(v)$ be any such i.
- Then, the mapping $\lambda_{k}: V\left(\mathcal{T}_{k}\right) \rightarrow\{1, \ldots, N\}$ so defined is a Sperner labelling.
- Therefore, by Sperner's Lemma, there exists a completely labelled subsimplex in \mathcal{T}_{k}.
Denote its vertices by $v^{1}(k), \ldots, v^{N}(k)$ so that $\lambda_{k}\left(v^{i}(k)\right)=i$.
- By construction, $v^{i}(k) \in F_{i}$ for all k.
- By the compactness of $\Delta,\left\{v^{1}(k)\right\}_{k=1}^{\infty}$ has a convergent subsequence $\left\{v^{1}\left(k_{n}\right)\right\}_{n=1}^{\infty}$ with a limit x^{*}.
- Since the diameter of $\operatorname{Co}\left\{v^{1}\left(k_{n}\right), \ldots, v^{N}\left(k_{n}\right)\right\}$ converges to 0 as $n \rightarrow \infty$, we have $v^{i}\left(k_{n}\right) \rightarrow x^{*}$ also for all $i \neq 1$.
- By the closedness of F_{i}, we have $x^{*} \in F_{i}$ for all $i=1, \ldots, N$.

Brouwer's Fixed Point Theorem for Simplices

Proposition 10.5
If $f: \Delta \rightarrow \Delta$ is continuous, then it has a fixed point.

Corollary 10.6
For a simplex S,
if $f: S \rightarrow S$ is continuous, then it has a fixed point.

Proof of Brouwer's Fixed Point Theorem for Unit Simplex

- Let $f: \Delta \rightarrow \Delta$ be continuous, where we write $f(x)=\left(f_{1}(x), \ldots, f_{N}(x)\right)$.
- For each $i \in\{1, \ldots, N\}$, define a subset F_{i} of Δ by

$$
F_{i}=\left\{x \in \Delta \mid x_{i} \geq f_{i}(x)\right\}
$$

which is closed by the continuity of f.

- If $x \in \bigcap_{i=1}^{N} F_{i}$, which means $x_{i} \geq f_{i}(x)$ for all i, then we have

$$
1=\sum_{i=1}^{N} x_{i} \geq \sum_{i=1}^{N} f_{i}(x)=1
$$

and hence $x_{i}=f_{i}(x)$ for all i, i.e., x is a fixed point of f.

- Therefore, it suffices to show that $\bigcap_{i=1}^{N} F_{i} \neq \emptyset$.
- For any $I \subset\{1, \ldots, N\}$, if $x \in \operatorname{Co}\left\{e_{i} \mid i \in I\right\}$, then $x \in \bigcup_{i \in I} F_{i}$.
\because If $x \notin \bigcup_{i \in I} F_{i}$, which means $x_{i}<f_{i}(x)$ for all $i \in I$, then we would have

$$
1=\sum_{i=1}^{N} x_{i}=\sum_{i \in I} x_{i}<\sum_{i \in I} f_{i}(x) \leq \sum_{i=1}^{N} f_{i}(x)=1
$$

which is a contradiction.

- Thus, F_{1}, \ldots, F_{N} satisfy the hypothesis of the KKM Lemma.
- Therefore, by the KKM Lemma, $\bigcap_{i=1}^{N} F_{i} \neq \emptyset$, as desired.

Proof of Brouwer's Fixed Point Theorem

- Let X be a nonempty, compact, and convex set, and $f: X \rightarrow X$ continuous.
- Let S be a sufficiently large simplex that contains X.
- For each $x \in S$, let $g(x)$ be the unique $y \in X$ such that $\|y-x\|=\inf _{z \in X}\|z-x\|$.
The function $g: S \rightarrow X$ is well defined and continuous by the closedness and convexity of X.
- Define $h: S \rightarrow S$ by $h(x)=f(g(x))$, which is continuous.
- By Corollary 10.6, h has a fixed point $x^{*} \in S$, which must be in X.
- Then, we have $x^{*}=h\left(x^{*}\right)=f\left(g\left(x^{*}\right)\right)=f\left(x^{*}\right)$, i.e., x^{*} is a fixed point of f.

