9. Envelope Theorem

Daisuke Oyama

Mathematics II

May 15, 2024

Parameterized Optimization (with Constant Constraints)

Let $X \subset \mathbb{R}^{N}$ be a nonempty set, $A \subset \mathbb{R}^{S}$ a nonempty open set.
For $f: X \times A \rightarrow \mathbb{R}$, consider the optimal value function

$$
v(q)=\sup _{x \in X} f(x, q)
$$

and the optimal solution correspondence

$$
X^{*}(q)=\{x \in X \mid f(x, q)=v(q)\}
$$

We assume that $X^{*}(q) \neq \emptyset$ for all $q \in A$.
We want to investigate the marginal effects of changes in q on the value $v(q)$.

Formally, the envelope theorem gives

1. a sufficient condition under which v is differentiable, and
2. a formula for the derivative ("envelope formula").

Outline

- Envelope formula is best interpreted through FOC under the differentiability of the solution function (or selection) and the differentiability of f in (x, q),
while these assumptions are irrelevant for the differentiability of v and deriving the formula.
- If we directly assume the differentiability of v, deriving the envelope formula is just a straightforward routine.

Differentiability of v is the real content of envelope theorem.

- Non-differentiability of v is a typical case when there are more than one solutions.
- Provide a sufficient condition under which uniqueness of solution implies differentiability of v, with applications for the differentiability of support function (or profit function), indirect utility function, and expenditure function.

Main Reference

- D. Oyama and T. Takenawa, "On the (Non-)Differentiability of the Optimal Value Function When the Optimal Solution Is Unique," Journal of Mathematical Economics 76, 21-32 (2018).

Envelope Theorem via FOC

Proposition 9.1

Let $x(\cdot)$ be a selection of X^{*},
i.e., a function such that $x(q) \in X^{*}(q)$ for all $q \in A$.

Assume that

1. f is differentiable on $\operatorname{Int} X \times A$, and
2. $x(\bar{q}) \in \operatorname{Int} X$, and $x(\cdot)$ is differentiable at \bar{q}.

Then, v is differentiable at \bar{q}, and

$$
\frac{\partial v}{\partial q_{s}}(\bar{q})=\frac{\partial f}{\partial q_{s}}(x(\bar{q}), \bar{q}), \quad s=1, \ldots, S
$$

Proof

- By the assumptions, $v(q)=f(x(q), q)$ is differentiable at \bar{q}.
- We have

$$
\begin{aligned}
\frac{\partial v}{\partial q_{s}}(\bar{q}) & =\left.\frac{\partial}{\partial q_{s}} f(x(q), q)\right|_{q=\bar{q}} \\
& =\sum_{n} \underbrace{\frac{\partial f}{\partial x_{n}}(x(\bar{q}), \bar{q})}_{=0 \text { by FOC }} \frac{\partial x_{n}}{\partial q_{s}}(\bar{q})+\frac{\partial f}{\partial q_{s}}(x(\bar{q}), \bar{q}) \\
& =\frac{\partial f}{\partial q_{s}}(x(\bar{q}), \bar{q})
\end{aligned}
$$

- The change in the solution caused by the change in q has no first-order effect on the value;
- the only effect is the direct effect.

A Sufficient Condition for the Differentiability of $x(\cdot)$

Proposition 9.2
Assume that

1. X is compact and f is continuous,
2. for each $q \in A, X^{*}(q)=\{x(q)\} \subset \operatorname{Int} X$,
3. $\nabla_{x} f$ exists and is continuously differentiable on $\operatorname{Int} X \times A$, and
4. $\left|D_{x}^{2} f(x(\bar{q}), \bar{q})\right| \neq 0$.

Then, $x(\cdot)$ is continuously differentiable on a neighborhood of \bar{q}.

