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Unconstrained Maximization Problem

Let X ⊂ RN be a nonempty set.

Definition 8.1
For a function f : X → R,
▶ x̄ ∈ X is a (strict) local maximizer of f if

there exists an open neighborhood A ⊂ X of x̄ relative to X
such that f(x̄) ≥ f(x) for all x ∈ A
(f(x̄) > f(x) for all x ∈ A with x 6= x̄);

▶ x̄ ∈ X is a maximizer (or global maximizer) of f if
f(x̄) ≥ f(x) for all x ∈ X.

(Local and global minimizers are defined analogously.)
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First-Order Condition for Optimality

Let X ⊂ RN be a nonempty set.

Proposition 8.1

For f : X → R, if
▶ x̄ ∈ X is a local maximizer or local minimizer of f ,

▶ x̄ ∈ IntX, and

▶ f is differentiable at x̄,

then ∇f(x̄) = 0.

Proof
Apply the FOC for the one variable case to f(xi, x̄−i)
for each i = 1, . . . , N .
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Second-Order Condition for Optimality

Let X ⊂ RN be a nonempty set.

Proposition 8.2

For f : X → R, suppose that x̄ ∈ IntX and
that f is differentiable on IntX and ∇f is differentiable at x̄.

1. If x̄ is a local maximizer of f ,
then D2f(x̄) is negative semi-definite.

2. If ∇f(x̄) = 0 and D2f(x̄) is negative definite,
then x̄ is a strict local maximizer of f .
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Proof

1.

▶ Fix any z ∈ RN , z 6= 0.

Let h(α) = f(x̄+ αz)− f(x̄)
(where α ∈ R is sufficiently close to 0).

Note that h is differentiable and h′ is differentiable at α = 0.

▶ Recall that h′′(α) = z ·D2f(x̄+ αz)z.

▶ If x̄ is a local maximizer of f ,
then α = 0 is a local maximizer of h.

▶ If h′′(0) > 0, then α = 0 would be a strict local minimizer.

▶ Thus, h′′(0) ≤ 0, or z ·D2f(x̄)z ≤ 0.
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2.

▶ Suppose that ∇f(x̄) = 0 and D2f(x̄) is negative definite.

▶ Since u ·D2f(x̄)u is continuos in u and
since {u ∈ RN | ‖u‖ = 1} is compact,
it follows from the assumption of negative definiteness and
the Extreme Value Theorem that there is some ε > 0 such
that

1

2
u ·D2f(x̄)u+ ε < 0 for all u ∈ RN such that ‖u‖ = 1.

▶ Since ∇f(x̄) = 0,
by Taylor’s Theorem we can take a sufficiently small δ > 0
such that

0 < ‖z‖ < δ ⇒ f(x̄+ z)− f(x̄)

‖z‖2
−

1
2z ·D

2f(x̄)z

‖z‖2
≤ ε.
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▶ Now take any x ∈ Bδ(x̄), x 6= x̄.

Then,

f(x)− f(x̄)

‖x− x̄‖2
≤ 1

2

x− x̄

‖x− x̄‖
·D2f(x̄)

x− x̄

‖x− x̄‖
+ ε < 0,

where the last inequality follows from the choice of ε.

Thus, f(x) < f(x̄).
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Concave Functions

Let X ⊂ RN be a nonempty convex set.

Proposition 8.3

For f : X → R, suppose that x̄ ∈ IntX and f is differentiable at x̄.

▶ Suppose that f is concave.

If ∇f(x̄) = 0, then x̄ is a global maximizer of f .

▶ Suppose that f is strictly concave.

If ∇f(x̄) = 0, then x̄ is a unique global maximizer of f .
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Proof

▶ Take any x ∈ X, x 6= x̄.

▶ If f is concave, then we have

f(x) ≤ f(x̄) +∇f(x̄) · (x− x̄),

with a strict inequality if f is strictly concave.

▶ Thus, if ∇f(x̄) = 0, we have f(x) ≤ f(x̄) if f is concave, and
f(x) < f(x̄) if f is strictly concave.
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Equality Constrained Maximization Problem
Let X ⊂ RN be a nonempty open set, and
f, g1, . . . , gM : X → R, where M < N .

Consider the maximization problem:

max
x

f(x) (P)

s. t. g1(x) = 0

...

gM (x) = 0.

▶ Write g : X → RM , x 7→ (g1(x), . . . , gM (x)), and
C = {x ∈ X | g(x) = 0}.

