10. Fixed Point Theorems

Daisuke Oyama

Mathematics II

May 20, 2025

Brouwer's Fixed Point Theorem

Proposition 10.1 (Brouwer's Fixed Point Theorem)

Suppose that $X \subset \mathbb{R}^N$ is a nonempty, compact, and convex set, and that $f \colon X \to X$ is a continuous function from X into itself. Then f has a fixed point, i.e., there exists $x \in X$ such that x = f(x).

- ▶ What if *X* is not compact?
- ▶ What if *X* is not convex?
- ▶ What if *f* is not continuous?

Kakutani's Fixed Point Theorem

Proposition 10.2 (Kakutani's Fixed Point Theorem)

Suppose that $X \subset \mathbb{R}^N$ is a nonempty, compact, and convex set, and that $F \colon X \to X$ is a correspondence from X into itself that is

- 1. nonempty-valued,
- 2. convex-valued,
- 3. compact-valued, and
- 4. upper semi-continuous.

Then F has a fixed point, i.e., there exists $x \in X$ such that $x \in F(x)$.

Note:

Since the codomain is compact,

"being compact-valued and upper semi-continuous" can be replaced with "having a closed graph".

- ▶ What if *F* is not convex-valued?
- ▶ What if *F* is not compact-valued?

Proof of Brouwer's Fixed Point Theorem

- ► Sperner's Lemma
- KKM Lemma
- Brouwer's Fixed Point Theorem
 - for simplices
 - for general compact convex sets

Simplices

▶ The *unit simplex* Δ in \mathbb{R}^N is the set

$$\Delta = \left\{ x \in \mathbb{R}^N \mid x_1, \dots, x_N \ge 0, \ \sum_{i=1}^N x_i = 1 \right\}$$

= Co{e₁, ..., e_N},

where $e_i \in \mathbb{R}^N$ is the *i*th unit vector in \mathbb{R}^N .

- An m-simplex in \mathbb{R}^N is the convex hull $\operatorname{Co}\{a^1,a^2,\ldots,a^{m+1}\}$ of m+1 affinely independent vectors a^1,a^2,\ldots,a^{m+1} in \mathbb{R}^N (i.e., $a^2-a^1,\ldots,a^{m+1}-a^1$ linearly independent).
 - $\qquad \qquad \Delta \subset \mathbb{R}^N \text{ is an } (N-1) \text{-simplex in } \mathbb{R}^N.$

- For an m-simplex $S = \operatorname{Co}\{a^1, \dots, a^{m+1}\}$:
 - ▶ Each a^i is called a *vertex* of the m-simplex, where we write $V(S) = \{a^1, \dots, a^{m+1}\}$ (set of vertices of S).
 - $\{a^1, \ldots, a^{m+1}\}$ is said to span S.
 - ► The simplex spanned by a subset of vertices of S is called a face of S,

where a face spanned by k vertices is called a k-face.

For each $x \in S$, which is (uniquely) represented by a convex combination $\sum_i \alpha_i a^i$, the *carrier* C(x) of x is the set of indices with positive weights:

$$C(x) = \{i \in \{1, \dots, m+1\} \mid \alpha_i > 0\}.$$

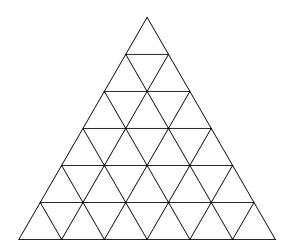
Simplicial Subdivision

- ▶ A simplicial subdivision of an m-simplex S is a finite set of m-simplices (subsimplices) such that
 - ▶ the union of all subsimplices is S, and
 - the intersection of any two subsimplices is either empty or a face of both.
- ► The mesh of a simplicial subdivision is the maximum among the diameters of the subsimplices.

(The diameter of a set A is $\sup_{x,y\in A} ||x-y||$.)

For any $\varepsilon > 0$, there exists a simplicial subdivision with mesh smaller than ε .

Example: Equilateral subdivision



Sperner Labelling

Consider a simplicial subdivision \mathcal{T} of an m-simplex $S = \operatorname{Co}\{a^1, \dots, a^{m+1}\}.$

Let $V(\mathcal{T})$ be the set of vertices of subsimplices in \mathcal{T} .

▶ A Sperner labelling (or proper labelling) of \mathcal{T} is a mapping $\lambda \colon V(\mathcal{T}) \to \{1, \dots, m+1\}$ such that

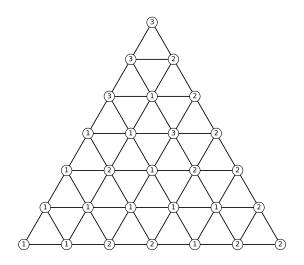
$$\lambda(v) \in C(v)$$

for all $v \in V(\mathcal{T})$

(where $C(v) = \{i \in \{1, \dots, m+1\} \mid \alpha_i > 0\}$ is the carrier of v).

