Homework 7

Due on May 24

1. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, \alpha)=-\frac{1}{4} x^{4}-\frac{\alpha}{3} x^{3}+\frac{1}{2} x^{2}+\alpha x-\frac{1}{4}
$$

Compute the value function $v(\alpha)=\max _{x \in \mathbb{R}} f(x, \alpha), \alpha \in \mathbb{R}$, and draw its graph.
2. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, \alpha)= \begin{cases}-\frac{1}{\alpha^{3}} x^{2}(x-2 \alpha)^{2} & \text { if } 2 \alpha<x<0 \\ \frac{1}{\alpha^{3}} x^{2}(x-2 \alpha)^{2} & \text { if } 0<x<2 \alpha \\ -x^{2}(x-2 \alpha)^{2} & \text { otherwise }\end{cases}
$$

Compute the value function $v(\alpha)=\max _{x \in \mathbb{R}} f(x, \alpha), \alpha \in \mathbb{R}$, and draw its graph.
3. Let $Y \subset X \subset \mathbb{R}$. For a function $F: X \times X \rightarrow \mathbb{R}$ and $\beta \in \mathbb{R}$, suppose that a function $v: X \rightarrow \mathbb{R}$ satisfies

$$
v(x)=\max _{y \in Y} F(x, y)+\beta v(y)
$$

for all $x \in X$. Let $\bar{x} \in \operatorname{Int} X$ and $\bar{y} \in \arg \max _{y \in Y} F(\bar{x}, y)+\beta v(y)$. Assume that (1) $F(\cdot, \bar{y})$ is differentiable at \bar{x}, and (2) v is differentiable at \bar{x}. Under these assumptions, derive the envelope formula:

$$
v^{\prime}(\bar{x})=\frac{\partial F}{\partial x}(\bar{x}, \bar{y})
$$

4.

(1) Suppose that a real valued function $w: \mathbb{R} \rightarrow \mathbb{R}$ is concave. Prove that for all $\alpha \in \mathbb{R}$ and $\varepsilon>0$, we have

$$
\frac{w(\alpha)-w(\alpha-\varepsilon)}{\varepsilon} \geq \frac{w(\alpha+\varepsilon)-w(\alpha)}{\varepsilon}
$$

(2) For a function $f: \mathbb{R}^{K} \times \mathbb{R} \rightarrow[-\infty, \infty]$, let the function $v: \mathbb{R} \rightarrow[-\infty, \infty]$ be defined by

$$
v(\alpha)=\sup _{x \in \mathbb{R}^{K}} f(x, \alpha)
$$

Prove the following:
(a) If for all $x \in \mathbb{R}^{K}, f(x, \alpha)$ is convex in α, then v is convex.
(b) If $f(x, \alpha)$ is concave in (x, α), then v is concave.
(c) Assume that $X^{*}(\alpha)=\left\{x \in \mathbb{R}^{K} \mid f(x, \alpha)=v(\alpha)\right\} \neq \emptyset$ for all $\alpha \in \mathbb{R}$, that for all $x \in \mathbb{R}^{K}, f(x, \alpha)$ is differentiable in α, and that v is concave. Then v is differentiable at any $\bar{\alpha} \in \mathbb{R}$ with

$$
v^{\prime}(\bar{\alpha})=\frac{\partial f}{\partial \alpha}(\bar{x}, \bar{\alpha})
$$

for any $\bar{x} \in X^{*}(\bar{\alpha})$.
5. Let $A=\left(a_{i j}\right) \in \mathbb{R}^{N \times N}$ be a (row-) stochastic matrix, i.e., $a_{i j} \geq 0$ for all $i, j=1, \ldots, N$ and $\sum_{j=1}^{N} a_{i j}=1$ for all $i=1, \ldots, N$. A vector $x^{*} \in \Delta$ is called a stationary distribution of A if $\left(x^{*}\right)^{\mathrm{T}} A=\left(x^{*}\right)^{\mathrm{T}}$, where $\Delta=\left\{x \in \mathbb{R}_{+} \mid \sum_{i=1}^{N} x_{i}=1\right\}$.
Show that A has a stationary distribution
(1) by using the Perron-Frobenius Theorem (Proposition 6.10),
(2) by using Farkas' Lemma, and
(3) by using Brouwer's Fixed Point Theorem.

6.

(1) Find an example of a correspondence $F: X \rightarrow X$ such that $X \subset \mathbb{R}^{N}$ is nonempty, compact, and convex, and F is nonempty- and compact-valued and upper semicontinuous, but not convex-valued, and has no fixed point.
(2) Find an example of a correspondence $F: X \rightarrow X$ such that $X \subset \mathbb{R}^{N}$ is nonempty, compact, and convex, and F is nonempty- and convex-valued and upper semicontinuous, but not compact-valued, and has no fixed point.
7. Let $X \subset \mathbb{R}^{N}$, and let $\left\{f^{m}\right\}_{m=1}^{\infty}$ be a sequence of bounded and continuous functions $f^{m}: X \rightarrow \mathbb{R}$ (i.e., for each m, f^{m} is continuous, and there exists some $r^{m} \in \mathbb{R}$ such that $\left|f^{m}(x)\right|<r^{m}$ for all $\left.x \in X\right)$. Assume that $\left\{f^{m}\right\}_{m=1}^{\infty}$ satisfies the following property:
For any $\varepsilon>0$, there exists M such that $\sup _{x \in X}\left|f^{m}(x)-f^{n}(x)\right|<\varepsilon$ for all $m, n \geq M$.
(1) Show that for each $x \in X$, the sequence $\left\{f^{m}(x)\right\}_{m=1}^{\infty}$ of real numbers is a Cauchy sequence.
(2) By the above and the completeness of \mathbb{R}, for each $x \in X,\left\{f^{m}(x)\right\}_{m=1}^{\infty}$ is convergent; denote its limit by $f(x) \in \mathbb{R}$.
Show that the function $f: X \rightarrow \mathbb{R}$ is bounded.
(You may (but do not have to) follow the following approach:

- Let $M_{1} \in \mathbb{N}$ be such that for all $x \in X,\left|f^{m}(x)-f^{n}(x)\right|<1$ for all $m, n \geq M_{1}$.
- For each $x \in X$, let $m(x) \in \mathbb{N}$ be such that $m(x) \geq M_{1}$ and $\left|f^{m(x)}(x)-f(x)\right|<1$.
- Let $r=r^{M_{1}}+2$ (where $r^{M_{1}} \in \mathbb{R}$ is such that $\left|f^{M_{1}}(x)\right|<r^{M_{1}}$ for all $x \in X$).

Then show that for all $x \in X,|f(x)|<r$ (by triangular inequality).)
(3) Show that $\sup _{x \in X}\left|f^{m}(x)-f(x)\right| \rightarrow 0$ as $m \rightarrow \infty$.
(4) Show that f is continuous.

