8. Optimization

Daisuke Oyama

Mathematics II

May 10, 2024

Unconstrained Maximization Problem

Let $X \subset \mathbb{R}^{N}$ be a nonempty set.
Definition 8.1
For a function $f: X \rightarrow \mathbb{R}$,

- $\bar{x} \in X$ is a (strict) local maximizer of f if there exists an open neighborhood $A \subset X$ of \bar{x} relative to X such that $f(\bar{x}) \geq f(x)$ for all $x \in A$ ($f(\bar{x})>f(x)$ for all $x \in A$ with $x \neq \bar{x}$);
- $\bar{x} \in X$ is a maximizer (or global maximizer) of f if $f(\bar{x}) \geq f(x)$ for all $x \in X$.
(Local and global minimizers are defined analogously.)

First-Order Condition for Optimality

Let $X \subset \mathbb{R}^{N}$ be a nonempty set.
Proposition 8.1
For $f: X \rightarrow \mathbb{R}$, if

- $\bar{x} \in X$ is a local maximizer or local minimizer of f,
- $\bar{x} \in \operatorname{Int} X$, and
- f is differentiable at \bar{x},
then $\nabla f(\bar{x})=0$.

Proof

Apply the FOC for the one variable case to $f\left(x_{i}, \bar{x}_{-i}\right)$ for each $i=1, \ldots, N$.

Second-Order Condition for Optimality

Let $X \subset \mathbb{R}^{N}$ be a nonempty set.
Proposition 8.2
For $f: X \rightarrow \mathbb{R}$, suppose that $\bar{x} \in \operatorname{Int} X$ and that f is differentiable on $\operatorname{Int} X$ and ∇f is differentiable at \bar{x}.

1. If \bar{x} is a local maximizer of f, then $D^{2} f(\bar{x})$ is negative semi-definite.
2. If $\nabla f(\bar{x})=0$ and $D^{2} f(\bar{x})$ is negative definite, then \bar{x} is a strict local maximizer of f.

Proof

1.

- Fix any $z \in \mathbb{R}^{N}, z \neq 0$.

Let $h(\alpha)=f(\bar{x}+\alpha z)-f(\bar{x})$ (where $\alpha \in \mathbb{R}$ is sufficiently close to 0).

Note that h is differentiable and h^{\prime} is differentiable at $\alpha=0$.

- Recall that $h^{\prime \prime}(\alpha)=z \cdot D^{2} f(\bar{x}+\alpha z) z$.
- If \bar{x} is a local maximizer of f, then $\alpha=0$ is a local maximizer of h.
- If $h^{\prime \prime}(0)>0$, then $\alpha=0$ would be a strict local minimizer.
- Thus, $h^{\prime \prime}(0) \leq 0$, or $z \cdot D^{2} f(\bar{x}) z \leq 0$.
- Suppose that $\nabla f(\bar{x})=0$ and $D^{2} f(\bar{x})$ is negative definite.
- Since $u \cdot D^{2} f(\bar{x}) u$ is continuos in u and since $\left\{u \in \mathbb{R}^{N} \mid\|u\|=1\right\}$ is compact, it follows from the assumption of negative definiteness and the Extreme Value Theorem that there is some $\varepsilon>0$ such that

$$
\frac{1}{2} u \cdot D^{2} f(\bar{x}) u+\varepsilon<0 \text { for all } u \in \mathbb{R}^{N} \text { such that }\|u\|=1
$$

- Since $\nabla f(\bar{x})=0$, by Taylor's Theorem we can take a sufficiently small $\delta>0$ such that

$$
0<\|z\|<\delta \Rightarrow \frac{f(\bar{x}+z)-f(\bar{x})}{\|z\|^{2}}-\frac{\frac{1}{2} z \cdot D^{2} f(\bar{x}) z}{\|z\|^{2}} \leq \varepsilon
$$

- Now take any $x \in B_{\delta}(\bar{x}), x \neq \bar{x}$.

Then,

$$
\frac{f(x)-f(\bar{x})}{\|x-\bar{x}\|^{2}} \leq \frac{1}{2} \frac{x-\bar{x}}{\|x-\bar{x}\|} \cdot D^{2} f(\bar{x}) \frac{x-\bar{x}}{\|x-\bar{x}\|}+\varepsilon<0
$$

where the last inequality follows from the choice of ε.
Thus, $f(x)<f(\bar{x})$.