A subsimplex in \mathcal{T} is *completely labelled* if its set of vertices has all m+1 distinct labels.

Example: Sperner labelling



Sperner's Lemma

Proposition 10.3 (Sperner's Lemma)

For any simplicial subdivision of any m-simplex and any Sperner labelling of it,

there are an odd number of completely labelled subsimplices; in particular, there is at least one completely labelled subsimplex.

Proof

By induction in m:

- ▶ The statement is trivial for m = 0.
- For $m \ge 1$, assume that the statement is true for m-1.
- Let a simplicial subdivision \mathcal{T} of an m-simplex S and a Sperner labelling $\lambda \colon \mathcal{T} \to \{1, \dots, m+1\}$ be given.
- Define
 - ► C: set of subsimplices with labels $\{1, \ldots, m+1\}$ (set of completely labelled subsimplices);
 - ▶ A: set of subsimplices with labels $\{1, \ldots, m\}$ (set of "almost" completely labelled subsimplices); and
 - ▶ E: set of (m-1)-faces of subsimplices with labels $\{1, \ldots, m\}$ that are contained in the boundary of S.

- $\blacktriangleright \text{ Let } R = C \cup A \cup E.$
- Define

$$\mathcal{D} = \{ (t, t') \in R \times R \mid t \neq t', \ \lambda(V(t \cap t')) = \{1, \dots, m\} \}.$$

 $(V(t \cap t')$: set of vertices of the simplex $t \cap t'$)

- Interpretation
 - \triangleright S: house; \mathcal{T} : rooms
 - ightharpoonup C: rooms with labels $\{1, \ldots, m+1\}$
 - ightharpoonup A: rooms with labels $\{1,\ldots,m\}$
 - ► *E*: entrances (outside of the house)
 - D: doors between two rooms or a room and an entrance
 defined as ordered pairs, hence each door counted twice

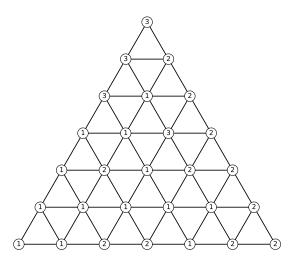
- 1. For each $t \in C$: $|\{t' \mid (t,t') \in \mathcal{D}\}| = 1$. "Each room in C has one door."
- 2. For each $t \in A$: $|\{t' \mid (t,t') \in \mathcal{D}\}| = 2$. (: One label in $\{1,\ldots,m\}$ is repeated.) "Each room in A has two doors."
- 3. For each $t \in E$: $|\{t' \mid (t,t') \in \mathcal{D}\}| = 1$. "Each entrance in E has one door."
- 4. $|\mathcal{D}|$: even $(\because (t,t') \in \mathcal{D} \iff (t',t) \in \mathcal{D})$ "Each door in \mathcal{D} is counted twice."

► Therefore, we have

$$|\mathcal{D}| = |C| + 2|A| + |E|,$$

where $|\mathcal{D}|$ is even.

- ▶ Therefore, |C| + |E| is even.
- ▶ Since |E| is odd by the induction hypothesis, it therefore follows that |C| is odd.



Paths through doors

- ▶ 4 types of paths:
 - $ightharpoonup e \leftrightarrow \cdots \leftrightarrow a \leftrightarrow \cdots \leftrightarrow e$
 - $e \leftrightarrow \cdots \leftrightarrow a \leftrightarrow \cdots \leftrightarrow c$
 - $c \leftrightarrow \cdots \leftrightarrow a \leftrightarrow \cdots \leftrightarrow c$
 - $ightharpoonup \cdots \leftrightarrow a \leftrightarrow \cdots$ (cycle)

where $c \in C$, $a \in A$, $e \in E$.

ightharpoonup |E| is odd by the induction hypothesis.

KKM (Knaster-Kuratowski-Mazurkiewicz) Lemma

Let $\Delta = \text{Co}\{e_1, \dots, e_N\}$ be the unit simplex in \mathbb{R}^N , where $e_i \in \mathbb{R}^N$ is the *i*th unit vector in \mathbb{R}^N .

Proposition 10.4 (KKM Lemma)

Let F_1, \ldots, F_N be a family of closed subsets of Δ such that

$$\operatorname{Co}\{e_i \mid i \in I\} \subset \bigcup_{i \in I} F_i \text{ for every } I \subset \{1, \dots, N\}.$$
 (*)

Then we have $\bigcap_{i=1}^{N} F_i \neq \emptyset$.

