7. Separating Hyperplane Theorems II

Daisuke Oyama

Mathematics II

May 8, 2024

Farkas' Lemma

Proposition 7.16 (Farkas' Lemma)
Let $A \in \mathbb{R}^{M \times N}$ and $b \in \mathbb{R}^{N}$.
The following conditions are equivalent:

1. There exists $x \in \mathbb{R}^{M}$ such that $A^{\mathrm{T}} x=b$ and $x \geq 0$.
2. For any $y \in \mathbb{R}^{N}$, if $A y \geq 0$, then $b^{\mathrm{T}} y \geq 0$.

For proof, we will use the following:
Lemma 7.17
$\left\{A^{\mathrm{T}} x \in \mathbb{R}^{N} \mid x \in \mathbb{R}_{+}^{M}\right\}$ is a closed set.

Proof of Farkas' Lemma

- $(1) \Rightarrow(2)$: Immediate.
- $(2) \Rightarrow(1):$

Suppose that (1) does not hold.
Let $K=\left\{A^{\mathrm{T}} x \in \mathbb{R}^{N} \mid x \in \mathbb{R}_{+}^{M}\right\}$. Then $b \notin K$.

- K is convex, and by Lemma 7.17 is closed.
- Then by the Separating Hyperplane Theorem, there exist $y \in \mathbb{R}^{N}$ with $y \neq 0$ and $c \in \mathbb{R}$ such that

$$
y^{\mathrm{T}} b<c \leq y^{\mathrm{T}} z \text { for all } z \in K
$$

and therefore, $y^{\mathrm{T}} b<\inf _{z \in K} y^{\mathrm{T}} z$.

- Since K is a cone, it follows that $\inf _{z \in K} y^{\mathrm{T}} z=0$. (\rightarrow Homework)
- Thus we have $y^{\mathrm{T}} b<0$, and $y^{\mathrm{T}} A^{\mathrm{T}} x \geq 0$ for all $x \geq 0$, which implies that $y^{\mathrm{T}} A^{\mathrm{T}} \geq 0^{\mathrm{T}}$.

Proof of Lemma 7.17

Show that $K=\left\{A^{\mathrm{T}} x \in \mathbb{R}^{N} \mid x \in \mathbb{R}_{+}^{M}\right\}$ is closed.

- Denote the column vectors in A^{T} by a^{1}, \ldots, a^{M}, so that $K=$ Cone $\left\{a^{1}, \ldots, a^{M}\right\}$.
- Let $\left\{z^{m}\right\}$ be a sequence in K, and suppose that $z^{m} \rightarrow \bar{z}$. We want to show that $\bar{z} \in K$.
- By Carathéodory's Theorem, for each m, z^{m} is written as a conic combination of a linearly independent subset of $\left\{a^{1}, \ldots, a^{M}\right\}$.
- Since there are finitely many such subsets, there is a linearly independent subset $\left\{a^{i_{1}}, \ldots, a^{i_{L}}\right\}$ such that infinitely many elements of $\left\{z^{m}\right\}$ are written as its conic combinations.
- Denote $B=\left(\begin{array}{lll}a^{i_{1}} & \cdots & a^{i_{L}}\end{array}\right) \in \mathbb{R}^{N \times L}$, and denote the corresponding subsequence again by $\left\{z^{m}\right\}$.
- Denote $z^{m}=B \lambda^{m}$, where $\lambda^{m} \in \mathbb{R}_{+}^{L}$.
- We have $B^{\mathrm{T}} z^{m}=B^{\mathrm{T}} B \lambda^{m}$, where $B^{\mathrm{T}} B \in \mathbb{R}^{L \times L}$ is non-singular:
- Let $B^{\mathrm{T}} B x=0$.
- Then $x^{\mathrm{T}} B^{\mathrm{T}} B x=0$, where $x^{\mathrm{T}} B^{\mathrm{T}} B x=\|B x\|^{2}$.
- Therefore, $x^{\mathrm{T}} B^{\mathrm{T}} B x=0$ if and only if $B x=0$.
- Since the columns of B are linearly independent, this holds if and only if $x=0$.
- Therefore, we have $\lambda^{m}=\left(B^{\mathrm{T}} B\right)^{-1} B^{\mathrm{T}} z^{m}$.
- By the continuity of $\left(B^{\mathrm{T}} B\right)^{-1} B^{\mathrm{T}} z$ in z, λ^{m} converges to $\bar{\lambda}=\left(B^{\mathrm{T}} B\right)^{-1} B^{\mathrm{T}} \bar{z}$, where $\bar{\lambda} \in \mathbb{R}_{+}^{L}$.
- Thus, by the continuity of $B \lambda$ in λ, we have $\bar{z}=\lim _{m \rightarrow \infty} B \lambda^{m}=B \bar{\lambda}$, so that $\bar{z} \in K$.