Proof

- By assumptions, $x(\cdot)$ is continuous by the Theorem of Maximum.
- By the FOC, $\nabla_{x} f(x(q), q)=0$ for all $q \in A$.
- By assumptions, $\nabla_{x} f(x, q)=0$ is uniquely solved locally as $x=\eta(q)$ and η is continuously differentiable by the Implicit Function Theorem.
I.e., there exist open neighborhoods U and V of $x(\bar{q})$ and \bar{q}, respectively, such that $\nabla_{x} f(x, q)=0$ if and only if $x=\eta(q)$.
- By the continuity of $x(\cdot)$, there exists an open neighborhood $V^{\prime} \subset V$ of \bar{q} such that $x(q) \in U$ for all $q \in V^{\prime}$.
- By the FOC $\nabla_{x} f(x(q), q)=0$, it follows that $x(q)=\eta(q)$ for all $q \in V^{\prime}$.

Envelope Formula

If we directly assume the differentiability of the value function v, neither the differentiability of $f(x, q)$ in x nor that of $x(q)$ in q is needed in deriving the envelope formula.

Proposition 9.3

Assume that

1. for all $x \in X, f(x, \cdot)$ is differentiable at \bar{q}, and
2. v is differentiable at \bar{q}.

Then, for any $\bar{x} \in X^{*}(\bar{q})$,

$$
\frac{\partial v}{\partial q_{s}}(\bar{q})=\frac{\partial f}{\partial q_{s}}(\bar{x}, \bar{q}), \quad s=1, \ldots, S
$$

Proof

- Fix any $\bar{x} \in X^{*}(\bar{q})$.
- Define the function

$$
g(q)=f(\bar{x}, q)-v(q)
$$

By assumption, g is differentiable at \bar{q}.

- By definition,
- $g(q) \leq 0$ for all $q \in A$, and
- $g(\bar{q})=0$.
- Thus, g is maximized at \bar{q}, so that by FOC we have

$$
0=\frac{\partial g}{\partial q_{s}}(\bar{q})=\frac{\partial f}{\partial q_{s}}(\bar{x}, \bar{q})-\frac{\partial v}{\partial q_{s}}(\bar{q}) .
$$

Example: Non-Differentiable Value Function

Consider

$$
f(x, q)=-\frac{1}{4} x^{4}-\frac{q}{3} x^{3}+\frac{1}{2} x^{2}+q x-\frac{1}{4}, \quad q \in[-1,1]
$$

where $f_{x}(x, q)=-(x+1)(x+q)(x-1)$.
Then we have

$$
v(q)=\frac{2}{3}|q|, \quad X^{*}(q)= \begin{cases}\{-1\} & \text { if } q<0, \\ \{-1,1\} & \text { if } q=0, \\ \{1\} & \text { if } q>0 .\end{cases}
$$

- At $q=0, v$ is not differentiable, and
- there are two optimal solutions.

A Sufficient Condition for Differentiability of v

Proposition 9.4
Assume that

1. X^{*} has a selection $x(\cdot)$ continuous at \bar{q}, and
2. for all $x \in X, f(x, \cdot)$ is differentiable, and $\nabla_{q} f$ is continuous in (x, q).
Then v is differentiable at \bar{q} with

$$
\frac{\partial v}{\partial q_{s}}(\bar{q})=\frac{\partial f}{\partial q_{s}}(x(\bar{q}), \bar{q}), \quad s=1, \ldots, S
$$

Proof
See: Oyama and Takenawa, Proposition A.1.

Corollary 9.5

Assume that

1. X^{*} is upper semi-continuous with $X^{*}(q) \neq \emptyset$ for all $q \in A$,
2. $X^{*}(\bar{q})=\{\bar{x}\}$, and
3. for all $x \in X, f(x, \cdot)$ is differentiable, and $\nabla_{q} f$ is continuous in (x, q).
Then v is differentiable at \bar{q} with

$$
\frac{\partial v}{\partial q_{s}}(\bar{q})=\frac{\partial f}{\partial q_{s}}(\bar{x}, \bar{q}), \quad s=1, \ldots, S .
$$

Proof

- Assumptions 1 and 2 imply that any selection of X^{*} is continuous at \bar{q}.
- Thus the conclusion follows from Proposition 9.4.

