Homework 6

Due on May 20

1. We want to prove " $2 \Rightarrow 1$ " in the inequality version of Farkas' Lemma (Proposition 7.18) by using Strong Duality for Linear Programming (Proposition 7.21).

Let $A \in \mathbb{R}^{M \times N}$ and $b \in \mathbb{R}^N$ be given, and assume that Condition 2 in Proposition 7.18 holds, i.e., that for any $y \in \mathbb{R}^N$, if $y \ge 0$ and $Ay \ge 0$, then $b^{\mathrm{T}}y \ge 0$.

Consider the linear program

(P)
$$\max_{x \in \mathbb{R}^M} \ 0^{\mathrm{T}} x$$
 s. t.
$$A^{\mathrm{T}} x \le b$$

$$x > 0.$$

- (1) Write down the dual problem of (P).
- (2) Show that the dual problem has a solution.
- (3) Use Proposition 7.21 to conclude that Condition 1 in Proposition 7.18 holds.
- **2.** Prove the following:

Let $K \subset \mathbb{R}^N$, $K \neq \emptyset$, be a compact convex set. If $K \cap \mathbb{R}^N_+ = \emptyset$, then there exist $p \gg 0$ and c < 0 such that

$$p \cdot x \le c$$
 for all $x \in K$.

(*Hint*. Consider either the set $A = K - \mathbb{R}^N_+$ or the set $B = \text{Co}(K \cup (-\Delta))$ (where $\Delta = \{x = (x_1, \dots, x_N) \in \mathbb{R}^N_+ \mid x_1 + \dots + x_N = 1\}$), each of which is closed by the compactness of K.)

- 3. Prove Ville's Theorem (Proposition 7.24) using the proposition proved in Problem 2.
- **4.** For $A \in \mathbb{R}^{M \times N}$, let

$$v^*(A) = \max_{x \in \Delta_M} \min_{y \in \Delta_N} x^{\mathrm{T}} A y,$$

$$v^{**}(A) = \min_{y \in \Delta_N} \max_{x \in \Delta_M} x^{\mathrm{T}} A y,$$

where $\Delta_K = \{z = (z_1, \dots, z_K) \in \mathbb{R}_+^K \mid z_1 + \dots + z_K = 1\}.$

(1) Prove that for every $A \in \mathbb{R}^{M \times N}$, $v^*(A) \leq v^{**}(A)$.

- (2) By using Ville's Theorem (Proposition 7.24), prove that for every $A \in \mathbb{R}^{M \times N}$, either $v^*(A) > 0$ holds or $v^{**}(A) \le 0$ holds.
- (3) By using (2), prove that for every $A \in \mathbb{R}^{M \times N}$, $v^*(A) = v^{**}(A)$. (Hint: Prove by contradiction by assuming that $v^*(A) < v^{**}(A)$.)
- 5. Prove Motzkin's Theorem (Proposition 7.28) by using Farkas' Lemma.
- **6.** For $A \subset \mathbb{R}^N$, $x \in A$ is called an *extreme point* of A if there do not exist $y, z \in A$ and $\alpha \in (0,1)$ such that $y \neq z$ and $x = (1-\alpha)y + \alpha z$.

Let $B = \{x^1, \dots, x^m\} \subset \mathbb{R}^N$ (finite subset of \mathbb{R}^N), and let $C = \operatorname{Co} B$ (convex hull of B). Suppose that $\bar{x} \in C$ is an extreme point of C.

- (1) Prove the following: There exists $i_0 \in \{1, ..., m\}$ such that $\bar{x} = x^{i_0}$ and $\bar{x} \notin \text{Co}(B \setminus \{x^{i_0}\})$.
- (2) Prove the following: There exists $p \in \mathbb{R}^N$ such that $p \cdot \bar{x} > p \cdot x$ for all $x \in C \setminus \{\bar{x}\}$.
- (3) Consider the following statement:
 - For any closed convex set $D \subset \mathbb{R}^N$, if $\bar{x} \in D$ is an extreme point of D, then there exists $p \in \mathbb{R}^N$ such that $p \cdot \bar{x} > p \cdot x$ for all $x \in D \setminus \{\bar{x}\}$.

Determine whether this statement is true or false, and provide a proof if true or provide a counter-example if false.

- 7. Determine the local maximizers and minimizers of the following functions.
- (1) $f(x_1, x_2) = x_1^3 + x_2^3 x_1^2 + x_1x_2 x_2^2$
- (2) $f(x_1, x_2) = x_1^4 4x_1x_2 + 2x_2^2$
- 8. Given $p_1, p_2, w > 0$, consider the utility maximization problem:

$$\max_{x_1, x_2} u(x_1, x_2) = x_1 + \log(x_2 + 1)$$

s.t. $p_1 x_1 + p_2 x_2 \le w$
 $x_1 \ge 0$
 $x_2 \ge 0$.

- (1) Show that u (as a function defined on \mathbb{R}^2_+) is quasi-concave.
- (2) Write down the KKT conditions.
- (3) Derive the Walrasian demand function.
- **9.** Prove Proposition 8.9.