Concave Functions

Let $X \subset \mathbb{R}^{N}$ be a nonempty convex set.
Proposition 8.3
For $f: X \rightarrow \mathbb{R}$, suppose that $\bar{x} \in \operatorname{Int} X$ and f is differentiable at \bar{x}.

- Suppose that f is concave.

If $\nabla f(\bar{x})=0$, then \bar{x} is a global maximizer of f.

- Suppose that f is strictly concave.

If $\nabla f(\bar{x})=0$, then \bar{x} is a unique global maximizer of f.

Proof

- Take any $x \in X, x \neq \bar{x}$.
- If f is concave, then we have

$$
f(x) \leq f(\bar{x})+\nabla f(\bar{x}) \cdot(x-\bar{x})
$$

with a strict inequality if f is strictly concave.

- Thus, if $\nabla f(\bar{x})=0$, we have $f(x) \leq f(\bar{x})$ if f is concave, and $f(x)<f(\bar{x})$ if f is strictly concave.

Equality Constrained Maximization Problem

Let $X \subset \mathbb{R}^{N}$ be a nonempty open set, and $f, g_{1}, \ldots, g_{M}: X \rightarrow \mathbb{R}$, where $M<N$.

Consider the maximization problem:

$$
\begin{array}{cl}
\max _{x} & f(x) \\
\text { s.t. } & g_{1}(x)=0 \\
& \vdots \\
& g_{M}(x)=0 .
\end{array}
$$

- Write $g: X \rightarrow \mathbb{R}^{M}, x \mapsto\left(g_{1}(x), \ldots, g_{M}(x)\right)$, and $C=\{x \in X \mid g(x)=0\}$.
- $\bar{x} \in C$ is a local (global, resp.) constrained maximizer of (P) if it is a local (global, resp.) maximizer of $\left.f\right|_{C}$.

First-Order Condition for Optimality

Proposition 8.4

Suppose that

- f, g_{1}, \ldots, g_{M} are of C^{1} class;
- $\bar{x} \in C$ is a local constrained maximizer of (P); and
- $\operatorname{rank} D g(\bar{x})=M$ ("constraint qualification").

Then there exist unique $\left(\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{M}\right) \in \mathbb{R}^{M}$ (Lagrange multipliers) such that

$$
\nabla f(\bar{x})=\sum_{m=1}^{M} \bar{\lambda}_{m} \nabla g_{m}(\bar{x})
$$

Expression with Lagrangian

- Let $L: X \times \mathbb{R}^{M} \rightarrow \mathbb{R}$ be defined by

$$
L(x, \lambda)=f(x)-\sum_{m=1}^{M} \lambda_{m} g_{m}(x)
$$

- Then the FOC is:
there exists $\bar{\lambda} \in \mathbb{R}^{M}$ such that

$$
\begin{aligned}
\frac{\partial L}{\partial x_{n}}(\bar{x}, \bar{\lambda}) & =0, \quad n=1, \ldots, N \\
\frac{\partial L}{\partial \lambda_{m}}(\bar{x}, \bar{\lambda}) & =0, \quad m=1, \ldots, M
\end{aligned}
$$

or

$$
\nabla L(\bar{x}, \bar{\lambda})=0
$$

Proof

- Let $\bar{x} \in C$ be a local constrained maximizer.

By assumption $D g(\bar{x}) \in \mathbb{R}^{M \times N}$ has rank M.

- Without loss of generality, assume that the first M columns of $D g(\bar{x})$ are linearly independent.
Write $x=(p, q)$, where $p \in \mathbb{R}^{M}$ and $q \in \mathbb{R}^{N-M}$.
- By the Implicit Function Theorem, the equation $g(p, q)=0$ is locally solved as $p=\eta(q)$, where

$$
D \eta(\bar{q})=-\left[D_{p} g(\bar{p}, \bar{q})\right]^{-1} D_{q} g(\bar{p}, \bar{q}) .
$$

- Consider the unconstrained maximization problem $F(q)=f(\eta(q), q)$, where \bar{q} is a local maximizer.
- By the FOC $D F(\bar{q})=0$, we have

$$
\begin{aligned}
0 & =\left.D_{q} f(\eta(q), q)\right|_{q=\bar{q}} \\
& =D_{p} f(\bar{x}) D \eta(\bar{q})+D_{q} f(\bar{x}) \\
& =-D_{p} f(\bar{x})\left[D_{p} g(\bar{x})\right]^{-1} D_{q} g(\bar{x})+D_{q} f(\bar{x})
\end{aligned}
$$