▶ x̄ ∈ C is a local (global, resp.) constrained maximizer of (P)
if it is a local (global, resp.) maximizer of f |C .
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First-Order Condition for Optimality

Proposition 8.4

Suppose that

▶ f, g1, . . . , gM are of C1 class;

▶ x̄ ∈ C is a local constrained maximizer of (P); and

▶ rankDg(x̄) = M (“constraint qualification”).

Then there exist unique (λ̄1, . . . , λ̄M ) ∈ RM (Lagrange multipliers)
such that

∇f(x̄) =
M∑

m=1

λ̄m∇gm(x̄).
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Expression with Lagrangian

▶ Let L : X × RM → R be defined by

L(x, λ) = f(x)−
M∑

m=1

λmgm(x).

▶ Then the FOC is:

there exists λ̄ ∈ RM such that

∂L

∂xn
(x̄, λ̄) = 0, n = 1, . . . , N,

∂L

∂λm
(x̄, λ̄) = 0, m = 1, . . . ,M,

or

∇L(x̄, λ̄) = 0.
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Proof

▶ Let x̄ ∈ C be a local constrained maximizer.

By assumption Dg(x̄) ∈ RM×N has rank M .

▶ Without loss of generality, assume that the first M columns of
Dg(x̄) are linearly independent.

Write x = (p, q), where p ∈ RM and q ∈ RN−M .

▶ By the Implicit Function Theorem, the equation g(p, q) = 0 is
locally solved as p = η(q), where

Dη(q̄) = −[Dpg(p̄, q̄)]
−1Dqg(p̄, q̄).

▶ Consider the unconstrained maximization problem
F (q) = f(η(q), q), where q̄ is a local maximizer.
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▶ By the FOC DF (q̄) = 0, we have

0 = Dqf(η(q), q)|q=q̄

= Dpf(x̄)Dη(q̄) +Dqf(x̄)

= −Dpf(x̄)[Dpg(x̄)]
−1Dqg(x̄) +Dqf(x̄).

▶ Let λ̄T = Dpf(x̄)[Dpg(x̄)]
−1, where λ̄ ∈ RM .

▶ Then we have

Dpf(x̄) = λ̄TDpg(x̄), Dqf(x̄) = λ̄TDqg(x̄),

or

∇f(x̄) = Dg(x̄)Tλ̄ =

M∑
m=1

λ̄m∇gm(x̄).
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Second-Order Condition for Optimality

Proposition 8.5

Suppose that f, g1, . . . , gM are of C2 class, x̄ ∈ C, and
rankDg(x̄) = M .
Denote W = {z ∈ RN | Dg(x̄)z = 0}.

1. If x̄ is a local constrained maximizer of (P),
then D2

xL(x̄, λ̄) is negative semi-definite on W ,
where λ̄ ∈ RM is such that ∇L(x̄, λ̄) = 0.

2. If there exists λ̄ ∈ RM such that
∇L(x̄, λ̄) = 0 and D2

xL(x̄, λ̄) is negative definite on W ,
then x̄ is a strict local constrained maximizer of (P).
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Inequality Constrained Maximization Problem
Let X ⊂ RN be a nonempty open set, and
f, g1, . . . , gM , h1, . . . , hK : X → R, where M < N .

Consider the maximization problem:

max
x

f(x) (P)

s. t. g1(x) = 0

...

gM (x) = 0

h1(x) ≤ 0

...

hK(x) ≤ 0.

▶ Write C = {x ∈ X | g(x) = 0, h(x) ≤ 0}.
▶ x̄ ∈ C is a local (global, resp.) constrained maximizer of (P)

if it is a local (global, resp.) maximizer of f |C .
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First-Order Condition for Optimality (KKT Conditions)

For x ∈ C, write I(x) = {k | hk(x) = 0}.

Proposition 8.6

Suppose that

▶ f, g1, . . . , gM , h1, . . . , hK are of C1 class;

▶ x̄ ∈ C is a local constrained maximizer of (P); and

▶ ∇g1(x̄), . . . ,∇gM (x̄) and ∇hk(x̄), k ∈ I(x̄), are
linearly independent (“constraint qualification”).

Then there exist µ̄1, . . . , µ̄M ∈ R and λ̄1, . . . , λ̄K ∈ R such that

(i) ∇f(x̄) =

M∑
m=1

µ̄m∇gm(x̄) +

K∑
k=1

λ̄k∇hk(x̄), and

(ii) λ̄k ≥ 0 and λ̄khk(x̄) = 0 for each k = 1, . . . ,K.
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▶ “λ̄khk(x̄) = 0” is called the complementarity condition.

