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Unconstrained Maximization Problem

Let X ¢ RN be a nonempty set.
Definition 8.1
For a function f: X — R,

» 7 € X is a (strict) local maximizer of f if
there exists an open neighborhood A C X of T relative to X
such that f(z) > f(z) forallz € A
(f(Z) > f(z) for all z € A with = # Z);

» 7 € X is a maximizer (or global maximizer) of f if
f(@) > f(x) forall z € X.

(Local and global minimizers are defined analogously.)

1/30



First-Order Condition for Optimality

Let X ¢ RYN be a nonempty set.

Proposition 8.1
For f: X —- R, if

» z € X is a local maximizer or local minimizer of f,
» 7 cIntX, and

» f is differentiable at T,
then V f(z) = 0.

Proof
Apply the FOC for the one variable case to f(z;,Z_;)
foreachi=1,..., N.
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Second-Order Condition for Optimality

Let X C RY be a nonempty set.

Proposition 8.2

For f: X — R, suppose that T € Int X and
that f is differentiable on Int X and V f is differentiable at Z.

1. If T is a local maximizer of f,
then D2 f(z) is negative semi-definite.

2. If Vf(z) =0 and D*f(z) is negative definite,
then X is a strict local maximizer of f.
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Proof

Fix any z € RY, 2 £ 0.

Let h(a) = f(Z + az) — f(T)
(where a € R is sufficiently close to 0).

Note that h is differentiable and &’ is differentiable at oo = 0.

Recall that h"'(a) = 2 - D?f(z + az2)z.

If Z is a local maximizer of f,
then o = 0 is a local maximizer of h.

If R”(0) > 0, then o = 0 would be a strict local minimizer.

Thus, h"(0) <0, or z- D% f(z)z < 0.
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» Suppose that Vf(Z) = 0 and D?f(Z) is negative definite.

» Since u - D?f(Z)u is continuos in u and
since {u € RV | ||ul| = 1} is compact,
it follows from the assumption of negative definiteness and
the Extreme Value Theorem that there is some € > 0 such
that

1
U sz(a_:)u +¢e <0 for all u € RY such that Jul = 1.

» Since Vf(z) =0,
by Taylor's Theorem we can take a sufficiently small § > 0
such that

f@+2)—f@) L2 D*f@)

- <
1212 1212

0< |z <0 = €.
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» Now take any x € Bs(Z), x # .
Then,
fla) -~ £(@) _

1 r—2=x
lz—z[2 ~ 2|

[l — x|

Kl

D?f(z) +e<0,

x —_—
z— |
where the last inequality follows from the choice of €.

Thus, f(x) < f(z).

Kl
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Concave Functions

Let X C RY be a nonempty convex set.

Proposition 8.3
For f: X — R, suppose that T € Int X and f is differentiable at Z.
» Suppose that f is concave.

IfVf(z) =0, then T is a global maximizer of f.

» Suppose that f is strictly concave.

IfVf(z) =0, then T is a unique global maximizer of f.
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Proof

» Takeany x € X, z # T.
» If f is concave, then we have
flx) < f(2) + Vf(z) - (z - T),
with a strict inequality if f is strictly concave.

» Thus, if Vf(z) =0, we have f(z) < f(z) if f is concave, and
f(z) < f(z) if f is strictly concave.
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Equality Constrained Maximization Problem

Let X C RY be a nonempty open set, and
fro1,-..,9m: X = R, where M < N.

Consider the maximization problem:

max f(x) (P)
s.t. g1(z)=0
gm(z) = 0.

> Write g: X = RM, 2 — (g1(),...,gm(x)), and
C={zxeX|g(x)=0}

» 7 € Cis a local (global, resp.) constrained maximizer of (P)
if it is a local (global, resp.) maximizer of f|c.
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First-Order Condition for Optimality

Proposition 8.4
Suppose that
> f.q1,...,g0 are of C class;

» 7 € C is a local constrained maximizer of (P); and

» rank Dg(z) = M (“constraint qualification” ).

Then there exist unique (A1, ..., \y) € RM (Lagrange multipliers)
such that

M
VHE) =D AnVgm(T).
m=1
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Expression with Lagrangian
> Let L: X x R™ — R be defined by

» Then the FOC is:
there exists A € RM such that

or

OL -

—(r = = 1

oz, (z,\)=0, n ,
OL -

— (2 = = 1
o (Z,\)=0, m ,

M
L(377 )‘) = f($) - Z )\mgm(x)'
m=1
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Proof

Let Z € C be a local constrained maximizer.

By assumption Dg(7) € RM*N has rank M.

Without loss of generality, assume that the first M columns of
Dg(z) are linearly independent.