Proof of Kakutani's Fixed Point Theorem for Simplices

- Let $S \subset \mathbb{R}^{N}$ be an M-simplex: $S=\operatorname{Co}\left\{a^{1}, \ldots, a^{M+1}\right\}$.
- Let $F: S \rightarrow S$ be a nonempty- and convex valued correspondence from S to S whose graph is closed.
- For each $k \in \mathbb{N}$, let \mathcal{T}_{k} be a simplicial subdivision of S with mesh smaller than $\frac{1}{k}$, and $V\left(\mathcal{T}_{k}\right)$ the set of vertices of subsimplices in \mathcal{T}_{k}.
- For each k, we construct a continuous function f^{k} from S to S as follows:
- For each $v \in V\left(\mathcal{T}_{k}\right)$, take any $y \in F(v)$, and let $f^{k}(v)=y$.
- For each $x \in S$,
if x is in a subsimplex $\operatorname{Co}\left\{v^{1}, \ldots, v^{M+1}\right\}$, so that $x=\sum_{m=1}^{M+1} \alpha_{m} v^{m}$,
then let $f^{k}(x)=\sum_{m=1}^{M+1} \alpha_{m} y^{m}$, where $y^{m}=f^{k}\left(v^{m}\right)$.
- By Brouwer's Fixed Point Theorem, f^{k} has a fixed point $x^{k} \in S: f^{k}\left(x^{k}\right)=x^{k}$.
- Write $x^{k}=\sum_{m=1}^{M+1} \alpha_{m}^{k} v^{k, m}$ and $f^{k}\left(x^{k}\right)=\sum_{m=1}^{M+1} \alpha_{m}^{k} y^{k, m}$, where $y^{k, m}=f^{k}\left(v^{k, m}\right) \in F\left(v^{k, m}\right)$.
- By taking a subsequence, as $k \rightarrow \infty$,
$x^{k} \rightarrow x^{*}, \alpha_{m}^{k} \rightarrow \alpha_{m}^{*}$, and $y^{k, m} \rightarrow y^{*, m}$, and also, $v^{k, m} \rightarrow x^{*}$.
- From $x^{k}=f^{k}\left(x^{k}\right)=\sum_{m=1}^{M+1} \alpha_{m}^{k} y^{k, m}$, we have $x^{*}=\sum_{m=1}^{M+1} \alpha_{m}^{*} y^{*, m}$.
- From $y^{k, m} \in F\left(v^{k, m}\right)$, we have $y^{*, m} \in F\left(x^{*}\right)$ by the closedness of the graph of F.
- Therefore, by the convexity of $F\left(x^{*}\right)$, we have $x^{*} \in F\left(x^{*}\right)$.

Application: Existence of Nash Equilibrium

Nash gave three proofs of the existence of Nash equilibrium of finite normal form games.

1. J. F. Nash, "Equilibrium Points in n-Person Games," Proceedings of the National Academy of Sciences of the United States of America 36 (1950), 48-49.
2. J. F. Nash, "Non-Cooperative Games," Dissertation, Princeton University, Department of Mathematics, 1950.
3. J. Nash, "Non-Cooperative Games," Annals of Mathematics 54 (1951), 287-295.

See also:

- J. Hofbauer, "From Nash and Brown to Maynard Smith: Equilibria, Dynamics and ESS," Selection 1 (2000), 81-88.

Normal Form Games

Definition 10.1
An I-player (finite) normal form game is a tuple
$\left(\mathcal{I},\left(S_{i}\right)_{i \in \mathcal{I}},\left(u_{i}\right)_{i \in \mathcal{I}}\right)$ where

- $\mathcal{I}=\{1, \ldots, I\}$ is the set of players,
- S_{i} is the finite set of strategies of player $i \in \mathcal{I}$, and
- $u_{i}: \prod_{j} S_{j} \rightarrow \mathbb{R}$ is the payoff function of player $i \in \mathcal{I}$.