Variants of Farkas' Lemma

Proposition 7.18 (Farkas' Lemma: Inequality version)
Let $A \in \mathbb{R}^{M \times N}$ and $b \in \mathbb{R}^{N}$.
The following conditions are equivalent:

1. There exists $x \in \mathbb{R}^{M}$ such that $A^{\mathrm{T}} x \leq b$ and $x \geq 0$.
2. For any $y \in \mathbb{R}^{N}$, if $y \geq 0$ and $A y \geq 0$, then $b^{\mathrm{T}} y \geq 0$.

Proof

- Condition (1) is equivalent to:

There exist $x \in \mathbb{R}^{M}$ and $z \in \mathbb{R}^{N}$ such that $x \geq 0, z \geq 0$, and $A x+z=b$,
or $\left(\begin{array}{ll}A^{\mathrm{T}} & I\end{array}\right)\binom{x}{z}=b$.

- By Farkas' Lemma, this is equivalent to:

For any $y \in \mathbb{R}^{N}$, if $\binom{A}{I} y \geq 0$, then $b^{\mathrm{T}} y \geq 0$,
or, if $y \geq 0$ and $A y \geq 0$, then $b^{\mathrm{T}} y \geq 0$ (condition (2)).

Linear Programming

Let $A \in \mathbb{R}^{K \times N}, f \in \mathbb{R}^{N}, c \in \mathbb{R}^{K}$.
Primal problem:
(P) $\max _{x \in \mathbb{R}^{N}} f^{\mathrm{T}} x$
s. t. $A x \leq c$

$$
x \geq 0
$$

Dual problem:
(D) $\min _{\lambda \in \mathbb{R}^{K}} c^{\mathrm{T}} \lambda$
s.t. $\quad A^{\mathrm{T}} \lambda \geq f$

$$
\lambda \geq 0
$$

The Lagrangians for the two problems coincide (the nonnegativity constraints aside):

$$
L(x, \lambda)=f^{\mathrm{T}} x-\lambda^{\mathrm{T}}(A x-c)=c^{\mathrm{T}} \lambda-x^{\mathrm{T}}\left(A^{\mathrm{T}} \lambda-f\right) .
$$

Weak Duality

Proposition 7.19
If $x \in \mathbb{R}^{N}$ and $\lambda \in \mathbb{R}^{K}$ are feasible for (P) and (D), respectively, then $f^{\mathrm{T}} x \leq c^{\mathrm{T}} \lambda$.

Proof

- If $x \in \mathbb{R}^{N}$ and $\lambda \in \mathbb{R}^{K}$ are feasible for (P) and (D), then

$$
f^{\mathrm{T}} x \leq\left(A^{\mathrm{T}} \lambda\right)^{\mathrm{T}} x=\lambda^{\mathrm{T}}(A x) \leq \lambda^{\mathrm{T}} c
$$

Therefore, if $\bar{x} \in \mathbb{R}^{N}$ and $\bar{\lambda} \in \mathbb{R}^{K}$ are feasible and if $f^{\mathrm{T}} \bar{x}=c^{\mathrm{T}} \bar{\lambda}$, then \bar{x} and $\bar{\lambda}$ are solutions to (P) and (D), respectively.