▶ It says: λ̄k = 0 for all k /∈ I(x̄),

where I(x) = {k | hk(x) = 0}.
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Example 1
Let X = R.

Consider

max
x∈[0,1]

f(x),

or

max
x

f(x)

s. t. h1(x) = −x ≤ 0

h2(x) = x− 1 ≤ 0.

▶ If x̄ ∈ [0, 1] is a local constrained maximizer,
then clearly we have:

1. if x̄ ∈ (0, 1), then f ′(x̄) = 0,

2. if x̄ = 0, then f ′(x̄) ≤ 0,

3. if x̄ = 1, then f ′(x̄) ≥ 0.
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Example 1

▶ Let

L(x, λ) = f(x)− λ1(−x)− λ2(x− 1).

▶ The KKT conditions are:

Lx(x, λ) = f ′(x) + λ1 − λ2 = 0 ⇐⇒ f ′(x) = −λ1 + λ2,

λ1 ≥ 0, λ1(−x) = 0,

λ2 ≥ 0, λ2(x− 1) = 0.

▶ By these,

1. if −x̄ < 0 and x̄− 1 < 0, then λ1 = λ2 = 0, so f ′(x̄) = 0,

2. if −x̄ = 0 and x̄− 1 < 0, then λ2 = 0, so f ′(x̄) = −λ1 ≤ 0,

3. if −x̄ < 0 and x̄− 1 = 0, then λ1 = 0, so f ′(x̄) = λ2 ≥ 0.
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Example 1

▶ To see why we have λk ≥ 0, suppose that x̄ satisfies
the constraint hk(x) ≤ 0 with “=” (i.e., hk(x̄) = 0).

▶ For z ≈ 0, f(x̄+ z) ≈ f(x̄) + f ′(x̄)z and hk(x̄+ z) ≈ h′k(x̄)z.

▶ If f ′(x̄) > 0,
then for small ε > 0, x̄+ ε has to violate the constraint,
for which we have to have h′k(x̄) ≥ 0.

(Constraint qualification implies that h′k(x̄) 6= 0.)

▶ If f ′(x̄) < 0,
then for small ε > 0, x̄− ε has to violate the constraint,
for which we have to have h′k(x̄) ≤ 0.

▶ In these cases, we have f ′(x̄) = λkh
′
k(x̄) with λk > 0.

▶ It is possible that f ′(x̄) = 0, so it may be the case that λk = 0.
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Example 2
For p � 0 and w > 0, consider

max
x

u(x)

s. t. p · x− w ≤ 0

− x1 ≤ 0, . . . ,−xN ≤ 0.

▶ The KKT conditions: x̄ 6= 0,

∇u(x̄) = µp−
N∑

n=1

λnen,

µ ≥ 0, µ(p · x̄− w) = 0,

λn ≥ 0, λn(−x̄n) = 0 (n = 1, . . . , N).

▶ These can be written as
∂u

∂xn
(x̄) ≤ µpn, with equality if x̄n > 0 (n = 1, . . . , N),

µ ≥ 0, µ(p · x̄− w) = 0.
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Example 2

Let N = 2.

▶ Suppose that x̄ = (w/p1, 0).

▶ First, we have to have
∂u

∂x1
(x̄) ≥ 0.

So we have
∂u

∂x1
(x̄) = λp1 for some λ ≥ 0.

▶ Thus, we have to have
∂u

∂x2
(x̄) ≤ λp2.

(Draw a picture.)
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Proof of Proposition 8.6
Case with no equality constraint.

▶ Note that for any z ∈ RN ,

f(x̄+ tz) = f(x̄) + (∇f(x̄) · z)t+ o(t),

hk(x̄+ tz) = (∇hk(x̄) · z)t+ o(t) for all k ∈ I(x̄).

▶ Since x̄ is a local constrained maximizer, there is no z ∈ RN

such that ∇f(x̄) · z > 0 and ∇hk(x̄) · z < 0 for all k ∈ I(x̄),

or

(
Df(x̄)

−DhI(x̄)

)
z � 0.

▶ Thus, by Gordan’s Theorem, there exist λ0, λk ≥ 0, k ∈ I(x̄),
such that

λ0∇f(x̄)−
∑

k∈I(x̄)

λk∇hk(x̄) = 0, (λ0, λk)k∈I(x̄) 6= 0.

▶ By the constraint qualification, λ0 6= 0, so normalize λ0 ≡ 1.
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Proof of Proposition 8.6
Case with inequality and equality constraints.

▶ We show that there is no z ∈ RN such that Df(x̄)z > 0,
−DhI(x̄)z � 0, and Dg(x̄)z = 0.