Proof

- Let F_1, \ldots, F_N be a family of closed subsets of Δ that satisfy condition (*).
- ▶ For each $k \in \mathbb{N}$, let \mathcal{T}_k be a simplicial subdivision of Δ with mesh smaller than $\frac{1}{k}$, and $V(\mathcal{T}_k)$ the set of vertices of subsimplices in \mathcal{T}_k .
- For each $v \in V(\mathcal{T}_k)$, where $v \in \operatorname{Co}\{e_i \mid i \in C(v)\}$, by condition (*) there is some $i \in C(v)$ such that $v \in F_i$. Let $\lambda_k(v)$ be any such i.
- ▶ Then, the mapping $\lambda_k \colon V(\mathcal{T}_k) \to \{1,\dots,N\}$ so defined is a Sperner labelling.

- ▶ Therefore, by Sperner's Lemma, there exists a completely labelled subsimplex in \mathcal{T}_k .
 - Denote its vertices by $v^1(k), \ldots, v^N(k)$ so that $\lambda_k(v^i(k)) = i$.
- ▶ By construction, $v^i(k) \in F_i$ for all k.
- ▶ By the compactness of Δ , $\{v^1(k)\}_{k=1}^{\infty}$ has a convergent subsequence $\{v^1(k_n)\}_{n=1}^{\infty}$ with a limit x^* .
- ▶ Since the diameter of $Co\{v^1(k_n), \ldots, v^N(k_n)\}$ converges to 0 as $n \to \infty$, we have $v^i(k_n) \to x^*$ also for all $i \neq 1$.
- ▶ By the closedness of F_i , we have $x^* \in F_i$ for all i = 1, ..., N.

Brouwer's Fixed Point Theorem for Simplices

Proposition 10.5

If $f: \Delta \to \Delta$ is continuous, then it has a fixed point.

Corollary 10.6

For a simplex S,

if $f \colon S \to S$ is continuous, then it has a fixed point.

Proof of Brouwer's Fixed Point Theorem for Unit Simplex

- Let $f: \Delta \to \Delta$ be continuous, where we write $f(x) = (f_1(x), \dots, f_N(x))$.
- ▶ For each $i \in \{1, ..., N\}$, define a subset F_i of Δ by

$$F_i = \{ x \in \Delta \mid x_i \ge f_i(x) \},\$$

which is closed by the continuity of f.

▶ If $x \in \bigcap_{i=1}^{N} F_i$, which means $x_i \ge f_i(x)$ for all i, then we have

$$1 = \sum_{i=1}^{N} x_i \ge \sum_{i=1}^{N} f_i(x) = 1,$$

and hence $x_i = f_i(x)$ for all i, i.e., x is a fixed point of f.

▶ Therefore, it suffices to show that $\bigcap_{i=1}^{N} F_i \neq \emptyset$.

- ▶ For any $I \subset \{1, ..., N\}$, if $x \in \text{Co}\{e_i \mid i \in I\}$, then $x \in \bigcup_{i \in I} F_i$.
 - \therefore If $x \notin \bigcup_{i \in I} F_i$, which means $x_i < f_i(x)$ for all $i \in I$, then we would have

$$1 = \sum_{i=1}^{N} x_i = \sum_{i \in I} x_i < \sum_{i \in I} f_i(x) \le \sum_{i=1}^{N} f_i(x) = 1,$$

which is a contradiction.

- ▶ Thus, F_1, \ldots, F_N satisfy the hypothesis of the KKM Lemma.
- ▶ Therefore, by the KKM Lemma, $\bigcap_{i=1}^{N} F_i \neq \emptyset$, as desired.

Proof of Brouwer's Fixed Point Theorem

- Let X be a nonempty, compact, and convex set, and $f \colon X \to X$ continuous.
- \blacktriangleright Let S be a sufficiently large simplex that contains X.
- For each $x \in S$, let g(x) be the unique $y \in X$ such that $\|y-x\| = \inf_{z \in X} \|z-x\|$.

The function $g \colon S \to X$ is well defined and continuous by the closedness and convexity of X.

- ▶ Define $h: S \to S$ by h(x) = f(g(x)), which is continuous.
- ▶ By Corollary 10.6, h has a fixed point $x^* \in S$, which must be in X.
- Then, we have $x^* = h(x^*) = f(g(x^*)) = f(x^*)$, i.e., x^* is a fixed point of f.