Strong Duality

Proposition 7.20
Suppose that both (P) and (D) are feasible. Then both (P) and (D) have solutions, and

$$
\max \left\{f^{\mathrm{T}} x \mid A x \leq c, x \geq 0\right\}=\min \left\{c^{\mathrm{T}} \lambda \mid A^{\mathrm{T}} \lambda \geq f, \lambda \geq 0\right\} .
$$

Proof

- Suppose that (P) and (D) are feasible.

We want to show that there exist $x \in \mathbb{R}^{N}$ and $\lambda \in \mathbb{R}^{K}$ such that $A x \leq c, A^{\mathrm{T}} \lambda \geq f, f^{\mathrm{T}} x \geq c^{\mathrm{T}} \lambda, x \geq 0$, and $\lambda \geq 0$, or

$$
\left(\begin{array}{cc}
A & O \\
O & -A^{\mathrm{T}} \\
-f^{\mathrm{T}} & c^{\mathrm{T}}
\end{array}\right)\binom{x}{\lambda} \leq\left(\begin{array}{c}
c \\
-f \\
0
\end{array}\right), x \geq 0, \lambda \geq 0
$$

- By Farkas' Lemma (inequality version; Proposition 7.18), this is equivalent to the condition that for all $p \in \mathbb{R}^{K}, q \in \mathbb{R}^{N}$, and $r \in \mathbb{R}$,

$$
\begin{aligned}
& \left(\begin{array}{lll}
p^{\mathrm{T}} & q^{\mathrm{T}} & r
\end{array}\right)\left(\begin{array}{cc}
A & O \\
O & -A^{\mathrm{T}} \\
-f^{\mathrm{T}} & c^{\mathrm{T}}
\end{array}\right) \geq 0, p \geq 0, q \geq 0, r \geq 0 \\
& \Rightarrow\left(\begin{array}{lll}
p^{\mathrm{T}} & q^{\mathrm{T}} & r
\end{array}\right)\left(\begin{array}{c}
c \\
-f \\
0
\end{array}\right) \geq 0
\end{aligned}
$$

- That is,
(1) $A^{\mathrm{T}} p \geq r f, A q \leq r c, p \geq 0, q \geq 0, r \geq 0$
implies
(2) $c^{\mathrm{T}} p-f^{\mathrm{T}} q \geq 0$.

We want to show that this holds whenever (P) and (D) are feasible.

- For $r>0,(1)$ implies that q / r and p / r are feasible solutions to (P) and (D), so that we have $c^{\mathrm{T}} p-f^{\mathrm{T}} q=r\left[c^{\mathrm{T}}(p / r)-f^{\mathrm{T}}(q / r)\right] \geq 0$ by Weak Duality.
- For $r=0$, let x and λ be feasible solutions to (P) and (D). From (1), we have

$$
c^{\mathrm{T}} p-f^{\mathrm{T}} q \geq x^{\mathrm{T}} A^{\mathrm{T}} p-\lambda^{\mathrm{T}} A q \geq 0
$$

Strong Duality

Proposition 7.21

1. Suppose that (D) has a solution.

Then (P) has a solution, and

$$
\max \left\{f^{\mathrm{T}} x \mid A x \leq c, x \geq 0\right\}=\min \left\{c^{\mathrm{T}} \lambda \mid A^{\mathrm{T}} \lambda \geq f, \lambda \geq 0\right\}
$$

2. Suppose that (P) has a solution.

Then (D) has a solution, and

$$
\max \left\{f^{\mathrm{T}} x \mid A x \leq c, x \geq 0\right\}=\min \left\{c^{\mathrm{T}} \lambda \mid A^{\mathrm{T}} \lambda \geq f, \lambda \geq 0\right\}
$$

Proof

- Suppose that (D) has a solution.

In light of Proposition 7.20, it suffices to show that (P) has a feasible solution.

- Let $\lambda^{*} \in \mathbb{R}^{K}$ be a solution to (D).

To apply Farkas' Lemma (Proposition 7.18), let $z \in \mathbb{R}^{K}$ be such that $A^{\mathrm{T}} z \geq 0$ and $z \geq 0$.