- Let $\bar{\lambda}^{\mathrm{T}}=D_{p} f(\bar{x})\left[D_{p} g(\bar{x})\right]^{-1}$, where $\bar{\lambda} \in \mathbb{R}^{M}$.
- Then we have

$$
D_{p} f(\bar{x})=\bar{\lambda}^{\mathrm{T}} D_{p} g(\bar{x}), \quad D_{q} f(\bar{x})=\bar{\lambda}^{\mathrm{T}} D_{q} g(\bar{x})
$$

or

$$
\nabla f(\bar{x})=D g(\bar{x})^{\mathrm{T}} \bar{\lambda}=\sum_{m=1}^{M} \bar{\lambda}_{m} \nabla g_{m}(\bar{x}) .
$$

Second-Order Condition for Optimality

Proposition 8.5

Suppose that f, g_{1}, \ldots, g_{M} are of C^{2} class, $\bar{x} \in C$, and $\operatorname{rank} D g(\bar{x})=M$.
Denote $W=\left\{z \in \mathbb{R}^{N} \mid D g(\bar{x}) z=0\right\}$.

1. If \bar{x} is a local constrained maximizer of (P), then $D_{\underline{x}}^{2} L(\bar{x}, \bar{\lambda})$ is negative semi-definite on W, where $\bar{\lambda} \in \mathbb{R}^{M}$ is such that $\nabla L(\bar{x}, \bar{\lambda})=0$.
2. If there exists $\bar{\lambda} \in \mathbb{R}^{M}$ such that $\nabla L(\bar{x}, \bar{\lambda})=0$ and $D_{x}^{2} L(\bar{x}, \bar{\lambda})$ is negative definite on W, then \bar{x} is a strict local constrained maximizer of (P).

Inequality Constrained Maximization Problem

Let $X \subset \mathbb{R}^{N}$ be a nonempty open set, and $f, g_{1}, \ldots, g_{M}, h_{1}, \ldots, h_{K}: X \rightarrow \mathbb{R}$, where $M<N$.

Consider the maximization problem:

$$
\begin{array}{cl}
\max _{x} & f(x) \\
\text { s.t. } & g_{1}(x)=0 \\
& \vdots \\
& g_{M}(x)=0 \\
& h_{1}(x) \leq 0 \\
& \vdots \\
& h_{K}(x) \leq 0
\end{array}
$$

- Write $C=\{x \in X \mid g(x)=0, h(x) \leq 0\}$.
- $\bar{x} \in C$ is a local (global, resp.) constrained maximizer of (P) if it is a local (global, resp.) maximizer of $\left.f\right|_{C}$.

First-Order Condition for Optimality (KKT Conditions)

For $x \in C$, write $\mathcal{I}(x)=\left\{k \mid h_{k}(x)=0\right\}$.
Proposition 8.6
Suppose that

- $f, g_{1}, \ldots, g_{M}, h_{1}, \ldots, h_{K}$ are of C^{1} class;
- $\bar{x} \in C$ is a local constrained maximizer of (P); and
- $\nabla g_{1}(\bar{x}), \ldots, \nabla g_{M}(\bar{x})$ and $\nabla h_{k}(\bar{x}), k \in \mathcal{I}(\bar{x})$, are linearly independent ("constraint qualification").
Then there exist $\bar{\mu}_{1}, \ldots, \bar{\mu}_{M} \in \mathbb{R}$ and $\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{K} \in \mathbb{R}$ such that
(i) $\nabla f(\bar{x})=\sum_{m=1}^{M} \bar{\mu}_{m} \nabla g_{m}(\bar{x})+\sum_{k=1}^{K} \bar{\lambda}_{k} \nabla h_{k}(\bar{x})$, and
(ii) $\bar{\lambda}_{k} \geq 0$ and $\bar{\lambda}_{k} h_{k}(\bar{x})=0$ for each $k=1, \ldots, K$.
- " $\bar{\lambda}_{k} h_{k}(\bar{x})=0$ " is called the complementarity condition.
- It says: $\bar{\lambda}_{k}=0$ for all $k \notin \mathcal{I}(\bar{x})$, where $\mathcal{I}(x)=\left\{k \mid h_{k}(x)=0\right\}$.