Remark

- A sufficient condition for Assumption 1 is that X is compact and f is continuous, due to the Theorem of the Maximum.

Example: Non-Differentiable Value Function

- Even if an optimal solution is unique, the value function may not be differentiable.
- In fact, there exists a continuous function $f: X \times A \rightarrow \mathbb{R}$ such that

1. $X^{*}(q)$ is a singleton for all q and is continuous in q (as a single-valued function), and
2. f is differentiable in q,
but v is not differentiable at some q.

See: Oyama and Takenawa, Example 2.1.

Differentiability of the Support Function

For $K \subset \mathbb{R}^{N}, K \neq \emptyset$, and $p \in \mathbb{R}^{N}$, consider the support function of K,

$$
\pi_{K}(p)=\sup _{x \in K} p \cdot x
$$

and the optimal solution correspondence,

$$
S_{K}(p)=\left\{x \in \mathbb{R}^{N} \mid x \in K, \pi_{K}(p)=p \cdot x\right\}
$$

If K is the production set of a firm, π_{K} is the profit function and S_{K} is the supply correspondence (defined for all $p \in \mathbb{R}^{N}$).

- If K is closed and convex and if $S_{K}(\bar{p})$ is nonempty and bounded, then there exists an open neighborhood P^{0} of \bar{p} such that S_{K} is nonempty-valued and upper semi-continuous on P^{0}. (Proposition 3.18)

Proposition 9.6

Let $K \subset \mathbb{R}^{N}$ be a nonempty closed convex set, and $\pi_{K}: \mathbb{R}^{N} \rightarrow(-\infty, \infty]$ its support function, i.e., $\pi_{K}(p)=\sup _{x \in K} p \cdot x$.
Let $\bar{p} \in \mathbb{R}^{N}$ be such that $\pi_{K}(\bar{p})<\infty$.
Then π_{K} is differentiable at \bar{p} if and only if there is a unique $\bar{x} \in K$ such that $\pi_{K}(\bar{p})=\bar{p} \cdot \bar{x}$. In this case, $\nabla \pi_{K}(\bar{p})=\bar{x}$.

Proof

"If" part

- By the closedness and convexity of $K \neq \emptyset$, it follows from Proposition 3.18 that there exists an open neighborhood P^{0} of \bar{p} such that S_{K} is nonempty-valued and upper semi-continuous on P^{0}.
- The function $f(x, p)=p \cdot x$ is differentiable in p, and $\nabla_{p} f(x, p)=x$ is continuous in (x, p).
- With $S_{K}(\bar{p})=\{\bar{x}\}$, the conclusion follows from Corollary 9.5.

Proof

"Only if" part

- By the definition, $S_{K}(p) \subset \partial \pi_{K}(p)$.
- Since π_{K} is convex, the differentiability of π_{K} at \bar{p} implies $\partial \pi_{K}(\bar{p})=\left\{\nabla \pi_{K}(\bar{p})\right\}$.
- The nonemptiness of $S_{K}(\bar{p})$ follows from the differentiability of π_{K} by an elementary argument under the closedness of K (see Oyama and Takenawa, Lemma A.5).
Hence, $S_{K}(\bar{p})$ is a singleton.
- By the differentiability of π_{K}, we have

$$
\nabla \pi_{K}(\bar{p})=\left.\nabla_{p}(p \cdot x)\right|_{p=\bar{p}, x=\bar{x}}=\bar{x} \text { for all } \bar{x} \in S_{K}(\bar{p})
$$

The convexity of K can be dropped if K is compact, in which case Co K is closed.

Corollary 9.7
Let $K \subset \mathbb{R}^{N}$ be a nonempty compact set.
Then π_{K} is differentiable at \bar{p} if and only if there is a unique $\bar{x} \in K$ such that $\pi_{K}(\bar{p})=\bar{p} \cdot \bar{x}$. In this case, $\nabla \pi_{K}(\bar{p})=\bar{x}$.