Mixed Strategies (1/2)

- A mixed strategy σ_{i} of player i is a probability distribution over S_{i}, where $\sigma_{i}\left(s_{i}\right)$ denotes the probability that i plays $s_{i} \in S_{i}$.
- We denote by $\Delta\left(S_{i}\right)$ the set of mixed strategies of player i.
- $\Delta\left(S_{i}\right)$ is a convex and compact subset of $\mathbb{R}^{\left|S_{i}\right|}$.
- $\prod_{i} \Delta\left(S_{i}\right)$ is a convex and compact subset of $\mathbb{R}^{\left|S_{1}\right|+\cdots+\left|S_{I}\right|}$.

Mixed Strategies (2/2)

- For $\sigma_{-i}=\left(\sigma_{1}, \ldots, \sigma_{i-1}, \sigma_{i+1}, \ldots, \sigma_{I}\right) \in \prod_{j \neq i} \Delta\left(S_{j}\right)$, we write

$$
\begin{aligned}
& u_{i}\left(s_{i}, \sigma_{-i}\right)=\sum_{s_{-i} \in S_{-i}} \prod_{j \neq i} \sigma_{j}\left(s_{j}\right) u_{i}\left(s_{i}, s_{-i}\right) \\
& u_{i}\left(\sigma_{i}, \sigma_{-i}\right)=\sum_{s_{i} \in S_{i}} \sigma_{i}\left(s_{i}\right) u_{i}\left(s_{i}, \sigma_{-i}\right)
\end{aligned}
$$

- $u_{i}\left(s_{i}, \sigma_{-i}\right)$ is continuous in σ_{-i}.
- $u_{i}\left(\sigma_{i}, \sigma_{-i}\right)$ is continuous in $\left(\sigma_{i}, \sigma_{-i}\right)$.
- $u_{i}\left(\sigma_{i}, \sigma_{-i}\right)$ is linear in σ_{i}.

Nash Equilibrium (in Mixed Strategies)

Definition 10.2
A mixed strategy profile $\sigma^{*}=\left(\sigma_{1}^{*}, \ldots, \sigma_{I}^{*}\right) \in \prod_{i} \Delta\left(S_{i}\right)$ is a Nash equilibrium of $\left(\mathcal{I},\left(S_{i}\right)_{i \in \mathcal{I}},\left(u_{i}\right)_{i \in \mathcal{I}}\right)$ if for all $i \in \mathcal{I}$,

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geq u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right)
$$

for all $\sigma_{i} \in \Delta\left(S_{i}\right)$.

Equivalent Representations

1. Define the correspondences $B_{i}: \prod_{j \neq i} \Delta\left(S_{j}\right) \rightarrow \Delta\left(S_{i}\right)$ and $B: \prod_{j} \Delta\left(S_{j}\right) \rightarrow \prod_{j} \Delta\left(S_{j}\right)$ by

$$
\begin{aligned}
& B_{i}\left(\sigma_{-i}\right)=\left\{\sigma_{i} \in \Delta\left(S_{i}\right) \mid u_{i}\left(\sigma_{i}, \sigma_{-i}\right) \geq u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right) \forall \sigma_{i}^{\prime} \in \Delta\left(S_{i}\right)\right\}, \\
& B(\sigma)=B_{1}\left(\sigma_{-1}\right) \times \cdots \times B_{I}\left(\sigma_{-I}\right)
\end{aligned}
$$

σ^{*} is a Nash equilibrium if and only if σ^{*} is a fixed point of B, i.e., $\sigma^{*} \in B\left(\sigma^{*}\right)$.
2. σ^{*} is a Nash equilibrium if and only if for all $i \in \mathcal{I}$ and $s_{i} \in S_{i}$,

$$
\sigma_{i}^{*}\left(s_{i}\right)>0 \Rightarrow u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)=\max _{s_{i}^{\prime} \in S_{i}} u_{i}\left(s_{i}^{\prime}, \sigma_{-i}^{*}\right)
$$

3. σ^{*} is a Nash equilibrium if and only if for all $i \in \mathcal{I}$,

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geq u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \text { for all } s_{i} \in S_{i}
$$

Existence Theorem

Proposition 10.7
Every finite normal form game has at least one Nash equilibrium.