Example 1

Let $X=\mathbb{R}$.
Consider

$$
\max _{x \in[0,1]} f(x)
$$

or

$$
\max _{x} f(x)
$$

s. t. $h_{1}(x)=-x \leq 0$

$$
h_{2}(x)=x-1 \leq 0
$$

- If $\bar{x} \in[0,1]$ is a local constrained maximizer, then clearly we have:

1. if $\bar{x} \in(0,1)$, then $f^{\prime}(\bar{x})=0$,
2. if $\bar{x}=0$, then $f^{\prime}(\bar{x}) \leq 0$,
3. if $\bar{x}=1$, then $f^{\prime}(\bar{x}) \geq 0$.

Example 1

- Let

$$
L(x, \lambda)=f(x)-\lambda_{1}(-x)-\lambda_{2}(x-1)
$$

- The KKT conditions are:

$$
\begin{aligned}
& L_{x}(x, \lambda)=f^{\prime}(x)+\lambda_{1}-\lambda_{2}=0 \Longleftrightarrow f^{\prime}(x)=-\lambda_{1}+\lambda_{2} \\
& \lambda_{1} \geq 0, \lambda_{1}(-x)=0 \\
& \lambda_{2} \geq 0, \lambda_{2}(x-1)=0
\end{aligned}
$$

- By these,

1. if $-\bar{x}<0$ and $\bar{x}-1<0$, then $\lambda_{1}=\lambda_{2}=0$, so $f^{\prime}(\bar{x})=0$,
2. if $-\bar{x}=0$ and $\bar{x}-1<0$, then $\lambda_{2}=0$, so $f^{\prime}(\bar{x})=-\lambda_{1} \leq 0$,
3. if $-\bar{x}<0$ and $\bar{x}-1=0$, then $\lambda_{1}=0$, so $f^{\prime}(\bar{x})=\lambda_{2} \geq 0$.

Example 1

- To see why we have $\lambda_{k} \geq 0$, suppose that \bar{x} satisfies the constraint $h_{k}(x) \leq 0$ with " $=$ " (i.e., $h_{k}(\bar{x})=0$).
- For $z \approx 0, f(\bar{x}+z) \approx f(\bar{x})+f^{\prime}(\bar{x}) z$ and $h_{k}(\bar{x}+z) \approx h_{k}^{\prime}(\bar{x}) z$.
- If $f^{\prime}(\bar{x})>0$, then for small $\varepsilon>0, \bar{x}+\varepsilon$ has to violate the constraint, for which we have to have $h_{k}^{\prime}(\bar{x}) \geq 0$.
(Constraint qualification implies that $h_{k}^{\prime}(\bar{x}) \neq 0$.)
- If $f^{\prime}(\bar{x})<0$,
then for small $\varepsilon>0, \bar{x}-\varepsilon$ has to violate the constraint, for which we have to have $h_{k}^{\prime}(\bar{x}) \leq 0$.
- In these cases, we have $f^{\prime}(\bar{x})=\lambda_{k} h_{k}^{\prime}(\bar{x})$ with $\lambda_{k}>0$.
- It is possible that $f^{\prime}(\bar{x})=0$, so it may be the case that $\lambda_{k}=0$.

Example 2

For $p \gg 0$ and $w>0$, consider

$$
\begin{array}{rl}
\max _{x} & u(x) \\
\text { s.t. } & p \cdot x-w \leq 0 \\
& -x_{1} \leq 0, \ldots,-x_{N} \leq 0
\end{array}
$$

- The KKT conditions: $\bar{x} \neq 0$,

$$
\begin{aligned}
& \nabla u(\bar{x})=\mu p-\sum_{n=1}^{N} \lambda_{n} e_{n} \\
& \mu \geq 0, \mu(p \cdot \bar{x}-w)=0 \\
& \lambda_{n} \geq 0, \lambda_{n}\left(-\bar{x}_{n}\right)=0 \quad(n=1, \ldots, N)
\end{aligned}
$$

- These can be written as

$$
\begin{aligned}
& \frac{\partial u}{\partial x_{n}}(\bar{x}) \leq \mu p_{n}, \quad \text { with equality if } \bar{x}_{n}>0 \quad(n=1, \ldots, N), \\
& \mu \geq 0, \mu(p \cdot \bar{x}-w)=0
\end{aligned}
$$

Example 2

Let $N=2$.

- Suppose that $\bar{x}=\left(w / p_{1}, 0\right)$.
- First, we have to have $\frac{\partial u}{\partial x_{1}}(\bar{x}) \geq 0$.

So we have $\frac{\partial u}{\partial x_{1}}(\bar{x})=\lambda p_{1}$ for some $\lambda \geq 0$.