Write 2 = (p, q), where p € RM and ¢ € RN =M

By the Implicit Function Theorem, the equation g(p,q) =0 is
locally solved as p = 1(q), where

Dn(q) = —[Dyg(p,3)) *Dyg(p, ).

Consider the unconstrained maximization problem
F(q) = f(n(q),q), where G is a local maximizer.
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» By the FOC DF(q) =0, we have

0= Dyf(n(q),d)l4=q
= Dy f(2)Dn(q) + Dy f ()
= —D, f(%)[Dpg(2)] ' Dyg(Z) + Dy f (Z).

> Let AT = D, f(Z)[Dpg(z)] "1, where X € RM.
» Then we have
Dpf(j) = E‘Tng(fz): qu(-f) = S\TDqg(j),

or
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Second-Order Condition for Optimality

Proposition 8.5
Suppose that f, g1, ...,gn are of C? class, T € C, and
rank Dg(z) = M.
Denote W = {z € RY | Dg(z)z = 0}.
1. If  is a local constrained maximizer of (P),
then D2L(Z, \) is negative semi-definite on W,
where X € RM s such that VL(z,\) = 0.

2. If there exists A € RM such that

VL(Z,\) =0 and D2L(z, \) is negative definite on W,
then T is a strict local constrained maximizer of (P).
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Inequality Constrained Maximization Problem

Let X C RY be a nonempty open set, and
o1, 9m,h1,...,hg: X = R, where M < N.

Consider the maximization problem:
max f(z) (P)
s.t. gi(z) =

gu(x) =0
hl(a:) S 0

hK(x) <0.

» Write C = {z € X | g(x) =0, h(x) <0}.

» 7 € Cis a local (global, resp.) constrained maximizer of (P)

if it is a local (global, resp.) maximizer of f|c.
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First-Order Condition for Optimality (KKT Conditions)

For x € C, write Z(z) = {k | hi(z) = 0}.

Proposition 8.6
Suppose that

> faglv‘ e 7gM7h1> . -,hK are Ofcl class;
» 7 € C is a local constrained maximizer of (P); and

» Vg1(Z),...,Vgu(Z) and Vhi(z), k € Z(Z), are
linearly independent ( “constraint qualification” ).

Then there exist fi1, ..., fiyr € R and Ay, ..., \x € R such that
M K
(i) V@) =D ImVgm(T) + Y MVhi(), and
m=1 k=1

(i) Ak >0 and M\phy(Z) =0 foreachk=1,..., K.
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> “A\.hi(Z) = 0" is called the complementarity condition.

> It says: A\, = 0 for all k ¢ Z(7),
where Z(z) = {k | hi(x) = 0}.
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Example 1

Let X = R.
Consider
Jnax, f(z),
or
max f(z)
s. t. hl(x) z<0
hz(x) -1 S

» If z € [0,1] is a local constrained maximizer,

then clearly we have:

1. if 2 € (0,1), then f'(z) =
2. ifz =0, then f(z) <0
3. if Z=1, then f'(Z) >0

18/30



Example 1

> Let

L(z,\) = f(x) = M(—x) — Aoz — 1).

» The KKT conditions are:

Lx(l‘?A) = f,($) +AM—A=0 f’(l’) = —A1 + A2,
)\1 > 07 )\1(_1") = Oa
)\220, )\2(1‘*1):0

> By these,
1. if—Z<0and Z—1<0, then A\ = Ay =0, so f'(Z) = 0,
2. if—2=0and 2 —1<0, then A\, =0, so f/(Z) = —A\; <0,
3. if —z <0and Z —1=0, then \; =0, so f'(Z) = Ay > 0.
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Example 1

> To see why we have A\ > 0, suppose that Z satisfies
the constraint hy(x) <0 with “=" (i.e., hi(z) = 0).

> For 2z~ 0, f(z+2) =~ f(Z)+ f'(Z)z and hi(T + 2) = h}(Z)=.
> If f'(z) >0

then for small € > 0, Z + ¢ has to violate the constraint,
for which we have to have h}(z) > 0.

(Constraint qualification implies that hj () # 0.)

> If /() <0
then for small ¢ > 0, Z — € has to violate the constraint,
for which we have to have h}(z) < 0.

» In these cases, we have f'(Z) = \gh) (Z) with Ay > 0.

P It is possible that f/(Z) = 0, so it may be the case that A\ = 0.
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Example 2
For p > 0 and w > 0, consider

max u(x)
x

s.t. prx—w<0
—x1§0,...,—xN§O.

» The KKT conditions: & # 0,

N
Vu(z) = pp — Z Anén,
n=1

p>0, pp-z—w)=0,
A >0, Mo(—=Zp) =0 (n=1,...,N).

» These can be written as

Oy,

>0, p(p-z—w)=0.

4 (Z) < upp, with equality if 2, >0 (n=1,...
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Example 2

Let N = 2.