- Then $\lambda^{*}+z \geq 0$, and $A^{\mathrm{T}}\left(\lambda^{*}+z\right)=A^{\mathrm{T}} \lambda^{*}+A^{\mathrm{T}} z \geq f$, which means that $\lambda^{*}+z$ is feasible in (D).
- Therefore, by the optimality of λ^{*}, we have $0 \leq c^{\mathrm{T}}\left(\lambda^{*}+z\right)-c^{\mathrm{T}} \lambda^{*}=c^{\mathrm{T}} z$.
- By Proposition 7.18, there exists $x \in \mathbb{R}^{N}$ such that $A x \leq c$ and $x \geq 0$.

Variants of Farkas' Lemma

Proposition 7.22 (Gale's Theorem)
Let $A \in \mathbb{R}^{M \times N}$ and $b \in \mathbb{R}^{N}$.
The following conditions are equivalent:

1. There exists $x \in \mathbb{R}^{M}$ such that $A^{\mathrm{T}} x \leq b$.
2. For any $y \in \mathbb{R}^{N}$, if $y \geq 0$ and $A y=0$, then $b^{\mathrm{T}} y \geq 0$.

Proof

- Condition (1) is equivalent to:

There exist $z^{1} \in \mathbb{R}^{M}$ and $z^{2} \in \mathbb{R}^{M}$ such that $z^{1} \geq 0, z^{2} \geq 0$, and $A^{\mathrm{T}}\left(z^{1}-z^{2}\right) \leq b$,
or $\left(\begin{array}{ll}A^{\mathrm{T}} & -A^{\mathrm{T}}\end{array}\right)\binom{z^{1}}{z^{2}} \leq b$.

- By Farkas' Lemma (inequality version; Proposition 7.18), this is equivalent to:
For any $y \in \mathbb{R}^{N}$, if $y \geq 0$ and $\binom{A}{-A} y \geq 0$, then $b^{\mathrm{T}} y \geq 0$,
or, if $y \geq 0$ and $A y=0$, then $b^{\mathrm{T}} y \geq 0$ (condition (2)).

Variants of Farkas' Lemma

Proposition 7.23 (Gordan's Theorem)
Let $A \in \mathbb{R}^{M \times N}$.
The following conditions are equivalent:

1. There exists $x \in \mathbb{R}^{M}$ such that $A^{\mathrm{T}} x \gg 0$.
2. For any $y \in \mathbb{R}^{N}$, if $y \geq 0$ and $A y=0$, then $y=0$.

Proof

- Condition (1) is equivalent to:

There exists $x \in \mathbb{R}^{M}$ such that $-A^{\mathrm{T}} x \leq \mathbf{- 1}$.

- By Gale's Theorem (Proposition 7.22), this is equivalent to: For any $y \in \mathbb{R}^{N}$, if $y \geq 0$ and $(-A) y=0$, then $\left(-\mathbf{1}^{\mathrm{T}}\right) y \geq 0$, or $y \geq 0$ and $A y=0$, then $y=0$ (condition (2)).

Variants of Farkas' Lemma

Proposition 7.24 (Ville/von Neumann-Morgenstern I)
Let $A \in \mathbb{R}^{M \times N}$.
The following conditions are equivalent:

1. There exists $x \in \mathbb{R}^{M}$ such that $A^{\mathrm{T}} x \gg 0$ and $x \gg 0$.
2. For any $y \in \mathbb{R}^{N}$, if $y \geq 0$ and $A y \leq 0$, then $y=0$.

Variants of Farkas' Lemma

- In fact,
"there exists $x \in \mathbb{R}^{M}$ such that $A^{\mathrm{T}} x \gg 0$ and $x \gg 0$ " is equivalent to
"there exists $x \in \mathbb{R}^{M}$ such that $A^{\mathrm{T}} x \gg 0$ and $x \geq 0$ ".
- Given an $x \geq 0$ in the latter, consider $x+\varepsilon \mathbf{1}$ for sufficiently small $\varepsilon>0$.

Proposition 7.25 (Ville/von Neumann-Morgenstern II)
Let $A \in \mathbb{R}^{M \times N}$.
The following conditions are equivalent:

1. There exists $x \in \mathbb{R}^{M}$ such that $A^{\mathrm{T}} x \gg 0$ and $x \geq 0$.
2. For any $y \in \mathbb{R}^{N}$, if $y \geq 0$ and $A y \leq 0$, then $y=0$.