Three Proofs

1. J. F. Nash, "Equilibrium Points in n-Person Games," Proceedings of the National Academy of Sciences of the United States of America 36 (1950), 48-49.
2. J. F. Nash, "Non-Cooperative Games," Dissertation, Princeton University, Department of Mathematics, 1950.
3. J. Nash, "Non-Cooperative Games," Annals of Mathematics 54 (1951), 287-295.

First Proof $(1 / 2)$

- B is a correspondence from the nonempty, convex, and compact set $\prod_{j} \Delta\left(S_{j}\right)$ to itself.
- $B_{i}\left(\sigma_{-i}\right) \subset \mathbb{R}^{\left|S_{i}\right|}$ is the set of all convex combinations of pure best responses to σ_{-i}, which is nonempty and convex.

So B is nonempty- and convex-valued.

- To show that B has a closed graph, let $\left(\sigma^{k}, \tau^{k}\right) \in \prod_{j} \Delta\left(S_{j}\right) \times \prod_{j} \Delta\left(S_{j}\right)$ be such that $\tau_{i}^{k} \in B_{i}\left(\sigma_{-i}^{k}\right)$ for each i, and suppose that $\left(\sigma^{k}, \tau^{k}\right) \rightarrow(\sigma, \tau)$ as $k \rightarrow \infty$.

First Proof $(2 / 2)$

- Take any i and any σ_{i}^{\prime}. Then $u_{i}\left(\tau_{i}^{k}, \sigma_{-i}^{k}\right) \geq u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}^{k}\right)$. Since u_{i} is continuous, letting $k \rightarrow \infty$ we have

$$
u_{i}\left(\tau_{i}, \sigma_{-i}\right) \geq u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)
$$

This means $\tau_{i} \in B_{i}\left(\sigma_{-i}\right)$.

- Therefore, all the conditions of Kakutani's Fixed Point Theorem are satisfied.
- Hence, B has a fixed point, which is a Nash equilibrium.

Second Proof $(1 / 4)$

- For each $i \in \mathcal{I}$ and for $k \in \mathbb{N}$, define the function $b_{i}^{k}: \prod_{j \neq i} \Delta\left(S_{j}\right) \rightarrow \Delta\left(S_{i}\right)$ by

$$
b_{i}^{k}\left(\sigma_{-i}\right)\left(s_{i}\right)=\frac{\phi_{i s_{i}}^{k}\left(\sigma_{-i}\right)}{\sum_{s_{i}^{\prime} \in S_{i}} \phi_{i s_{i}^{\prime}}^{k}\left(\sigma_{-i}\right)},
$$

where

$$
\phi_{i s_{i}}^{k}\left(\sigma_{-i}\right)=\left[u_{i}\left(s_{i}, \sigma_{-i}\right)-U_{i}\left(\sigma_{-i}\right)+\frac{1}{k}\right]_{+},
$$

and $U_{i}\left(\sigma_{-i}\right)=\max _{s_{i}^{\prime} \in S_{i}} u_{i}\left(s_{i}^{\prime}, \sigma_{-i}\right)$ and $[x]_{+}=\max \{x, 0\}$.

- $b_{i}^{k}\left(\sigma_{-i}\right)\left(s_{i}\right)>0$ if and only if $u_{i}\left(s_{i}, \sigma_{-i}\right)>U_{i}\left(\sigma_{-i}\right)-\frac{1}{k}$.
"Play $\frac{1}{k}$-best responses with positive probabilities."
- b_{i}^{k} is a continuous function.