Proof

- Show that $S_{\mathrm{Co} K}=\operatorname{Co} S_{K}$.
- Co K is nonempty and closed if K is nonempty and compact.
- Therefore, it follows from Proposition 9.6 that
$\pi_{K}=\pi_{\mathrm{Co} K}$ is differentiable at \bar{p}
$\Longleftrightarrow S_{\text {Co } K}(\bar{p})=\operatorname{Co} S_{K}(\bar{p})$ is a singleton
$\Longleftrightarrow S_{K}(\bar{p})$ is a singleton,
in which case $S_{K}(\bar{p})=\left\{\nabla \pi_{K}(\bar{p})\right\}$.

Differentiability of the Indirect Utility Function

For $p \in \mathbb{R}_{++}^{N}$ and $w \in \mathbb{R}_{++}$, consider the indirect utility function,

$$
v(p, w)=\sup \{u(x) \mid x \in B(p, w)\}
$$

and the Walrasian demand correspondence,

$$
x(p, w)=\left\{x \in \mathbb{R}_{+}^{N} \mid x \in B(p, w), u(x)=v(p, w)\right\}
$$

where $B(p, w)=\left\{x \in \mathbb{R}_{+}^{N} \mid p \cdot x \leq w\right\}$.

- If u is continuous, then x is nonempty- and compact-valued and upper semi-continuous.
(Proposition 3.16)

Proposition 9.8

Assume that

1. u is locally insatiable and continuous,
2. $x(\bar{p}, \bar{w})=\{\bar{x}\}$, and
3. for some j with $\bar{x}_{j}>0$ and for some neighborhoods X_{j}^{0} and X_{-j}^{0} of \bar{x}_{j} and \bar{x}_{-j} in \mathbb{R}_{+}and \mathbb{R}_{+}^{N-1}, respectively, $\frac{\partial u}{\partial x_{j}}$ exists on $X_{j}^{0} \times X_{-j}^{0}$ and is continuous in x at \bar{x}.
Then v is differentiable at (\bar{p}, \bar{w}) with

$$
\frac{\partial v}{\partial p_{i}}(\bar{p}, \bar{w})=-\frac{\frac{\partial u}{\partial x_{j}}(\bar{x})}{\bar{p}_{j}} \bar{x}_{i}, \quad \frac{\partial v}{\partial w}(\bar{p}, \bar{w})=\frac{\frac{\partial u}{\partial x_{j}}(\bar{x})}{\bar{p}_{j}}
$$

for any j satisfying the condition in 3.

Proof (1/3)

- By the local insatiability, the inequality constraint $p \cdot x \leq w$ can be replaced by the equality constraint $p \cdot x=w$.
- Let $x(\bar{p}, \bar{w})=\{\bar{x}\}$, where $\bar{p} \cdot \bar{x}=\bar{w}$.
- Let j, X_{j}^{0}, and X_{-j}^{0} be as in Assumption 3, where $\bar{x}_{j}=\frac{1}{\bar{p}_{j}}\left(\bar{w}-\sum_{i \neq j} \bar{p}_{i} \bar{x}_{i}\right) \in X_{j}^{0}$.
- Write $x_{-j}=\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{N}\right)$, and let

$$
f\left(x_{-j}, p, w\right)=u\left(\frac{1}{p_{j}}\left(w-\sum_{i \neq j} p_{i} x_{i}\right), x_{-j}\right) .
$$

- As long as $\frac{1}{p_{j}}\left(w-\sum_{i \neq j} p_{i} x_{i}\right) \in X_{j}^{0}, f$ is well defined and continuous, and $\nabla_{(p, w)} f$ exists on a neighborhood of ($\bar{x}_{-j}, \bar{p}, \bar{w}$) and is continuous in $\left(x_{-j}, p, w\right)$ at $\left(\bar{x}_{-j}, \bar{p}, \bar{w}\right)$ by Assumption 3.