Proof of Proposition 7.24

- Condition (1) is equivalent to:

There exists $x \in \mathbb{R}^{M}$ such that $\binom{A^{\mathrm{T}}}{I} x \gg 0$.

- By Gordan's Theorem (Proposition 7.23), this is equivalent to:

For any $y \in \mathbb{R}^{N}$ and $z \in \mathbb{R}^{M}$,
if $y \geq 0, z \geq 0$, and $\left(\begin{array}{ll}A & I\end{array}\right)\binom{y}{z}=0$, then $\binom{y}{z}=0$.

- This is equivalent to:

For any $y \in \mathbb{R}^{N}$, if $y \geq 0$ and $A y \leq 0$, then $y=0$ (condition (2)).

Variants of Farkas' Lemma

Proposition 7.26
Let $A \in \mathbb{R}^{M \times N}$.
The following conditions are equivalent:

1. There exists $x \in \mathbb{R}^{M}$ such that $A^{\mathrm{T}} x \leq 0$ and $x \gg 0$.
2. For any $y \in \mathbb{R}^{N}$, if $y \geq 0$ and $A y \geq 0$, then $A y=0$.

Proof

- Condition (1) is equivalent to:

There exists $x \in \mathbb{R}^{M}$ such that $\binom{A^{\mathrm{T}}}{-I} x \leq\binom{ 0}{-\mathbf{1}}$.

- By Gale's Theorem (Proposition 7.22), this is equivalent to:

For any $y \in \mathbb{R}^{N}$ and $z \in \mathbb{R}^{M}$,
if $y \geq 0, z \geq 0$, and $\left(\begin{array}{ll}A & -I\end{array}\right)\binom{y}{z}=0$, then
$\left(\begin{array}{ll}0 & -\mathbf{1}^{\mathrm{T}}\end{array}\right)\binom{y}{z} \geq 0$.

- This is equivalent to:

For any $y \in \mathbb{R}^{N}$,
if $y \geq 0$ and $A y \geq 0$, then $A y=0$ (condition (2)).

Variants of Farkas' Lemma

Proposition 7.27 (Stiemke's Lemma)
Let $A \in \mathbb{R}^{M \times N}$.
The following conditions are equivalent:

1. There exists $x \in \mathbb{R}^{M}$ such that $A^{\mathrm{T}} x=0$ and $x \gg 0$.
2. For any $y \in \mathbb{R}^{N}$, if $A y \geq 0$, then $A y=0$.

Proof

- Condition (1) is equivalent to:

There exists $x \in \mathbb{R}^{M}$ such that $x \gg 0$ and $\binom{A^{\mathrm{T}}}{-A^{\mathrm{T}}} x \leq 0$.

- By Proposition 7.26, this is equivalent to:

For any $y \in \mathbb{R}^{N}$ and $z \in \mathbb{R}^{M}$,
if $y \geq 0, z \geq 0$, and $\left(\begin{array}{ll}A & -A\end{array}\right)\binom{y}{z} \geq 0$, then
$\left(\begin{array}{ll}A & -A\end{array}\right)\binom{y}{z}=0$.

- This is equivalent to:

For any $y \in \mathbb{R}^{N}$, if $A y \geq 0$, then $A y=0$ (condition (2)).

Variants of Farkas' Lemma

Proposition 7.28 (Motzkin's Theorem)
Let $B \in \mathbb{R}^{M \times N}, C \in \mathbb{R}^{M \times K}, D \in \mathbb{R}^{M \times L}$.
The following conditions are equivalent:

1. There exists no $x \in \mathbb{R}^{M}$ such that $B^{\mathrm{T}} x \gg 0, C^{\mathrm{T}} x \geq 0$, and $D^{\mathrm{T}} x=0$.
2. There exist $y_{1} \in \mathbb{R}^{N}, y_{2} \in \mathbb{R}^{K}$, and $y_{3} \in \mathbb{R}^{L}$ such that $B y_{1}+C y_{2}+D y_{3}=0, y_{1} \geq 0, y_{1} \neq 0$, and $y_{2} \geq 0$.