▶ Write x = (p, q), where p ∈ RM and q ∈ RN−M .

g(p, q) = 0 is solved locally around x̄ = (p̄, q̄) as p = η(q),
where Dη(q̄) = −[Dpg(x̄)]

−1Dqg(x̄).

▶ Suppose that Dg(x̄)z = 0, or Dpg(x̄)u+Dqg(x̄)v = 0
so that u = −[Dpg(x̄)]

−1Dqg(x̄)v = Dη(q̄)v, where
z = (u, v).

▶ Let x(t) = (η(q̄ + tv), q̄ + tv).

Then

Dx(0) =

(
Dη(q̄)v

v

)
=

(
u
v

)
= z.
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▶ Now we have

f(x(t)) = f(x̄) + (∇f(x̄) ·Dx(0))t+ o(t)

= f(x̄) + (∇f(x̄) · z)t+ o(t),

hk(x̄+ tz) = (∇hk(x̄) ·Dx(0))t+ o(t)

= (∇hk(x̄) · z)t+ o(t) for all k ∈ I(x̄).

▶ Since x̄ is a local constrained maximizer, we cannot have
∇f(x̄) · z > 0 and hk(x̄) · z < 0 for all k ∈ I(x̄).

▶ I.e., 6 ∃ z ∈ RN such that

(
Df(x̄)

−DhI(x̄)

)
z � 0 and

Dg(x̄)z = 0.

▶ Thus, by Motzkin’s Theorem, there exist (λ0, λI) ≩ 0 and µ
such that(

λ0 λT
I
)( Df(x̄)

−DhI(x̄)

)
+ µTDg(x̄) = 0.

▶ By the constraint qualification, λ0 6= 0; so normalize λ0 ≡ 1.
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Second-Order Condition for Optimality

Proposition 8.7

Suppose that f, g1, . . . , gM , h1, . . . , hK are of C2 class, x̄ ∈ C, and
∇g1(x̄), . . . ,∇gM (x̄) and ∇hk(x̄), k ∈ I, are linearly independent.
If

▶ there exist µ̄1, . . . , µ̄M ∈ R and λ̄1, . . . , λ̄K ∈ R such that
the KKT conditions hold, and

▶ D2
xL(x̄, λ̄) is negative definite on W , where

W = {z ∈ RN | ∇gm(x̄) · z = 0 for all m = 1, . . . ,M,

∇hk(x̄) · z = 0 for all k ∈ Ĩ},

and Ĩ = {k | λ̄k > 0},
then x̄ is a strict local constrained maximizer of (P).
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Quasi-Concavity/Convexity

Proposition 8.8

Suppose that f, h1, . . . , hK are of C1 class and
g1, . . . , gM are affine (i.e., gm(x) = am · x+ bm), and x̄ ∈ C.
Suppose that

1. f(x′) > f(x) =⇒ ∇f(x) · (x′ − x) > 0, and

2. for all k = 1, . . . ,K,
hk(x

′) ≤ hk(x) =⇒ ∇hk(x) · (x′ − x) ≤ 0;

Then if x̄ satisfies the KKT conditions
for some µ1, . . . , µM , λ1, . . . , λK ∈ R,
then x̄ is a global constrained maximizer of (P).
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Proof

▶ Let x̄ ∈ C satisfy the KKT conditions,
and take any x′ ∈ C with x′ 6= x̄.

▶ If λk > 0, then hk(x̄) = 0.
With hk(x

′) ≤ 0, we have hk(x
′) ≤ hk(x̄).

▶ Therefore, by Condition 2, we have ∇hk(x̄) · (x′ − x̄) ≤ 0
whenever λk > 0.

▶ It follows from the KKT conditions that

∇f(x̄) · (x′ − x̄) =
∑

µmam · (x′ − x̄) +
∑

λk∇hk(x̄) · (x′ − x̄)

≤ 0.

▶ Hence, by Condition 1, we have f(x′) ≤ f(x̄).
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Remarks

▶ Condition 2 ⇐⇒ hk is quasi-convex.

▶ When Condition 1 holds, f is called pseudo-concave.

▶ f : strictly quasi-concave and ∇f(x) 6= 0 for all x
⇒ f : pseudo-concave
⇒ f : quasi-concave

29 / 30



Quasi-Concavity

Proposition 8.9

Let C ⊂ RN be a nonempty convex set.
Suppose that f : C → R is strictly quasi-concave, and
consider the maximization problem

max
x∈C

f(x).

If x̄ ∈ C is a local maximizer, then it is a unique global maximizer.
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