Proof $(2 / 3)$

- We claim that there exist open neighborhoods P^{1} and W^{1} of \bar{p} and \bar{w} and a compact neighborhood $X_{-j}^{1} \subset \mathbb{R}_{+}^{N-1}$ of \bar{x}_{-j} such that

$$
v(p, w)=\max _{x_{-j} \in X_{-j}^{1}} f\left(x_{-j}, p, w\right) \text { for all }(p, w) \in P^{1} \times W^{1}
$$

where

$$
\underset{x_{-j} \in X_{-j}}{\arg \max } f\left(x_{-j}, \bar{p}, \bar{w}\right)=\left\{\bar{x}_{-j}\right\}
$$

- Then by Corollary $9.5, v$ is differentiable at (\bar{p}, \bar{w}), and

$$
\begin{aligned}
\frac{\partial v}{\partial p_{i}}(\bar{p}, \bar{w}) & =\frac{\partial f}{\partial p_{i}}\left(\bar{x}_{-j}, \bar{p}, \bar{w}\right)=\frac{\partial u}{\partial x_{j}}(\bar{x}) \frac{1}{p_{j}}\left(-\bar{x}_{i}\right), \\
\frac{\partial v}{\partial w}(\bar{p}, \bar{w}) & =\frac{\partial f}{\partial w}\left(\bar{x}_{-j}, \bar{p}, \bar{w}\right)=\frac{\partial u}{\partial x_{j}}(\bar{x}) \frac{1}{p_{j}}
\end{aligned}
$$

Proof $(3 / 3)$

- X_{-j}^{1}, P^{1}, and W^{1} are constructed as follows:
- Since $\bar{x}_{j}=\frac{1}{\bar{p}_{j}}\left(\bar{w}-\sum_{i \neq j} \bar{p}_{i} \bar{x}_{i}\right) \in X_{j}^{0}$ and
$\frac{1}{p_{j}}\left(w-\sum_{i \neq j} p_{i} x_{i}\right)$ is continuous in $\left(x_{-j}, p, w\right)$,
there exist open neighborhoods P^{0} and W^{0} of \bar{p} and \bar{w} and a compact neighborhood $X_{-j}^{1} \subset \mathbb{R}_{+}^{N-1}$ of \bar{x}_{-j} such that $\frac{1}{p_{j}}\left(w-\sum_{i \neq j} p_{i} x_{i}\right) \in X_{j}^{0}$
for all $\left(x_{-j}, p, w\right) \in X_{-j}^{1} \times P^{0} \times W^{0}$.
- Since $x(p, w)$ is upper semi-continuous and $x_{-j}(\bar{p}, \bar{w}) \subset X_{-j}^{1}$, we can take open neighborhoods $P^{1} \subset P^{0}$ and $W^{1} \subset W^{0}$ of \bar{p} and \bar{w} such that $x_{-j}(p, w) \subset X_{-j}^{1}$ for all $(p, w) \in P^{1} \times W^{1}$.

Differentiability of the Expenditure Function

For $p \in \mathbb{R}_{++}^{N}$ and $t \in[u(0), \bar{u})$, where $\bar{u}=\sup _{x \in \mathbb{R}_{+}^{N}} u(x)$ and we assume that $u(0)<\bar{u}$, consider the expenditure function,

$$
e(p, t)=\inf \{p \cdot x \mid x \in V(t)\}
$$

and the Hicksian demand correspondence,

$$
h(p, t)=\left\{x \in \mathbb{R}_{+}^{N} \mid x \in V(t), p \cdot x=e(p, t)\right\}
$$

where $V(t)=\left\{x \in \mathbb{R}_{+}^{N} \mid u(x) \geq t\right\}$.

- If u is upper semi-continuous, then $h(p, t)$ is nonempty- and compact-valued and upper semi-continuous in p.
- If in addition, u is locally insatiable, then $h(p, t)$ is upper semi-continuous in (p, t) and $e(p, t)$ is continuous in (p, t).
(Proposition 3.17)

Proposition 9.9

Assume that

1. u is upper semi-continuous, and
2. $h(\bar{p}, \bar{t})=\{\bar{x}\}$.