Proof of Kakutani's Fixed Point Theorem for Simplices

- ▶ Let $S \subset \mathbb{R}^N$ be an M-simplex: $S = \text{Co}\{a^1, \dots, a^{M+1}\}$.
- ▶ Let $F: S \to S$ be a nonempty- and convex valued correspondence from S to S whose graph is closed.
- ▶ For each $k \in \mathbb{N}$, let \mathcal{T}_k be a simplicial subdivision of S with mesh smaller than $\frac{1}{k}$, and $V(\mathcal{T}_k)$ the set of vertices of subsimplices in \mathcal{T}_k .
- For each k, we construct a continuous function f^k from S to S as follows:
 - For each $v \in V(\mathcal{T}_k)$, take any $y \in F(v)$, and let $f^k(v) = y$.
 - ▶ For each $x \in S$,

if
$$x$$
 is in a subsimplex $\operatorname{Co}\{v^1,\dots,v^{M+1}\}$, so that $x=\sum_{m=1}^{M+1}\alpha_mv^m$, then let $f^k(x)=\sum_{m=1}^{M+1}\alpha_my^m$, where $y^m=f^k(v^m)$.

- ▶ By Brouwer's Fixed Point Theorem, f^k has a fixed point $x^k \in S$: $f^k(x^k) = x^k$.
- Write $x^k=\sum_{m=1}^{M+1}\alpha_m^kv^{k,m}$ and $f^k(x^k)=\sum_{m=1}^{M+1}\alpha_m^ky^{k,m}$, where $y^{k,m}=f^k(v^{k,m})\in F(v^{k,m})$.
- By taking a subsequence, as $k \to \infty$, $x^k \to x^*$, $\alpha_m^k \to \alpha_m^*$, and $y^{k,m} \to y^{*,m}$, and also, $v^{k,m} \to x^*$.
- ► From $x^k = f^k(x^k) = \sum_{m=1}^{M+1} \alpha_m^k y^{k,m}$, we have $x^* = \sum_{m=1}^{M+1} \alpha_m^* y^{*,m}$.
- From $y^{k,m} \in F(v^{k,m})$, we have $y^{*,m} \in F(x^*)$ by the closedness of the graph of F.
- ▶ Therefore, by the convexity of $F(x^*)$, we have $x^* \in F(x^*)$.

Application: Existence of Nash Equilibrium

Nash gave three proofs of the existence of Nash equilibrium of finite normal form games.

- 1. J. F. Nash, "Equilibrium Points in *n*-Person Games," Proceedings of the National Academy of Sciences of the United States of America 36 (1950), 48-49.
- 2. J. F. Nash, "Non-Cooperative Games," Dissertation, Princeton University, Department of Mathematics, 1950.
- 3. J. Nash, "Non-Cooperative Games," *Annals of Mathematics* 54 (1951), 287-295.

See also:

▶ J. Hofbauer, "From Nash and Brown to Maynard Smith: Equilibria, Dynamics and ESS," Selection 1 (2000), 81-88.

Normal Form Games

Definition 10.1

An I-player (finite) normal form game is a tuple $(\mathcal{I},(S_i)_{i\in\mathcal{I}},(u_i)_{i\in\mathcal{I}})$ where

- $ightharpoonup \mathcal{I} = \{1, \dots, I\}$ is the set of players,
- ▶ S_i is the finite set of strategies of player $i \in \mathcal{I}$, and
- ▶ u_i : $\prod_j S_j \to \mathbb{R}$ is the payoff function of player $i \in \mathcal{I}$.

Mixed Strategies (1/2)

- A mixed strategy σ_i of player i is a probability distribution over S_i , where $\sigma_i(s_i)$ denotes the probability that i plays $s_i \in S_i$.
- We denote by $\Delta(S_i)$ the set of mixed strategies of player i.
- $ightharpoonup \Delta(S_i)$ is a convex and compact subset of $\mathbb{R}^{|S_i|}$.
- $ightharpoonup \prod_i \Delta(S_i)$ is a convex and compact subset of $\mathbb{R}^{|S_1|+\cdots+|S_I|}$.

Mixed Strategies (2/2)

▶ For $\sigma_{-i} = (\sigma_1, \dots, \sigma_{i-1}, \sigma_{i+1}, \dots, \sigma_I) \in \prod_{j \neq i} \Delta(S_j)$, we write

$$u_i(s_i, \sigma_{-i}) = \sum_{s_{-i} \in S_{-i}} \prod_{j \neq i} \sigma_j(s_j) u_i(s_i, s_{-i}),$$

$$u_i(\sigma_i, \sigma_{-i}) = \sum_{s_i \in S_i} \sigma_i(s_i) u_i(s_i, \sigma_{-i}).$$

- $ightharpoonup u_i(s_i, \sigma_{-i})$ is continuous in σ_{-i} .
- $ightharpoonup u_i(\sigma_i,\sigma_{-i})$ is continuous in (σ_i,σ_{-i}) .
- $ightharpoonup u_i(\sigma_i,\sigma_{-i})$ is linear in σ_i .