- Thus, we have to have $\frac{\partial u}{\partial x_{2}}(\bar{x}) \leq \lambda p_{2}$.
(Draw a picture.)

Proof of Proposition 8.6

Case with no equality constraint.

- Note that for any $z \in \mathbb{R}^{N}$,

$$
\begin{aligned}
& f(\bar{x}+t z)=f(\bar{x})+(\nabla f(\bar{x}) \cdot z) t+o(t) \\
& h_{k}(\bar{x}+t z)=\left(\nabla h_{k}(\bar{x}) \cdot z\right) t+o(t) \quad \text { for all } k \in \mathcal{I}(\bar{x}) .
\end{aligned}
$$

- Since \bar{x} is a local constrained maximizer, there is no $z \in \mathbb{R}^{N}$ such that $\nabla f(\bar{x}) \cdot z>0$ and $\nabla h_{k}(\bar{x}) \cdot z<0$ for all $k \in \mathcal{I}(\bar{x})$, or $\binom{D f(\bar{x})}{-D h_{\mathcal{I}}(\bar{x})} z \gg 0$.
- Thus, by Gordan's Theorem, there exist $\lambda_{0}, \lambda_{k} \geq 0, k \in \mathcal{I}(\bar{x})$, such that

$$
\lambda_{0} \nabla f(\bar{x})-\sum_{k \in \mathcal{I}(\bar{x})} \lambda_{k} \nabla h_{k}(\bar{x})=0, \quad\left(\lambda_{0}, \lambda_{k}\right)_{k \in \mathcal{I}(\bar{x})} \neq 0
$$

- By the constraint qualification, $\lambda_{0} \neq 0$, so normalize $\lambda_{0} \equiv 1$.

Proof of Proposition 8.6

Case with inequality and equality constraints.

- We show that there is no $z \in \mathbb{R}^{N}$ such that $D f(\bar{x}) z>0$, $-D h_{\mathcal{I}}(\bar{x}) z \gg 0$, and $D g(\bar{x}) z=0$.
- Write $x=(p, q)$, where $p \in \mathbb{R}^{M}$ and $q \in \mathbb{R}^{N-M}$.
$g(p, q)=0$ is solved locally around $\bar{x}=(\bar{p}, \bar{q})$ as $p=\eta(q)$, where $D \eta(\bar{q})=-\left[D_{p} g(\bar{x})\right]^{-1} D_{q} g(\bar{x})$.
- Suppose that $D g(\bar{x}) z=0$, or $D_{p} g(\bar{x}) u+D_{q} g(\bar{x}) v=0$ so that $u=-\left[D_{p} g(\bar{x})\right]^{-1} D_{q} g(\bar{x}) v=D \eta(\bar{q}) v$, where $z=(u, v)$.
- Let $x(t)=(\eta(\bar{q}+t v), \bar{q}+t v)$.

Then

$$
D x(0)=\binom{D \eta(\bar{q}) v}{v}=\binom{u}{v}=z .
$$

- Now we have

$$
\begin{aligned}
f(x(t)) & =f(\bar{x})+(\nabla f(\bar{x}) \cdot D x(0)) t+o(t) \\
& =f(\bar{x})+(\nabla f(\bar{x}) \cdot z) t+o(t), \\
h_{k}(\bar{x}+t z) & =\left(\nabla h_{k}(\bar{x}) \cdot D x(0)\right) t+o(t) \\
& =\left(\nabla h_{k}(\bar{x}) \cdot z\right) t+o(t) \quad \text { for all } k \in \mathcal{I}(\bar{x}) .
\end{aligned}
$$

- Since \bar{x} is a local constrained maximizer, we cannot have $\nabla f(\bar{x}) \cdot z>0$ and $h_{k}(\bar{x}) \cdot z<0$ for all $k \in \mathcal{I}(\bar{x})$.
- I.e., $\nexists z \in \mathbb{R}^{N}$ such that $\binom{D f(\bar{x})}{-D h_{\mathcal{I}}(\bar{x})} z \gg 0$ and $D g(\bar{x}) z=0$.
- Thus, by Motzkin's Theorem, there exist $\left(\lambda_{0}, \lambda_{\mathcal{I}}\right) \nexists 0$ and μ such that

$$
\left(\begin{array}{ll}
\lambda_{0} & \lambda_{\mathcal{I}}^{\mathrm{T}}
\end{array}\right)\binom{D f(\bar{x})}{-D h_{\mathcal{I}}(\bar{x})}+\mu^{\mathrm{T}} D g(\bar{x})=0
$$

- By the constraint qualification, $\lambda_{0} \neq 0$; so normalize $\lambda_{0} \equiv 1$.