» Suppose that Z = (w/p1,0).

0
» First, we have to have —u(’) > 0.
8.%1

So we have a—(a’:) = Ap; for some A > 0.

8951

0
» Thus, we have to have v () < Apa.
8952

(Draw a picture.)
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Proof of Proposition 8.6

Case with no equality constraint.
» Note that for any z € RY,

f(@+1t2) = f(2) + (Vf() - 2)t + o(t),
hi(Z +tz) = (Vhi(Z) - 2)t +o(t) for all k € Z(x).

» Since 7 is a local constrained maximizer, there is no z € RY
such that Vf(Z) -z > 0 and Vhi(z) -z <0 for all k € Z(z),

or ( Df(i)_ > z>0.

—th(x)
» Thus, by Gordan’s Theorem, there exist Ao, \x > 0, k € Z(z),
such that
MV f(z Z AVhe(Z) =0, (Xos Ak)rez(z) # 0-
keZ(z

» By the constraint qualification, \g # 0, so normalize \g = 1.
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Proof of Proposition 8.6

Case with inequality and equality constraints.

| 4

>

We show that there is no z € RY such that Df(z)z > 0,
—Dhz(z)z > 0, and Dg(z)z = 0.

Write 2 = (p, q), where p € RM and ¢ € RV =M

g(p,q) = 0 is solved locally around z = (p, q) as p = 1n(q),
where D1(q) = —[Dpg(Z)] ™ Dyg(7).

Suppose that Dg(z)z =0, or Dpg(Z)u + Dyg(Z)v =0

so that u = —[D,g(Z)] "' Dyg(Z)v = Dn(q)v, where

z = (u,v).

Let a(t) = (9(3 + to), 4 + to).

Then

Da(0) = <D”f)q>“> - (Z‘) _
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Now we have

f(x(t) = f(2) + (Vf(Z) - Dx(0))t + o(t)
= f(@) + (Vf(Z) - 2)t + o(t),
hi(Z 4+ tz) = (Vhg(Z) - Dx(0))t + o(t)
= (Vhi(Z) - 2)t + o(t) forall k € Z(z)

Since T is a local constrained maximizer, we cannot have
Vf(Z)-z>0and h(z) -z <0 for all k € Z(z).

Df(z)

N

le., Az € RY such that <—Dh1(a‘:)> 2> 0 and
Dy(z)z = 0.

Thus, by Motzkin's Theorem, there exist (Ao, A7) = 0 and
such that

(Ao AD) (_%Z (Ix()j)> + 4" Dy(z) = 0.

By the constraint qualification, A\g # 0; so normalize A\g = 1.
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Second-Order Condition for Optimality

Proposition 8.7
Suppose that f,g1,...,9m,h1,-..,hi are of C? class, z € C, and
Vg1 (Z),...,Vam(z) and Vhy(Z), k € Z, are linearly independent.
If
> there exist fi1,...,fin € R and \i,..., Ak € R such that
the KKT conditions hold, and

» D2L(%,)\) is negative definite on W, where
W={2eRY |Vgn(z) - 2=0forallm=1,..., M,
Vhi(Z) -2 =0 for all k € T},

and T = {k | A\ > 0},
then I is a strict local constrained maximizer of (P).
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Quasi-Concavity/Convexity

Proposition 8.8

Suppose that f,hy,...,hx are of C' class and
g1, --.,9n are affine (i.e., gm(z) =a™ -z +b™), andz € C.
Suppose that

1. f(2') > f(z) = Vf(z)- (2’ —x) >0, and

2. forallk=1,..., K,
hi(2') < hi(x) = Vhg(z) - (' —z) <0,
Then if z satisfies the KKT conditions
for some p1, ..., par, ALy - -, Ak € R,
then T is a global constrained maximizer of (P).
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Proof

> Let T € C satisfy the KKT conditions,
and take any 2/ € C with 2/ # Z.

> If A\ > 0, then hk(i') =0.
With hi(z') <0, we have hy(z") < hi(Z).

» Therefore, by Condition 2, we have Vhi(z) - (2/ —2) <0
whenever A\, > 0.

» It follows from the KKT conditions that

V@) (@' =)= pma™ (&' —T) + > N Vhi(3) - (o — )

<0.

» Hence, by Condition 1, we have f(z') < f(Z).
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Remarks

» Condition 2 <= hy is quasi-convex.

» When Condition 1 holds, f is called pseudo-concave.

» f: strictly quasi-concave and V f(x) # 0 for all =
= f: pseudo-concave
= f: quasi-concave
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Quasi-Concavity

Proposition 8.9

Let C C RN be a nonempty convex set.
Suppose that f: C — R is strictly quasi-concave, and
consider the maximization problem

max f(x).

zeC

If € C is a local maximizer, then it is a unique global maximizer.
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