Nash Equilibrium (in Mixed Strategies)

Definition 10.2

A mixed strategy profile $\sigma^* = (\sigma_1^*, \dots, \sigma_I^*) \in \prod_i \Delta(S_i)$ is a Nash equilibrium of $(\mathcal{I}, (S_i)_{i \in \mathcal{I}}, (u_i)_{i \in \mathcal{I}})$ if for all $i \in \mathcal{I}$,

$$u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i, \sigma_{-i}^*)$$

for all $\sigma_i \in \Delta(S_i)$.

Equivalent Representations

1. Define the correspondences $B_i \colon \prod_{j \neq i} \Delta(S_j) \to \Delta(S_i)$ and $B \colon \prod_j \Delta(S_j) \to \prod_j \Delta(S_j)$ by

$$B_i(\sigma_{-i}) = \{ \sigma_i \in \Delta(S_i) \mid u_i(\sigma_i, \sigma_{-i}) \ge u_i(\sigma_i', \sigma_{-i}) \ \forall \ \sigma_i' \in \Delta(S_i) \},$$

$$B(\sigma) = B_1(\sigma_{-1}) \times \cdots \times B_I(\sigma_{-I}).$$

 σ^* is a Nash equilibrium if and only if σ^* is a fixed point of B, i.e., $\sigma^* \in B(\sigma^*)$.

2. σ^* is a Nash equilibrium if and only if for all $i \in \mathcal{I}$ and $s_i \in S_i$,

$$\sigma_i^*(s_i) > 0 \Rightarrow u_i(s_i, \sigma_{-i}^*) = \max_{s_i' \in S_i} u_i(s_i', \sigma_{-i}^*).$$

3. σ^* is a Nash equilibrium if and only if for all $i \in \mathcal{I}$,

$$u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(s_i, \sigma_{-i}^*)$$
 for all $s_i \in S_i$.

Existence Theorem

Proposition 10.7

Every finite normal form game has at least one Nash equilibrium.

Three Proofs

- 1. J. F. Nash, "Equilibrium Points in *n*-Person Games," Proceedings of the National Academy of Sciences of the United States of America 36 (1950), 48-49.
- 2. J. F. Nash, "Non-Cooperative Games," Dissertation, Princeton University, Department of Mathematics, 1950.
- 3. J. Nash, "Non-Cooperative Games," *Annals of Mathematics* 54 (1951), 287-295.

First Proof (1/2)

- ▶ B is a correspondence from the nonempty, convex, and compact set $\prod_j \Delta(S_j)$ to itself.
- ▶ $B_i(\sigma_{-i}) \subset \mathbb{R}^{|S_i|}$ is the set of all convex combinations of pure best responses to σ_{-i} , which is nonempty and convex. So B is nonempty- and convex-valued.
- ▶ To show that B has a closed graph, let $(\sigma^k, \tau^k) \in \prod_j \Delta(S_j) \times \prod_j \Delta(S_j)$ be such that $\tau_i^k \in B_i(\sigma_{-i}^k)$ for each i, and suppose that $(\sigma^k, \tau^k) \to (\sigma, \tau)$ as $k \to \infty$.

First Proof (2/2)

▶ Take any i and any σ_i' . Then $u_i(\tau_i^k, \sigma_{-i}^k) \geq u_i(\sigma_i', \sigma_{-i}^k)$. Since u_i is continuous, letting $k \to \infty$ we have

$$u_i(\tau_i, \sigma_{-i}) \ge u_i(\sigma'_i, \sigma_{-i}).$$

This means $\tau_i \in B_i(\sigma_{-i})$.

- ► Therefore, all the conditions of Kakutani's Fixed Point Theorem are satisfied.
- Hence, B has a fixed point, which is a Nash equilibrium.

Second Proof (1/4)

For each $i \in \mathcal{I}$ and for $k \in \mathbb{N}$, define the function $b_i^k : \prod_{j \neq i} \Delta(S_j) \to \Delta(S_i)$ by

$$b_i^k(\sigma_{-i})(s_i) = \frac{\phi_{is_i}^k(\sigma_{-i})}{\sum_{s_i' \in S_i} \phi_{is_i'}^k(\sigma_{-i})},$$

where

$$\phi_{is_i}^k(\sigma_{-i}) = \left[u_i(s_i, \sigma_{-i}) - U_i(\sigma_{-i}) + \frac{1}{k} \right]_+,$$

and
$$U_i(\sigma_{-i}) = \max_{s_i' \in S_i} u_i(s_i', \sigma_{-i})$$
 and $[x]_+ = \max\{x, 0\}$.