Second-Order Condition for Optimality

Proposition 8.7

Suppose that $f, g_{1}, \ldots, g_{M}, h_{1}, \ldots, h_{K}$ are of C^{2} class, $\bar{x} \in C$, and $\nabla g_{1}(\bar{x}), \ldots, \nabla g_{M}(\bar{x})$ and $\nabla h_{k}(\bar{x}), k \in \mathcal{I}$, are linearly independent. If

- there exist $\bar{\mu}_{1}, \ldots, \bar{\mu}_{M} \in \mathbb{R}$ and $\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{K} \in \mathbb{R}$ such that the KKT conditions hold, and
- $D_{x}^{2} L(\bar{x}, \bar{\lambda})$ is negative definite on W, where

$$
\begin{gathered}
W=\left\{z \in \mathbb{R}^{N} \mid \nabla g_{m}(\bar{x}) \cdot z=0 \text { for all } m=1, \ldots, M,\right. \\
\left.\nabla h_{k}(\bar{x}) \cdot z=0 \text { for all } k \in \tilde{\mathcal{I}}\right\},
\end{gathered}
$$

$$
\text { and } \tilde{\mathcal{I}}=\left\{k \mid \bar{\lambda}_{k}>0\right\}
$$

then \bar{x} is a strict local constrained maximizer of (P).

Quasi-Concavity/Convexity

Proposition 8.8

Suppose that f, h_{1}, \ldots, h_{K} are of C^{1} class and g_{1}, \ldots, g_{M} are affine (i.e., $g_{m}(x)=a^{m} \cdot x+b^{m}$), and $\bar{x} \in C$. Suppose that

$$
\text { 1. } f\left(x^{\prime}\right)>f(x) \Longrightarrow \nabla f(x) \cdot\left(x^{\prime}-x\right)>0 \text {, and }
$$

2. for all $k=1, \ldots, K$,

$$
h_{k}\left(x^{\prime}\right) \leq h_{k}(x) \Longrightarrow \nabla h_{k}(x) \cdot\left(x^{\prime}-x\right) \leq 0
$$

Then if \bar{x} satisfies the KKT conditions for some $\mu_{1}, \ldots, \mu_{M}, \lambda_{1}, \ldots, \lambda_{K} \in \mathbb{R}$, then \bar{x} is a global constrained maximizer of (P).

Proof

- Let $\bar{x} \in C$ satisfy the KKT conditions, and take any $x^{\prime} \in C$ with $x^{\prime} \neq \bar{x}$.
- If $\lambda_{k}>0$, then $h_{k}(\bar{x})=0$.

With $h_{k}\left(x^{\prime}\right) \leq 0$, we have $h_{k}\left(x^{\prime}\right) \leq h_{k}(\bar{x})$.

- Therefore, by Condition 2, we have $\nabla h_{k}(\bar{x}) \cdot\left(x^{\prime}-\bar{x}\right) \leq 0$ whenever $\lambda_{k}>0$.
- It follows from the KKT conditions that

$$
\begin{aligned}
\nabla f(\bar{x}) \cdot\left(x^{\prime}-\bar{x}\right) & =\sum \mu_{m} a^{m} \cdot\left(x^{\prime}-\bar{x}\right)+\sum \lambda_{k} \nabla h_{k}(\bar{x}) \cdot\left(x^{\prime}-\bar{x}\right) \\
& \leq 0
\end{aligned}
$$

- Hence, by Condition 1, we have $f\left(x^{\prime}\right) \leq f(\bar{x})$.

Remarks

- Condition $2 \Longleftrightarrow h_{k}$ is quasi-convex.
- When Condition 1 holds, f is called pseudo-concave.
- f : strictly quasi-concave and $\nabla f(x) \neq 0$ for all x $\Rightarrow f$: pseudo-concave
$\Rightarrow f$: quasi-concave

Quasi-Concavity

Proposition 8.9

Let $C \subset \mathbb{R}^{N}$ be a nonempty convex set.
Suppose that $f: C \rightarrow \mathbb{R}$ is strictly quasi-concave, and consider the maximization problem

$$
\max _{x \in C} f(x)
$$

If $\bar{x} \in C$ is a local maximizer, then it is a unique global maximizer.