Second Proof $(2 / 4)$

- Define the function $b^{k}: \prod_{j} \Delta\left(S_{j}\right) \rightarrow \prod_{j} \Delta\left(S_{j}\right)$ by

$$
b^{k}(\sigma)=\left(b_{1}^{k}\left(\sigma_{-1}\right), \ldots, b_{I}^{k}\left(\sigma_{-I}\right)\right)
$$

- b^{k} is a continuous function from the nonempty, convex, and compact set $\prod_{j} \Delta\left(S_{j}\right)$ to itself.
- Therefore, by Brouwer's Fixed Point Theorem b^{k} has a fixed point, i.e., there exists $\sigma^{k} \in \prod_{j} \Delta\left(S_{j}\right)$ such that $\sigma^{k}=b^{k}\left(\sigma^{k}\right)$.
- Since $\prod_{j} \Delta\left(S_{j}\right)$ is a compact set, the sequence $\left\{\sigma^{k}\right\}$ has a convergent subsequence with a limit $\sigma^{*} \in \prod_{j} \Delta\left(S_{j}\right)$.
We want to show that σ^{*} is a Nash equilibrium.
- Take any $i \in \mathcal{I}$ and any $s_{i} \in S_{i}$ such that $\sigma_{i}^{*}\left(s_{i}\right)>0$.

Fix any $\varepsilon>0$.

Second Proof (3/4)

- Since $\sigma_{i}^{k} \rightarrow \sigma_{i}^{*}$ and $U_{i}(\cdot)-u_{i}\left(s_{i}, \cdot\right)$ is continuous, we can take a k such that

$$
\begin{aligned}
& \text { - } \sigma_{i}^{k}\left(s_{i}\right)>0\left(\Longleftrightarrow u_{i}\left(s_{i}, \sigma_{-i}^{k}\right)-U_{i}\left(\sigma_{-i}^{k}\right)+\frac{1}{k}>0\right), \\
& > \\
& \left.>U_{i}\left(\sigma_{-i}^{*}\right)-u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)\right]-\left[U_{i}\left(\sigma_{-i}^{k}\right)-u_{i}\left(s_{i}, \sigma_{-i}^{k}\right)\right]<\frac{\varepsilon}{2}, \text { and } \\
& -\frac{1}{2}<
\end{aligned}
$$

- Therefore,

$$
\begin{aligned}
0 \leq & U_{i}\left(\sigma_{-i}^{*}\right)-u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \\
= & \left(\left[U_{i}\left(\sigma_{-i}^{*}\right)-u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)\right]-\left[U_{i}\left(\sigma_{-i}^{k}\right)-u_{i}\left(s_{i}, \sigma_{-i}^{k}\right)\right]\right) \\
& +\left(U_{i}\left(\sigma_{-i}^{k}\right)-u_{i}\left(s_{i}, \sigma_{-i}^{k}\right)-\frac{1}{k}\right)+\frac{1}{k} \\
< & \frac{\varepsilon}{2}+0+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Second Proof (4/4)

- So we have shown that $u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)=U_{i}\left(\sigma_{-i}^{*}\right)$ whenever $\sigma_{i}^{*}\left(s_{i}\right)>0$.
- This means that σ^{*} is a Nash equilibrium.

Third Proof $(1 / 3)$

- For each $i \in \mathcal{I}$, define the function $f_{i}: \prod_{j} \Delta\left(S_{j}\right) \rightarrow \Delta\left(S_{i}\right)$ by

$$
f_{i}(\sigma)\left(s_{i}\right)=\frac{\sigma_{i}\left(s_{i}\right)+k_{i s_{i}}(\sigma)}{1+\sum_{s_{i}^{\prime} \in S_{i}} k_{i s_{i}^{\prime}}(\sigma)}
$$

where

$$
k_{i s_{i}}(\sigma)=\left[u_{i}\left(s_{i}, \sigma_{-i}\right)-u_{i}\left(\sigma_{i}, \sigma_{-i}\right)\right]_{+} .
$$

- f_{i} is a continuous function.
- Define the function $f: \prod_{j} \Delta\left(S_{j}\right) \rightarrow \prod_{j} \Delta\left(S_{j}\right)$ by

$$
f(\sigma)=\left(f_{1}(\sigma), \ldots, f_{I}(\sigma)\right)
$$

- f is a continuous function from the nonempty, convex, and compact set $\prod_{j} \Delta\left(S_{j}\right)$ to itself.