- $b_i^k(\sigma_{-i})(s_i)>0 \text{ if and only if } u_i(s_i,\sigma_{-i})>U_i(\sigma_{-i})-\frac{1}{k}.$ "Play $\frac{1}{k}$ -best responses with positive probabilities."
- $\triangleright b_i^k$ is a continuous function.

Second Proof (2/4)

▶ Define the function b^k : $\prod_i \Delta(S_i) \to \prod_i \Delta(S_i)$ by

$$b^k(\sigma) = (b_1^k(\sigma_{-1}), \dots, b_I^k(\sigma_{-I})).$$

- ▶ b^k is a continuous function from the nonempty, convex, and compact set $\prod_j \Delta(S_j)$ to itself.
- ▶ Therefore, by Brouwer's Fixed Point Theorem b^k has a fixed point, i.e., there exists $\sigma^k \in \prod_j \Delta(S_j)$ such that $\sigma^k = b^k(\sigma^k)$.
- ▶ Since $\prod_j \Delta(S_j)$ is a compact set, the sequence $\{\sigma^k\}$ has a convergent subsequence with a limit $\sigma^* \in \prod_j \Delta(S_j)$.

We want to show that σ^* is a Nash equilibrium.

▶ Take any $i \in \mathcal{I}$ and any $s_i \in S_i$ such that $\sigma_i^*(s_i) > 0$. Fix any $\varepsilon > 0$.

Second Proof (3/4)

▶ Since $\sigma_i^k \to \sigma_i^*$ and $U_i(\cdot) - u_i(s_i, \cdot)$ is continuous, we can take a k such that

- $lacksquare [U_i(\sigma_{-i}^*) u_i(s_i, \sigma_{-i}^*)] [U_i(\sigma_{-i}^k) u_i(s_i, \sigma_{-i}^k)] < \frac{\varepsilon}{2}$, and
- ► Therefore,

$$\begin{aligned} 0 &\leq U_{i}(\sigma_{-i}^{*}) - u_{i}(s_{i}, \sigma_{-i}^{*}) \\ &= \left([U_{i}(\sigma_{-i}^{*}) - u_{i}(s_{i}, \sigma_{-i}^{*})] - [U_{i}(\sigma_{-i}^{k}) - u_{i}(s_{i}, \sigma_{-i}^{k})] \right) \\ &+ \left(U_{i}(\sigma_{-i}^{k}) - u_{i}(s_{i}, \sigma_{-i}^{k}) - \frac{1}{k} \right) + \frac{1}{k} \\ &< \frac{\varepsilon}{2} + 0 + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

Second Proof (4/4)

- ▶ So we have shown that $u_i(s_i, \sigma_{-i}^*) = U_i(\sigma_{-i}^*)$ whenever $\sigma_i^*(s_i) > 0$.
- ▶ This means that σ^* is a Nash equilibrium.

Third Proof (1/3)

▶ For each $i \in \mathcal{I}$, define the function $f_i : \prod_j \Delta(S_j) \to \Delta(S_i)$ by

$$f_i(\sigma)(s_i) = \frac{\sigma_i(s_i) + k_{is_i}(\sigma)}{1 + \sum_{s_i' \in S_i} k_{is_i'}(\sigma)},$$

where

$$k_{is_i}(\sigma) = [u_i(s_i, \sigma_{-i}) - u_i(\sigma_i, \sigma_{-i})]_+.$$

- $ightharpoonup f_i$ is a continuous function.
- ▶ Define the function $f: \prod_j \Delta(S_j) \to \prod_j \Delta(S_j)$ by

$$f(\sigma) = (f_1(\sigma), \dots, f_I(\sigma)).$$

▶ f is a continuous function from the nonempty, convex, and compact set $\prod_{j} \Delta(S_j)$ to itself.

Third Proof (2/3)

▶ Therefore, by Brouwer's Fixed Point Theorem f has a fixed point, i.e., there exists $\sigma^* \in \prod_j \Delta(S_j)$ such that for all $i \in \mathcal{I}$ and $s_i \in S_i$,

$$\sigma_i^*(s_i) = \frac{\sigma_i^*(s_i) + k_{is_i}(\sigma^*)}{1 + \sum_{s_i' \in S_i} k_{is_i'}(\sigma^*)},$$

hence $\sigma_i^*(s_i) \sum_{s_i' \in S_i} k_{is_i'}(\sigma^*) = k_{is_i}(\sigma^*)$, where

$$k_{is_i}(\sigma^*) = \left[u_i(s_i, \sigma_{-i}^*) - u_i(\sigma_i^*, \sigma_{-i}^*) \right]_+.$$

lacktriangle We want to show that σ^* is a Nash equilibrium.