Then e is differentiable in p at (\bar{p}, \bar{t}) with

$$
\nabla_{p} e(\bar{p}, \bar{t})=\bar{x}
$$

Proof

- By Proposition 3.17, the upper semi-continuity of u implies that $h(p, \bar{t})$ is nonempty-valued and upper semi-continuous in p.
- The function $f(x, p)=p \cdot x$ is differentiable in p, and $\nabla_{p} f(x, p)=x$ is continuous in (x, p).
- With $h(\bar{p})=\{\bar{x}\}$, the conclusion follows from Corollary 9.5.

Proposition 9.10

Assume that

1. u is locally insatiable and continuous,
2. $h(\bar{p}, \bar{t})=\{\bar{x}\}$, where $\bar{t}>u(0)$,
3. for some j with $\bar{x}_{j}>0$ and for some neighborhoods X_{j}^{0} and X_{-j}^{0} of \bar{x}_{j} and \bar{x}_{-j} in \mathbb{R}_{+}and \mathbb{R}_{+}^{N-1}, respectively, $\frac{\partial u}{\partial x_{j}}$ exists on $X_{j}^{0} \times X_{-j}^{0}$ and is continuous in x at \bar{x}, and
4. $\frac{\partial u}{\partial x_{j}}(\bar{x}) \neq 0$ for some j satisfying the condition in 3 .

Then e is differentiable at (\bar{p}, \bar{t}) with

$$
\frac{\partial e}{\partial p_{i}}(\bar{p}, \bar{t})=\bar{x}_{i}, \quad \frac{\partial e}{\partial t}(\bar{p}, \bar{t})=\frac{\bar{p}_{j}}{\frac{\partial u}{\partial x_{j}}(\bar{x})},
$$

for any j satisfying the condition in 3.

Proof

- By the upper semi-continuity and local insatiability of u, e is continuous in (p, t).
- By the continuity of $u, e(p, t)$ is a solution to the equation $v(p, w)-t=0$ in w (which is unique by local insatiability), and $x(\bar{p}, \bar{w})=h(\bar{p}, \bar{t})=\{\bar{x}\}$, where $\bar{w}=e(\bar{p}, \bar{t})$.
(See, e.g., Proposition 3.E.1 in MWG.)
- Therefore, combined with Assumptions 1 and 3, it follows from Proposition 9.8 that v is differentiable at (\bar{p}, \bar{w}).

Proof

- Combined with Assumption 4, it follows from a version of the Implicit Function Theorem that the solution function $e(p, t)$ to the equation $v(p, w)-t=0$ in w is differentiable at (\bar{p}, \bar{t}) with

$$
\begin{aligned}
& \frac{\partial e}{\partial p_{i}}(\bar{p}, \bar{t})=-\frac{\frac{\partial v}{\partial p_{i}}(\bar{p}, \bar{t})}{\frac{\partial v}{\partial w}(\bar{p}, \bar{t})}=\bar{x}_{i}, \\
& \frac{\partial e}{\partial t}(\bar{p}, \bar{t})=-\frac{-1}{\frac{\partial v}{\partial w}(\bar{p}, \bar{t})}=\frac{\bar{p}_{j}}{u_{x_{j}}(\bar{x})},
\end{aligned}
$$

as claimed.

Remark

- The continuity of $\frac{\partial u}{\partial x_{j}}$ in x in Assumption 3 in Propositions 9.8 and 9.10 cannot be dropped.

See Oyama and Takenawa, Example 5.1.

Concave Value Function

Let A be convex.
Proposition 9.11
Assume that

1. $X^{*}(q) \neq \emptyset$ for all $q \in A$,
2. for all $x \in X, f(x, \cdot)$ is differentiable, and
3. v is concave.

Then v is differentiable at \bar{q} with

$$
\frac{\partial v}{\partial q_{s}}(\bar{q})=\frac{\partial f}{\partial q_{s}}(\bar{x}, \bar{q}), \quad s=1, \ldots, S
$$

for any $\bar{x} \in X^{*}(\bar{q})$.

Remark

- If X is convex and f is concave in (x, q), then v is concave.