Third Proof $(2 / 3)$

- Therefore, by Brouwer's Fixed Point Theorem f has a fixed point, i.e., there exists $\sigma^{*} \in \prod_{j} \Delta\left(S_{j}\right)$ such that for all $i \in \mathcal{I}$ and $s_{i} \in S_{i}$,

$$
\sigma_{i}^{*}\left(s_{i}\right)=\frac{\sigma_{i}^{*}\left(s_{i}\right)+k_{i s_{i}}\left(\sigma^{*}\right)}{1+\sum_{s_{i}^{\prime} \in S_{i}} k_{i s_{i}^{\prime}}\left(\sigma^{*}\right)},
$$

hence $\sigma_{i}^{*}\left(s_{i}\right) \sum_{s_{i}^{\prime} \in S_{i}} k_{i s_{i}^{\prime}}\left(\sigma^{*}\right)=k_{i s_{i}}\left(\sigma^{*}\right)$, where

$$
k_{i s_{i}}\left(\sigma^{*}\right)=\left[u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)-u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)\right]_{+} .
$$

- We want to show that σ^{*} is a Nash equilibrium.

Third Proof (3/3)

- By the linearity of u_{i} in σ_{i}, there is some \bar{s}_{i} with $\sigma_{i}^{*}\left(\bar{s}_{i}\right)>0$ such that

$$
u_{i}\left(\bar{s}_{i}, \sigma_{-i}^{*}\right) \leq u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)
$$

for which we have $k_{i \bar{s}_{i}}\left(\sigma^{*}\right)=0$.

- But by $\sigma_{i}^{*}\left(\bar{s}_{i}\right) \sum_{s_{i}^{\prime} \in S_{i}} k_{i s_{i}^{\prime}}\left(\sigma^{*}\right)=k_{i \bar{s}_{i}}\left(\sigma^{*}\right)$, we have

$$
\sum_{s_{i}^{\prime} \in S_{i}} k_{i s_{i}^{\prime}}\left(\sigma^{*}\right)=0
$$

and hence, $k_{i s_{i}}\left(\sigma^{*}\right)=0$ for all $s_{i} \in S_{i}$.

- That is, we have $u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \leq u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right)$ for all $s_{i} \in S_{i}$.
- This implies that σ^{*} is a Nash equilibrium.

Tarski's Fixed Point Theorem

Let X be any nonempty set.

- For functions $v: X \rightarrow \mathbb{R}$ and $v^{\prime}: X \rightarrow \mathbb{R}$, we write $v \leq v^{\prime}$ if $v(x) \leq v^{\prime}(x)$ for all $x \in X$.
- This order \leq defines a partial order on the set of functions from X to \mathbb{R}.
- Fix two functions $\underline{v}: X \rightarrow \mathbb{R}$ and $\bar{v}: X \rightarrow \mathbb{R}$ such that $\underline{v} \leq \bar{v}$, and write

$$
[\underline{v}, \bar{v}]=\{v: X \rightarrow \mathbb{R} \mid \underline{v} \leq v \leq \bar{v}\} .
$$

- A function $\varphi:[\underline{v}, \bar{v}] \rightarrow[\underline{v}, \bar{v}]$ is nondecreasing if for all $v, v^{\prime} \in[\underline{v}, \bar{v}], v \leq v^{\prime} \Rightarrow \varphi(v) \leq \varphi\left(v^{\prime}\right)$.

Tarski's Fixed Point Theorem

Proposition 10.8 (Tarski's Fixed Point Theorem)
Suppose that $\varphi:[\underline{v}, \bar{v}] \rightarrow[\underline{v}, \bar{v}]$ is nondecreasing.
Then φ has a fixed point, i.e., there exists $v^{*} \in[\underline{v}, \bar{v}]$ such that $v^{*}=\varphi\left(v^{*}\right)$.