Third Proof (3/3)

▶ By the linearity of u_i in σ_i , there is some \bar{s}_i with $\sigma_i^*(\bar{s}_i) > 0$ such that

$$u_i(\bar{s}_i, \sigma_{-i}^*) \le u_i(\sigma_i^*, \sigma_{-i}^*),$$

for which we have $k_{i\bar{s}_i}(\sigma^*) = 0$.

▶ But by $\sigma_i^*(\bar{s}_i) \sum_{s_i' \in S_i} k_{is_i'}(\sigma^*) = k_{i\bar{s}_i}(\sigma^*)$, we have

$$\sum_{s_i' \in S_i} k_{is_i'}(\sigma^*) = 0,$$

and hence, $k_{is_i}(\sigma^*) = 0$ for all $s_i \in S_i$.

- ▶ That is, we have $u_i(s_i, \sigma_{-i}^*) \leq u_i(\sigma_i^*, \sigma_{-i}^*)$ for all $s_i \in S_i$.
- ▶ This implies that σ^* is a Nash equilibrium.

Tarski's Fixed Point Theorem

Let X be any nonempty set.

- For functions $v \colon X \to \mathbb{R}$ and $v' \colon X \to \mathbb{R}$, we write $v \le v'$ if $v(x) \le v'(x)$ for all $x \in X$.
- ▶ This order \leq defines a partial order on the set of functions from X to \mathbb{R} .
- Fix two functions $\underline{v}\colon X\to\mathbb{R}$ and $\overline{v}\colon X\to\mathbb{R}$ such that $\underline{v}\leq \overline{v}$, and write

$$[\underline{v}, \overline{v}] = \{v \colon X \to \mathbb{R} \mid \underline{v} \le v \le \overline{v}\}.$$

▶ A function $\varphi \colon [\underline{v}, \overline{v}] \to [\underline{v}, \overline{v}]$ is nondecreasing if for all $v, v' \in [\underline{v}, \overline{v}]$, $v \le v' \Rightarrow \varphi(v) \le \varphi(v')$.

Tarski's Fixed Point Theorem

Proposition 10.8 (Tarski's Fixed Point Theorem)

Suppose that $\varphi \colon [\underline{v}, \overline{v}] \to [\underline{v}, \overline{v}]$ is nondecreasing.

Then φ has a fixed point, i.e., there exists $v^* \in [\underline{v}, \overline{v}]$ such that

 $v^* = \varphi(v^*).$

Proof (1/3)

Let

$$A = \{ v \in [\underline{v}, \overline{v}] \mid v \le \varphi(v) \}$$

(which is nonempty since $\underline{v} \in A$).

▶ Define the function $v^* \colon X \to \mathbb{R}$ by

$$v^*(x) = \sup\{v(x) \mid v \in A\}$$

for each $x \in X$ (which is well defined since $\{v(x) \mid v \in A\}$ is bounded above by $\overline{v}(x)$ and hence its supremum exists).

- ightharpoonup Clearly, $v^* \in [\underline{v}, \overline{v}]$.
- Note that v^* is the least upper bound of A, that is, if $v \le u$ for all $v \in A$, then $v^* \le u$.
- We want to show that v^* is a fixed point of φ .

Proof (2/3)

- Fix any $v \in A$. Thus, $v \leq \varphi(v)$ by the definition of A.
- ▶ By the definition of v^* , $v \le v^*$, and thus $\varphi(v) \le \varphi(v^*)$ by the assumption that φ is nondecreasing.
- ▶ Therefore, we have $v \leq \varphi(v^*)$.
- Since this holds for any $v \in A$, it means that $\varphi(v^*)$ is an upper bound of A.
- ► Hence,

$$v^* \le \varphi(v^*) \tag{1}$$

since v^* is the least upper bound of A.

Again by the assumption that φ is nondecreasing, it follows from (1) that $\varphi(v^*) \leq \varphi(\varphi(v^*))$, and hence $\varphi(v^*) \in A$.

Proof (3/3)

► Hence,

$$\varphi(v^*) \le v^* \tag{2}$$

by the definition of v^* .

▶ Therefore, by (1) and (2), we have $v^* = \varphi(v^*)$.

Contraction Mapping Fixed Point Theorem

Let X be any nonempty set.