- Proved using Farkas' Lemma.
- Proposition 7.23 (Gordan's Theorem), Propositions 7.24-7.25 (Ville's Theorem), Proposition 7.26, and Proposition 7.27 (Stiemke's Lemma) are all special cases of this theorem.

Efficient Production under Linear Technology

- For the production set $Y \subset \mathbb{R}^{N}, y \in Y$ is efficient if there is no $y^{\prime} \in Y$ such that $y^{\prime} \geq y$ and $y^{\prime} \neq y$.

Proposition 7.29
Let $Y=\left\{y \in \mathbb{R}^{N} \mid A y \leq b\right\}$ for some $A \in \mathbb{R}^{M \times N}$ and $b \in \mathbb{R}^{M}$. Then $\bar{y} \in Y$ is efficient if and only if there exists $p \gg 0$ such that $p \cdot \bar{y} \geq p \cdot y$ for all $y \in Y$.

- The "if" part holds for general set Y.

Proof

- The "if" part:

If \bar{y} is not efficient, i.e., $y^{\prime}-\bar{y} \geq 0, \neq 0$ for some $y^{\prime} \in Y$, then for any $p \gg 0$, we have $\left(y^{\prime}-\bar{y}\right) p>0$ or $y^{\prime} p>y^{*} p$.

- The "only if" part:

Suppose that $\bar{y} \in Y$ is efficient.

- Write $A=\binom{A^{1}}{A^{2}}$ and $b=\binom{b^{1}}{b^{2}}$ such that

$$
A^{1} \bar{y}=b^{1}, \quad A^{2} \bar{y} \ll b^{2}
$$

where $A^{k} \in \mathbb{R}^{M_{k} \times N}, b^{k} \in \mathbb{R}^{M_{k}}, k=1,2$, and $M_{1}+M_{2}=M$.

- By the efficiency of $\bar{y}, M_{1} \geq 1$.
- By the efficiency of \bar{y}, there exists no $z \in \mathbb{R}^{N}$ such that $A^{1} z \leq 0, z \geq 0, z \neq 0$.
If there exists such z, then $A(\bar{y}+\varepsilon z) \leq b$ for sufficiently small $\varepsilon>0$, where $\bar{y}+\varepsilon z \supsetneqq \bar{y}$.
- By Proposition 7.25 (Ville's Theorem), there exists $x \in \mathbb{R}^{M_{1}}$ such that $\left(A^{1}\right)^{\mathrm{T}} x \gg 0$ and $x \geq 0$.

$$
\text { Let } p=\left(A^{1}\right)^{\mathrm{T}} x(\gg 0) \text {. }
$$

- Then for any $y \in Y$ (where $A^{1} y \leq b^{1}$), we have

$$
\begin{aligned}
& p \cdot \bar{y}=x \cdot A^{1} \bar{y}=x \cdot b^{1} \\
& p \cdot y=x \cdot A^{1} y \leq x \cdot b^{1}
\end{aligned}
$$

as desired.

Strict Dominance and Never Best Response

Consider a two-player normal form game:

- $S_{1}=\{1, \ldots, M\}$: set of pure strategies of player $1(M \geq 2)$
$S_{2}=\{1, \ldots, N\}$: set of pure strategies of player $2(N \geq 2)$
- $\Delta\left(S_{1}\right)=\left\{x \in \mathbb{R}_{+}^{M} \mid x_{1}+\ldots+x_{M}=1\right\}:$ set of mixed strategies of player 1
$\Delta\left(S_{2}\right)=\left\{y \in \mathbb{R}_{+}^{N} \mid y_{1}+\ldots+y_{N}=1\right\}:$
set of mixed strategies of player 2
- From player 1's point of view, $\Delta\left(S_{2}\right)$ is interpreted as the set of 1's beliefs over 2's strategies.
- Pure strategy $m \in S_{1}$ is identified with $e_{m} \in \Delta\left(S_{1}\right)$, the m th unit vector of \mathbb{R}^{M}.
- Payoff matrix for player 1 :

$$
U=\left(\begin{array}{ccc}
u_{11} & \cdots & u_{1 N} \\
\vdots & \ddots & \vdots \\
u_{M 1} & \cdots & u_{M N}
\end{array}\right) \in \mathbb{R}^{M \times N}
$$

(We only consider the incentives of player 1.)