Proof $(1 / 3)$

- Let

$$
A=\{v \in[\underline{v}, \bar{v}] \mid v \leq \varphi(v)\}
$$

(which is nonempty since $\underline{v} \in A$).

- Define the function $v^{*}: X \rightarrow \mathbb{R}$ by

$$
v^{*}(x)=\sup \{v(x) \mid v \in A\}
$$

for each $x \in X$ (which is well defined since $\{v(x) \mid v \in A\}$ is bounded above by $\bar{v}(x)$ and hence its supremum exists).

- Clearly, $v^{*} \in[\underline{v}, \bar{v}]$.
- Note that v^{*} is the least upper bound of A, that is, if $v \leq u$ for all $v \in A$, then $v^{*} \leq u$.
- We want to show that v^{*} is a fixed point of φ.

Proof $(2 / 3)$

- Fix any $v \in A$. Thus, $v \leq \varphi(v)$ by the definition of A.
- By the definition of $v^{*}, v \leq v^{*}$, and thus $\varphi(v) \leq \varphi\left(v^{*}\right)$ by the assumption that φ is nondecreasing.
- Therefore, we have $v \leq \varphi\left(v^{*}\right)$.
- Since this holds for any $v \in A$, it means that $\varphi\left(v^{*}\right)$ is an upper bound of A.
- Hence,

$$
\begin{equation*}
v^{*} \leq \varphi\left(v^{*}\right) \tag{1}
\end{equation*}
$$

since v^{*} is the least upper bound of A.

- Again by the assumption that φ is nondecreasing, it follows from (1) that $\varphi\left(v^{*}\right) \leq \varphi\left(\varphi\left(v^{*}\right)\right)$, and hence $\varphi\left(v^{*}\right) \in A$.

Proof $(3 / 3)$

- Hence,

$$
\begin{equation*}
\varphi\left(v^{*}\right) \leq v^{*} \tag{2}
\end{equation*}
$$

by the definition of v^{*}.

- Therefore, by (1) and (2), we have $v^{*}=\varphi\left(v^{*}\right)$.

Contraction Mapping Fixed Point Theorem

Let X be any nonempty set.

- Let $\mathcal{B}(X)$ be the set of bounded functions from X to \mathbb{R}.
- Define the function $d: \mathcal{B}(X) \times \mathcal{B}(X) \rightarrow \mathbb{R}_{+}$by

$$
d\left(v, v^{\prime}\right)=\sup _{x \in X}\left|v(x)-v^{\prime}(x)\right| \quad\left(v, v^{\prime} \in \mathcal{B}(X)\right)
$$

- d satisfies the following properties:

1. $d\left(v, v^{\prime}\right)=0$ if and only if $v=v^{\prime}$;
2. $d\left(v, v^{\prime}\right)=d\left(v^{\prime}, v\right)$;
3. $d\left(v, v^{\prime}\right) \leq d\left(v, v^{\prime \prime}\right)+d\left(v^{\prime \prime}, v^{\prime}\right)$.

- A function $\varphi: \mathcal{B}(X) \rightarrow \mathcal{B}(X)$ is a contraction mapping (or simply, contraction) if there exists $\beta \in(0,1)$ such that

$$
d\left(\varphi(v), \varphi\left(v^{\prime}\right)\right) \leq \beta d\left(v, v^{\prime}\right)
$$

for all $v, v^{\prime} \in \mathcal{B}(X)$.

Contraction Mapping Fixed Point Theorem

Proposition 10.9 (Contraction Mapping Fixed Point Theorem)
Suppose that $\varphi: \mathcal{B}(X) \rightarrow \mathcal{B}(X)$ is a contraction mapping. Then φ has a unique fixed point, i.e., there exists a unique $v^{*} \in \mathcal{B}(X)$ such that $v^{*}=\varphi\left(v^{*}\right)$.
Moreover, for any $v^{0} \in \mathcal{B}(X), d\left(\varphi^{m}\left(v^{0}\right), v^{*}\right) \rightarrow 0$ as $m \rightarrow \infty$, where $\varphi^{m}\left(v^{0}\right)=\varphi\left(\varphi^{m-1}\left(v^{0}\right)\right), m=1,2, \ldots$.