- ▶ Let $\mathcal{B}(X)$ be the set of bounded functions from X to \mathbb{R} .
- ▶ Define the function $d \colon \mathcal{B}(X) \times \mathcal{B}(X) \to \mathbb{R}_+$ by

$$d(v,v') = \sup_{x \in X} |v(x) - v'(x)| \qquad (v,v' \in \mathcal{B}(X)).$$

- d satisfies the following properties:
 - 1. d(v, v') = 0 if and only if v = v';
 - 2. d(v, v') = d(v', v);
 - 3. $d(v, v') \le d(v, v'') + d(v'', v')$.
- A function $\varphi \colon \mathcal{B}(X) \to \mathcal{B}(X)$ is a contraction mapping (or simply, contraction) if there exists $\beta \in (0,1)$ such that

$$d(\varphi(v), \varphi(v')) \le \beta d(v, v')$$

for all $v, v' \in \mathcal{B}(X)$.

Contraction Mapping Fixed Point Theorem

Proposition 10.9 (Contraction Mapping Fixed Point Theorem)

Suppose that $\varphi\colon \mathcal{B}(X) \to \mathcal{B}(X)$ is a contraction mapping. Then φ has a unique fixed point, i.e., there exists a unique $v^* \in \mathcal{B}(X)$ such that $v^* = \varphi(v^*)$. Moreover, for any $v^0 \in \mathcal{B}(X)$, $d(\varphi^m(v^0), v^*) \to 0$ as $m \to \infty$, where $\varphi^m(v^0) = \varphi(\varphi^{m-1}(v^0))$, $m = 1, 2, \ldots$

Proof (1/3)

- Fix any $v^0 \in \mathcal{B}(X)$, and consider the sequence $\{v^m\}$ defined by $v^m = \varphi(v^{m-1})$ for $m \in \mathbb{N}$.
- ▶ Then the sequence $\{v^m\}$ is a *Cauchy sequence* in $\mathcal{B}(X)$ in the following sense:

for any $\varepsilon > 0$, there exists $M \in \mathbb{N}$ such that

$$d(v^m, v^n) < \varepsilon$$

for all $m, n \geq M$.

(: Given $\varepsilon > 0$, let $M \in \mathbb{N}$ be such that $[\beta^M/(1-\beta)]d(\varphi(v^0),v^0) < \varepsilon$.)

Then for each $x \in X$, the sequence $\{v^m(x)\}$ is a Cauchy sequence in \mathbb{R} , and hence it converges to some real number by the completeness of \mathbb{R} .

Denote the limit by $v^*(x)$.

Proof (2/3)

- ▶ Regarding the function $v^*: X \to \mathbb{R}$ so defined, one can show:
 - 1. $v^* \in \mathcal{B}(X)$, i.e., v^* is bounded;
 - 2. $d(v^m, v^*) \to 0$ as $m \to \infty$.
- We show that v^* is indeed a fixed point of φ .
- Fix any $\varepsilon > 0$. Let $M \in \mathbb{N}$ be such that $d(v^m, v^*) < \varepsilon/(1+\beta)$ for all $m \ge M$.

Then we have

$$d(\varphi(v^*), v^*) \le d(\varphi(v^*), \varphi(v^M)) + d(\varphi(v^M), v^*)$$

$$\le \beta d(v^*, v^M) + d(v^{M+1}, v^*) < \varepsilon.$$

Since $\varepsilon>0$ has been taken arbitrarily, it follows that $d(\varphi(v^*),v^*)=0$ and hence $\varphi(v^*)=v^*$.

Proof (3/3)

Uniqueness:

Let
$$\varphi(v^*) = v^*$$
 and $\varphi(v^{**}) = v^{**}$.

Then

$$d(v^*, v^{**}) = d(\varphi(v^*), \varphi(v^{**})) \le \beta d(v^*, v^{**}),$$

and therefore $(1 - \beta)d(v^*, v^{**}) \leq 0$.

Since $\beta < 1$, we have $d(v^*, v^{**}) \leq 0$, and therefore $v^* = v^{**}$.

Convergence:

We have shown that for any choice of $v^0 \in \mathcal{B}(X)$, the sequence $\{v^m\}$ defined by $v^m = \varphi(v^{m-1})$ for $m \in \mathbb{N}$ converges to the unique fixed point v^* .

Remark

- ▶ The only property of $\mathcal{B}(X)$ (and d) used in the proof is its *completeness*,
 - i.e., the property that any Cauchy sequence in the set converges to some element of that set.
- ▶ For example, one can show that for $X \subset \mathbb{R}^N$, the set $\mathcal{C}_b(X)$ of bounded and *continuous* functions from X to \mathbb{R} in fact satisfies this property.

Therefore, the Contraction Mapping Theorem holds also with $C_b(X)$ in place of $\mathcal{B}(X)$ (with the same d).