- $e_{m}^{\mathrm{T}} U y \cdots$ payoff from $m \in S_{1}$ against $y \in \Delta\left(S_{2}\right)$
- $x^{\mathrm{T}} U y \cdots$ payoff from $x \in \Delta\left(S_{1}\right)$ against $y \in \Delta\left(S_{2}\right)$
- $m \in S_{1}$ is a best response to $y \in \Delta\left(S_{2}\right)$ if $e_{m}^{\mathrm{T}} U y \geq e_{\ell}^{\mathrm{T}} U y$ for all $\ell \in S_{1}$.
- $m \in S_{1}$ is a never best response if it is not a best response to any $y \in \Delta\left(S_{2}\right)$.
- $m \in S_{1}$ is strictly dominated if there exists $x \in \Delta\left(S_{1}\right)$ such that $e_{m}^{\mathrm{T}} U e_{n}<x^{\mathrm{T}} U e_{n}$ for all $n \in S_{2}$.

Proposition 7.30

In a two-player normal form game, $m \in S_{1}$ is a never best response if and only if it is strictly dominated.

- The result extends straightforwardly to (finite) games with more than two players if best response is defined with respect to correlated beliefs over opponents' strategies.

Proof

- Let

$$
\tilde{U}=\left(\begin{array}{ccc}
u_{11}-u_{m 1} & \cdots & u_{1 N}-u_{m N} \\
\vdots & \ddots & \vdots \\
u_{M 1}-u_{m 1} & \cdots & u_{M N}-u_{m N}
\end{array}\right)
$$

- $m \in S_{1}$ is a never best response
\Longleftrightarrow there exists no $y \geq 0, y \neq 0$, such that $\tilde{U} y \leq 0$
\Longleftrightarrow if $y \geq 0$ and $\tilde{U} y \leq 0$, then $y=0$.
- $m \in S_{1}$ is strictly dominated
\Longleftrightarrow there exists $x \geq 0, x \neq 0$, such that $x^{\mathrm{T}} \tilde{U} \gg 0$.
- By Ville's Theorem (Proposition 7.25), these are equivalent.

Weak Dominance and Never Best Response

- $m \in S_{1}$ is weakly dominated if there exists $x \in \Delta\left(S_{1}\right)$ such that
- $e_{m}^{\mathrm{T}} U e_{n} \leq x^{\mathrm{T}} U e_{n}$ for all $n \in S_{2}$, and
- $e_{m}^{\mathrm{T}} U e_{n}<x^{\mathrm{T}} U e_{n}$ for some $n \in S_{2}$.

Proposition 7.31

In a two-player normal form game, $m \in S_{1}$ is a best response to some totally mixed strategy $y \in \Delta\left(S_{2}\right)$ if and only if it is not weakly dominated.

Proof

- Again let

$$
\tilde{U}=\left(\begin{array}{ccc}
u_{11}-u_{m 1} & \cdots & u_{1 N}-u_{m N} \\
\vdots & \ddots & \vdots \\
u_{M 1}-u_{m 1} & \cdots & u_{M N}-u_{m N}
\end{array}\right)
$$

- $m \in S_{1}$ is a best response to some totally mixed strategy \Longleftrightarrow there exists $y \gg 0$ such that $\tilde{U} y \leq 0$.
- $m \in S_{1}$ is not weakly dominated
\Longleftrightarrow there exists no $x \geq 0, x \neq 0$, such that $x^{\mathrm{T}} \tilde{U} \nexists 0$ \Longleftrightarrow if $x \geq 0$ and $x^{\mathrm{T}} \tilde{U} \geq 0$, then $x^{\mathrm{T}} \tilde{U}=0$.
- By Proposition 7.26, these are equivalent.