Proof (1/3)

- Fix any $v^{0} \in \mathcal{B}(X)$, and consider the sequence $\left\{v^{m}\right\}$ defined by $v^{m}=\varphi\left(v^{m-1}\right)$ for $m \in \mathbb{N}$.
- Then the sequence $\left\{v^{m}\right\}$ is a Cauchy sequence in $\mathcal{B}(X)$ in the following sense:
for any $\varepsilon>0$, there exists $M \in \mathbb{N}$ such that

$$
d\left(v^{m}, v^{n}\right)<\varepsilon
$$

for all $m, n \geq M$.
(\because Given $\varepsilon>0$, let $M \in \mathbb{N}$ be such that $\left[\beta^{M} /(1-\beta)\right] d\left(\varphi\left(v^{0}\right), v^{0}\right)<\varepsilon$.)

- Then for each $x \in X$, the sequence $\left\{v^{m}(x)\right\}$ is a Cauchy sequence in \mathbb{R}, and hence it converges to some real number by the completeness of \mathbb{R}.
Denote the limit by $v^{*}(x)$.

Proof $(2 / 3)$

- Regarding the function $v^{*}: X \rightarrow \mathbb{R}$ so defined, one can show:

1. $v^{*} \in \mathcal{B}(X)$, i.e., v^{*} is bounded;
2. $d\left(v^{m}, v^{*}\right) \rightarrow 0$ as $m \rightarrow \infty$.

- We show that v^{*} is indeed a fixed point of φ.
- Fix any $\varepsilon>0$. Let $M \in \mathbb{N}$ be such that $d\left(v^{m}, v^{*}\right)<\varepsilon /(1+\beta)$ for all $m \geq M$.

Then we have

$$
\begin{aligned}
d\left(\varphi\left(v^{*}\right), v^{*}\right) & \leq d\left(\varphi\left(v^{*}\right), \varphi\left(v^{M}\right)\right)+d\left(\varphi\left(v^{M}\right), v^{*}\right) \\
& \leq \beta d\left(v^{*}, v^{M}\right)+d\left(v^{M+1}, v^{*}\right)<\varepsilon
\end{aligned}
$$

- Since $\varepsilon>0$ has been taken arbitrarily, it follows that $d\left(\varphi\left(v^{*}\right), v^{*}\right)=0$ and hence $\varphi\left(v^{*}\right)=v^{*}$.

Proof $(3 / 3)$

- Uniqueness:

Let $\varphi\left(v^{*}\right)=v^{*}$ and $\varphi\left(v^{* *}\right)=v^{* *}$.
Then

$$
d\left(v^{*}, v^{* *}\right)=d\left(\varphi\left(v^{*}\right), \varphi\left(v^{* *}\right)\right) \leq \beta d\left(v^{*}, v^{* *}\right)
$$

and therefore $(1-\beta) d\left(v^{*}, v^{* *}\right) \leq 0$.
Since $\beta<1$, we have $d\left(v^{*}, v^{* *}\right) \leq 0$, and therefore $v^{*}=v^{* *}$.

- Convergence:

We have shown that for any choice of $v^{0} \in \mathcal{B}(X)$, the sequence $\left\{v^{m}\right\}$ defined by $v^{m}=\varphi\left(v^{m-1}\right)$ for $m \in \mathbb{N}$ converges to the unique fixed point v^{*}.

Remark

- The only property of $\mathcal{B}(X)$ (and d) used in the proof is its completeness,
i.e., the property that any Cauchy sequence in the set converges to some element of that set.
- For example, one can show that for $X \subset \mathbb{R}^{N}$, the set $\mathcal{C}_{b}(X)$ of bounded and continuous functions from X to \mathbb{R} in fact satisfies this property.

Therefore, the Contraction Mapping Theorem holds also with $\mathcal{C}_{b}(X)$ in place of $\mathcal{B}(X)$ (with the same d).

